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Abstract
In this paper it is shown that the Hartogs triangle T in C2 is a uniform domain. This implies
that the Hartogs triangle is a Sobolev extension domain. Furthermore, the weak and strong
maximal extensions of the Cauchy-Riemann operator agree on the Hartogs triangle. These
results have numerous applications. Among other things, they are used to study the Dolbeault
cohomology groups with Sobolev coefficients on the complement of T.

Mathematics Subject Classification 32W05 · 35N15

1 Introduction

The Hartogs triangle T = {(z, w) ∈ C2 | |z| < |w| < 1} is an important example in several
complex variables. It is biholomorphic to the product of the unit disc with the punctured
disc, hence a pseudoconvex domain and also a domain of holomorphy. However, it admits
neither a Stein neighborhood basis nor a bounded plurisubharmonic exhaustion function.
The Hartogs triangle plays an important role in our understanding of function theory for
pseudoconvex domains (see the survey paper [35]). There has been considerable interest in
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the Bergman projection (see [5,35]) and the ∂ problem on the Hartogs triangle (see e.g.,
[5,7,8,10,13,26,28,36]), but many fundamental questions remain to be answered for this
important model domain.

The Hartogs triangle is not a Lipschitz domain since it is not the graph of any function
near (0, 0). This presents a substantial obstacle to the study of function theory on T. In this
paper we show that T enjoys a number of properties generally associated with Lipschitz
domains (see [11,37]). Our first result is that the Hartogs triangle is an extension domain
for Sobolev spaces (Theorem 2.12). Consequently, smooth functions on C2 are dense in the
Sobolev spaces on T, and the Sobolev embedding theorems hold.

Our main result concerns the Cauchy-Riemann operator on the Hartogs triangle. A funda-
mental tool for solving the ∂-problem for forms on any pseudoconvex domain is Hörmander’s
L2 existence theory, where the ∂ operator is defined in the weak maximal sense. Specifically,
for every weakly closed form f on T with coefficients in L2, the equation ∂u = f admits a
weak solution in L2. The L2-theory does not easily yield information about the regularity of
u, even when f is smooth up to the boundary of the domain.

There is another closed extension of the Cauchy-Riemann operator, known as the strong
maximal extension ∂s (see Definition 3.2) which is the closure of forms smooth up to the
boundary in the L2 graph norm. The strong maximal extension was used by Kohn [23,24]
and Morrey [31] in their approach to the ∂-Neumann problem. If the domain is smooth and
strongly pseudoconvex, and f is ∂-closed and smooth up to the boundary, the Morrey-Kohn
approach yields solutions that are smooth up to the boundary. The strong extension ∂s and
its dual operator have many applications. For bounded domains with Lipschitz boundary, the
equality of ∂ and ∂s was proved by Hörmander from the Friedrichs lemma (see [17, Chapter
1]).

In this paper we prove that the weak and strong maximal extensions agree on the Hartogs
triangle. This is a first step towards understanding the regularity of solutions of the ∂-problem
on T. Since the Hartogs triangle is not a Lipschitz domain, the classical Friedrichs lemma
does not apply, and the relationship between the weak and strong extensions of ∂ is more
subtle. Our results are based on the L2 Serre duality that relates the ∂-Neumann problem to
the ∂-Cauchy problem.

The plan of the paper is as follows: In Sect. 2, we study the Sobolev space W 1(T),
consisting of L2 functions with weak derivatives in L2. In the past few decades, there has
been tremendous progress in harmonic analysis on domainswhich are not Lipschitz, yet share
some of their properties (see [20] or the more recent paper [1]). We show that the Hartogs
triangle is such a domain. Specifically we prove (Theorem 2.4) that the Hartogs triangle is
a uniform domain in the sense of [14,29]. By a result of Jones [21], any uniform domain
is a Sobolev extension domain. It follows that smooth functions are dense in the Sobolev
spacesWk(T) (Corollary 2.14), which in turn yields the Rellich compactness lemma and the
Poincaré inequality on W 1(T). Furthermore, we show that the Hartogs triangle has Ahlfors-
David regular boundary (Lemma 2.9), and the trace theorem holds (Corollary 2.15). These
properties are used in our study of the ∂ operator in later sections.

Section 3 is dedicated to the proof that ∂ = ∂s on T (Theorem 3.13). We take advantage
of a number of recent results on the properties of ∂s on T. Following [26], we use L2 Serre
duality to relate ∂ and ∂s to two other closures of ∂ , namely the strongminimal closure ∂c, and
the weak minimal closure ∂ c̃ (see Definition 3.3). It was proved in [26] that for a rectifiable
domain, the dual of ∂s is ∂ c̃. Solving ∂ c̃ amounts to solving ∂ with prescribed support. This
is known as the ∂-Cauchy problem and has numerous applications (see [9,34]).

The results from Sect. 2 are used to analyze the operators ∂s and ∂ c̃ on functions. It
turns out that the kernel of ∂s equals the kernel of ∂ , given by the Bergman space of square
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integrable harmonic functions on T (Proposition 3.6). In the proof, we explicitly estimate
the terms in the Laurent expansion on the Bergman space from [5,35]. Furthermore, ∂c and
∂ c̃ agree on functions (Proposition 3.7).

For (0, 1)-forms, it is difficult to prove directly that the kernel of ∂ and kernel ∂s are the
same since no simple Laurent expansion is available. Instead, we use duality to show that ∂s
has closed range (Theorem 3.11) and the relevant cohomology group is trivial. Using duality
once more, we conclude that ∂s = ∂ (see Theorem 3.13).

In Sect. 4, we study solutions of ∂ on an annular domain between a pseudoconvex domain
and the Hartogs triangle T. Using the Sobolev extension theorem, we prove that the W 1

Dolbeault cohomology on the annulus is isomorphic to the Bergman space on T (see The-
orem 4.3). This is in contrast with the non-Hausdorff property for the classical Dolbeault
cohomology group for (0,1)-forms on the annulus between a pseudoconvex and the Hartogs
triangle obtained earlier (see [38] or [26]).

There remain many open problems related to the Hartogs triangle which are yet to be
explored. In Sect. 5 we present a number of problems. It is still not known if the L2 Dolbeault
cohomology on the annulus is Hausdorff (Problem 1). Using the Sobolev extension theorem,
this problem is equivalent to asking if one can solve ∂ in the Sobolev space W 1(T). One can
ask more generally if one can solve ∂ in any Sobolev space Ws(T) (Problem 2). The Hodge
theorem for the de Rham complex d on T is also unknown for forms (Problem 3). Finally,
one would also like to understand the spectrum of the ∂-Laplacian (Problem 4). We also refer
the reader to the many open problems for the Hartogs triangle in CP2 in [28]. The results in
this paper are only the beginning of understanding function theory on non-smooth domains.

2 Sobolev spaces on T

In this section, we establish some basic facts about the Sobolev spaces W 1,p on the Hartogs
triangle

T :=
{
(z, w) ∈ C2 ∣∣ |z| < |w| < 1

}
. (2.1)

We show that these spaces have many useful properties, including bounded extension and
trace operators, smooth approximation, Sobolev embeddings, and the Poincaré inequality.
The key to these properties are two geometric regularity results: T is a uniform domain
(Theorem 2.4), whose boundary is Ahlfors–David regular (Lemma 2.9).

2.1 Uniform domain

Definition 2.1 Let" be a domain inRn . The domain" is called an (ϵ, δ) domain if for every
p1, p2 ∈ " and |p1 − p2| < δ, there exists a rectifiable curve γ ∈ " joining x and y such
that

ℓ(γ ) ≤ 1
ε
|p1 − p2|

and

dist(p, b") ≥ ε|p − p1||p − p2|
|p1 − p2|

for all p ∈ γ .

where ℓ(γ ) denotes the Euclidean length of γ and dist (p, b") denotes the distance from p
to b".
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When δ = ∞, " is called a uniform domain.

Uniform domainswere first introduced in [29] and [14], while the notion of a (ε, δ) domain
was introduced in [21]. It turns out that for bounded domains, they are equivalent (see [40]).

We will prove by direct computation that the Hartogs triangle T is a uniform domain.
Following [21], it suffices to show that there exists a constant c > 0 such that every pair of
points p1 ̸= p2 ∈ T can be joined by a rectifiable curve γ in T with

ℓ (γ ) ≤ c|p1 − p2| , (2.2)

such that

min{|p − p1|, |p − p2|} ≤ c dist (p, bT) for all p ∈ γ . (2.3)

We begin with an elementary inequality.

Lemma 2.2 (Distance in C2) Let p1, p2 ∈ C2 be given by p j = (r j eiα j , s j eiβ j ), where
r j , s j ≥ 0 and α j ,β j ∈ R, j=1,2. If |α1−α2| ≤ π and |β1−β2| ≤ π , then

|r1−r2| + |s1−s2| +min{r1, r2}|α1−α2| +min{s1, s2}|β1−β2| ≤ 3|p1 − p2| .

Proof We compare the right hand side of the inequality to the squared distance

|p1 − p2|2 = |r1 − r2|2 + |s1 − s2|2 + r1r2|eiα1 − eiα2 |2 + s1s2|eiβ1 − eiβ2 |2 .

Since |α1 −α2| ≤ π , their difference is comparable to the distance of the corresponding unit
vectors in C,

|α1 − α2| ≤ π
2 |eiα1 − eiα2 | ,

and correspondingly for |β1 − β2|. By Schwarz’ inequality,
(
|r1 − r2| + |s1 − s2| +min{r1, r2}|α1 − α2| +min{s1, s2}|β1 − β2|

)2

≤
(
|r1 − r2| + |s1 − s2| + π

2
√
r1r2|eiα1 − eiα2 | + π

2
√
s1s2|eiβ1 − e−β2 |

)2

≤
(
2+ π2

2

)
|p1 − p2|2 .

Since
√
2+ π2

2 < 3, this proves the claim. ⊓)

In order to understand the role of the singularity of T the origin, we consider the infinite
Hartogs triangle

T∞ :=
{
(z, w) ∈ C2 ∣∣ |z| < |w|

}
. (2.4)

Lemma 2.3 T∞ is a uniform domain.

Proof We will join any given pair of points p1 ̸= p2 ∈ T∞ by a curve γ in T∞ that satisfies
Eqs. (2.2) and (2.3) with c = 5 + 2π < 12. The curve consists of an arc γ0 that maintains
a constant distance from the boundary, and a pair of line segments γ1 and γ2 attached at the
ends.
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For j = 1, 2, write the points in polar coordinates as p j =
(
r j eiα j , s j eiβ j

)
with 0 ≤ r j <

s j , |α1−α2| ≤ π , and |β1−β2| ≤ π . Choose γ0 as the arc parametrized by p =
(
r∗eiα, s∗eiβ

)
,

where

r∗ := min{r1, r2} , s∗ := max{s1, s2} + |p1 − p2| , (2.5)

and the angles vary linearly from α1,β1 to α2,β2. Its endpoints

q j :=
(
r∗eiα j , s∗eiβ j

)
, j = 1, 2 (2.6)

are joined to the corresponding points p j by line segments γ j .
Length of the curve. Since s∗ ≤ min{s1, s2} + 2|p1 − p2|, we obtain for the arc

ℓ (γ0) ≤ min{r1, r2}|α1 − α2| +min{s1, s2}|β1 − β2| + 2π |p1 − p2| .
The initial and final segments satisfy

ℓ (γ1) ≤ (r1 − r2)+ + (s1 − s2)− + |p1 − p2| ,
ℓ (γ2) ≤ (r1 − r2)− + (s1 − s2)+ + |p1 − p2| ,

where x+ and x− denote, respectively, the positive and negative parts of a number x ∈ R.
Adding the three inequalities yields by Lemma 2.2 that ℓ (γ ) ≤

(
5+ 2π

)
|p1 − p2|.

Distance from the boundary. Let p = (reiα, seiβ) ∈ T∞. Since the ball of radius 1√
2
|r − s|

about p is contained in T∞, and its boundary meets bT∞ in the single point r+s
2 (eiα, eiβ),

dist (p, bT∞) =
∣∣∣p − r+s

2 (eiα, eiβ)
∣∣∣ = 1√

2
|s − r | .

On the central arc, the distance from the boundary is constant,

dist (p, bT∞) = 1√
2
(s∗ − r∗) ≥ 1√

2
|p1 − p2| , p ∈ γ0 .

Since min{|p − p1|, |p − p2|} ≤ 1
2ℓ(γ ), it follows that

min{|p − p1|, |p − p2|}
dist (p, bT∞)

≤ 5+ 2π√
2

, p ∈ γ0 .

This yields Eq. (2.3) on γ0. On the segments γ j , the distance from the boundary increases
linearly (in the arclength parametrization) from p j to q j , and therefore

|p − p j |
dist (p, bT∞)

≤ |q j − p j |
dist (q j , bT∞)

, p ∈ γ j , j = 1, 2 .

Since q1, q2 lie on the arc γ0, this completes the proof of Eq. (2.3). ⊓)

Theorem 2.4 The Hartogs triangle T is a uniform domain.

Proof Given twopoints p1, p2 ∈ T, define the radii r∗, s∗ byEq. (2.5), and letγ ′ = γ ′
0∪γ ′

1∪γ ′
2

be the curve constructed in the proof of Lemma 2.3. We rescale the arc to

γ0 :=
1

1+2|p1 − p2|
γ ′
0 ,

and then join its endpoints q j to p j by line segments γ j , for j = 1, 2. Since r∗ < s∗ <

1+|p1 − p2|, the curve γ := γ0 ∪ γ1 ∪ γ2 lies in T. We will show that γ satisfies Eqs. (2.2)
and (2.3) with c = (1+ 4

√
2)(5+ 2π + 4

√
2)/

√
2 < 80.
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Length of the curve. By construction, ℓ (γ0) ≤ ℓ (γ ′
0). For j = 1, 2, we write the endpoints

of γ0 as q j = (1+ 2|p1 − p2|)−1q ′
j , where q

′
j is given by Eq. (2.6). Since

|q ′
j − q j | ≤ 2|q j | |p1 − p2| and |q j | ≤

√
2 ,

by the triangle inequality the lengths of the line segments satisfy

ℓ(γ j ) ≤ |p j − q ′
j | + |q ′

j − q j | ≤ ℓ (γ ′)+ 2
√
2|p1 − p2| , j = 1, 2 .

Adding these inequalities yields, by Lemma 2.3,

ℓ (γ ) ≤ ℓ(γ ′)+ 4
√
2|p1 − p2| ≤ (5+ 2π + 4

√
2) |p1 − p2| .

Distance from the boundary. For p = (reiα, seiβ) ∈ T, we have

dist (p, bT) = min
{

1√
2
(s − r), 1−s

}
, p ∈ T .

On the central arc γ0, this distance constant,

dist (p, bT) = min
{

1√
2

(
s∗ − r∗

1+2|p1 − p2|

)
, 1 − s∗

1+2|p1 − p2|

}

≥ |p1 − p2|√
2(1+ 4

√
2)

, p ∈ γ0 .

In the second stepwe have used that |p1− p2| ≤ diam (T) = 2
√
2 to bound the denominators

from above, and that s∗ < 1+ |p1 − p2| to bound the second fraction from below.
Since min{|p − p1|, |p − p2|} ≤ 1

2ℓ(γ ) for every p ∈ γ , it follows that

min{|p − p1|, |p − p2|}
dist (p, bT)

≤ (1+ 4
√
2)(5+ 2π + 4

√
2)√

2
, p ∈ γ0 .

This yields Eq. (2.3) on γ0. On γ j , we argue as in the proof of Lemma 2.3 that the distances
from the parts of the boundary at {z = w} and |w| = 1 change linearly along the segments
to obtain

|p − p j |
dist (p, bT)

≤ |q j − p j |
dist (q j , bT)

, p ∈ γ j , j = 1, 2 .

Since q1, q2 ∈ γ0, this completes the proof. ⊓)

For later use, we briefly discuss domains in the complement of T.

Lemma 2.5 Let" ⊂ C2 be a bounded Lipschitz domain with" ⊃ T. Then"\T is a uniform
domain.

Proof It suffices to prove that there exist constants δ > 0 and c > 0 such that any pair of
points p1, p2 ∈ "\T with |p1 − p2| < δ can be joined by a curve γ in "\T that satisfies
Eqs. (2.2) and (2.3).

For ρ > 0, denote by D2
ρ := {(z, w) ∈ C2 : |z| < ρ, |w| < ρ} the bidisk of radius ρ.

Using that " contains the origin, we choose ρ ∈ (0, 1) so small that D2
ρ ⊂ ", and write

" = O1 ∪ O2, where

O1 := D2
ρ , O2 := "\D2

ρ/2 .

Then O1\T = {(z, w) ∈ C2
∣∣ |w| < |z| < ρ} is a scaled copy of T, and O2\T has Lipschitz

boundary since bD2
ρ/2 intersects bT transversally. Thus both are uniform domains. For δ > 0
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sufficiently small, any pair of points in "\T with |p1 − p2| < δ is contained in one of the
sets " j , in such a way that the distance of both points from bT is comparable to the distance
from "\T. Therefore, a connecting curve satisfying Eq. (2.3) can be constructed in either
O1\T or O2\T. ⊓)

2.2 Boundary regularity

Definition 2.6 Let σ denote the (d − 1)-dimensional Hausdorff measure on Rd . A closed
subset S ⊂ Rd is Ahlfors-David regular, if there exists a constant c > 0 such that

c−1ρd−1 ≤ σ
(
Bρ(p) ∩ S)

)
≤ cρd−1 (2.7)

for all p ∈ S and all ρ < diam S. Here, Bρ(p) denotes the ball of radius ρ about p.

Wefirst consider the unboundedHartogs triangle fromEq. (2.4). Clearly,bT∞ is rectifiable
with respect to the three-dimensional Hausdorff measure, σ . In particular, the restriction of
σ to bT∞ agrees with the natural surface measure.

Lemma 2.7 σ
(
Bρ(p) ∩ bT∞)

)
depends continuously on ρ ≥ 0 and p ∈ bT∞.

Proof Consider first the dependence on the radius. For every fixed p ∈ bT∞, the function
g(ρ) := σ

(
Bρ(p)∩bT∞)

)
= 0 is non-decreasing in ρ. Hence g has at most countably many

discontinuities, given by jumps. Since g is left continuous, the size of the jump at ρ equals

g(ρ+) − g(ρ) = σ
(
bBρ(p) ∩ bT∞

)
.

For p ∈ bT∞ and ρ ̸= |p|, the sphere bBρ(p) intersects bT∞ transversally. Indeed, if a
sphere were to touch bT∞ at a point q = (z, w) ̸= 0, then its center would lie on the line
through q normal to the surface. This normal line has the form {(z, w)+ s(z,−w) : s ∈ R},
which does not intersect bT∞ again. By the Implicit Function Theorem, the transversal
intersection bBρ(p) ∩ bT∞ is a submanifold of dimension 2. On the other hand, for ρ =
|p| > 0 the intersection bBρ(p) ∩ bT∞ contains the singular point at the origin; away from
the origin the intersection is again transversal. In any case, the three-dimensional Hausdorff
measure of the intersection vanishes, establishing continuity in ρ.

We turn to the dependence on p. For q ∈ bT∞ with |p − q| < δ, we have that

Bρ−δ(p) ⊂ Bρ(q) ⊂ Bρ+δ(p) ,

and hence, by the positivity of σ ,

σ (Bρ−δ(p) ∩ bT∞) ≤ σ (Bρ(q) ∩ bT∞) ≤ σ (Bρ+δ(p) ∩ bT∞) .

Continuity in p thus follows from continuity in ρ. ⊓)

Lemma 2.8 T∞ has Ahlfors–David regular boundary.

Proof We parametrize the boundary bT∞ by

p(r ,α,β) := 1√
2
(reiα, reiβ) , r ≥ 0 ,α,β ∈ (−π,π ] .

The Jacobian of the parametrization equals 1
2r

2.
For t ≥ 0, let

f (t) := σ
(
B1(p(t, 0, 0)) ∩ bT∞

)
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be the surface measure of the intersection of the boundary with a ball of unit radius centered
at 1√

2
(t, t) ∈ bT∞. By the rotation and dilation invariance of T∞,

σ
(
Bρ(p) ∩ bT∞)

)
= ρ3 f

(
ρ−1|p|

)
, ρ > 0 , p ∈ bT∞ .

In the chosen parametrization,

f (t) = 1
2

∫ π

−π

∫ π

−π

∫ ∞

0
1B1(p(t,0,0))

(
p(r ,α,β)

)
r2 drdαdβ .

The intersection is described by the inequality

p(r ,α,β) ∈ B1(p(t, 0, 0)) ⇔ (r − t)2 + 2r t(sin2 α
2 + sin2 β

2 ) < 1 .

For t = 0, the condition simplifies to r2 < 1, and we find that

f (0) = 1
2

∫ π

−π

∫ π

−π

∫ 1

0
r2 drdαdβ = 2π2

3
.

For larger t , the condition is sin2 α
2 + sin2 β

2 < 1−(r−t)2
2tr , and hence α,β = O(t−1) as

t → ∞. Taylor expansion of the sine yields

α2 + β2 ≤ 2(1 − (r − t)2)
tr

+ O(t−4) .

For any r > 0 with |r − t | < 1, this inequality defines an approximate disk in the α-β
variables. After integrating out these variables, we are left with

f (t) = π

∫ t+1

t−1

1 − (r − t)2

tr
r2 dr + O(t−2) → 4π

3
(t → ∞) .

In the last step, we have evaluated the integral explicitly. Since f is continuous by Lemma 2.7,
as well as strictly positive, it follows that

inf
t≥0

f (t) > 0 , sup
t≥0

f (t) < ∞ ,

proving the claim. ⊓)

Lemma 2.9 The Hartogs triangle T has Ahlfors-David regular boundary.

Proof We need to verify Eq. (2.7) for all p ∈ bT and all ρ ∈ (0, 2]. By rotational symmetry,
we may assume that p = (r , s) with 0 ≤ r ≤ s ≤ 1.

We partition the boundary as

bT =
(
bT∞ ∩ {|w| ≤ 1}

)
∪

(
T∞ ∩ {|w| = 1}

)
.

For the upper bound on the first term, if Bρ(p) meets bT∞ in a point q ∈ bT∞ with
|p − q| < ρ, then Bρ(p) ∩ bT∞ is contained in B2ρ(q) ∩ bT∞. The measure of this ball
satisfies the desired bound by Lemma 2.8. Similarly, if q ∈ Bρ(p) ∩ {|w| = 1}, then we
use that Bρ(p) ∩ {|w| = 1} ⊂ B2ρ(q) ∩ {|w| = 1}, which is contained in the product of a
disk of radius 2ρ with a spherical arc of diameter at most 2ρ. The surface measure of this
intersection is at most comparable to ρ3.

For the lower bound, we distinguish two cases. If p = (r , r) with r ≤ 1, then

Bρ(p) ∩ bT ⊃
{
(z, w) ∈ bT∞

∣∣∣ r − ρ√
2
< |z| = |w| < r

}
.
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The right hand side is homogeneous of order three, as well as continuous and strictly positive.
As in the proof of Lemma 2.8, this implies a lower bound of order ρ3. If, on the other hand,
p = (r , 1) with r < 1 then

Bρ(p) ∩ bT ⊃
{
(z, w) ∈ T∞

∣∣∣ |w| = 1, |z − r |2 + |w − 1|2 < ρ2
}

⊃
{
|z| < 1, |z − r | < ρ√

2

}
×

{
|w| = 1, |w − 1| < ρ√

2

}
.

Its surface measure is bounded from below by a constant multiple of ρ3. ⊓)

Our results can be summarized as follows.

Corollary 2.10 The Hartogs triangle T is a chord-arc domain.

Proof Both T and C2\T are uniform domains, and bT is Ahlfors-David regular. ⊓)

2.3 Sobolev theorems

Let " be a domain inRd . For k ∈ N and 1 ≤ p ≤ ∞, denote byWk,p(") the Sobolev space
of functions whose weak derivatives of order up to k lie in L p . When p = 2, we also use
Wk(") to denote Wk,2(").

Definition 2.11 A domain " ⊂ Rd is called a (Sobolev) extension domain, if for each k ∈ N
and 1 ≤ p ≤ ∞, there exists a bounded linear operator

ηk : Wk,p(") → Wk,p(Rd)

such that ηk f
∣∣
"
= f for all f ∈ Wk,p(").

It is well known that every bounded Lipschitz domain in Rd is an extension domain. Our
main result in this section is the following:

Theorem 2.12 The Hartogs triangle T is a Sobolev extension domain.

Proof By Theorem 2.4, T is a uniform domain. Hence T is an (ε, δ) domain with δ = ∞.
Using [21, Theorem 1], every (ε, δ) domain is an extension domain. ⊓)

For later use, we state the corresponding result for the complement of T.

Lemma 2.13 (Extension from the complement of T) Let " ⊂ C2 be a domain with " ⊃ T.
There exists a bounded linear operator η : W 1("\T) → W 1(") such that η f

∣∣
"\T = f . If,

moreover, " is a Lipschitz domain, then "\T is an extension domain. In particular, C∞(C2)

is dense in W 1("\T).

Proof If " is a bounded Lipschitz domain, then "\T is a uniform domain by Lemma 2.5,
and hence a Sobolev extension domain.

For an arbitrary domain " ⊃ T, we choose a Lipschitz domain "′ with " ⊃ "′ such
that "′ ⊃ T. By the first part of the proof, there exists a bounded linear extension operator
η′ : W 1("′\T) → W 1("′). For f ∈ W 1("\T), we define η f on T by first restricting f to
"′\T and then applying η′. ⊓)

From Theorem 2.12, we have the following results easily.
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Corollary 2.14 Let W 1(T) denote the Sobolev space of L2-functions on T with weak first-
order derivatives in L2. Then the following statements hold:

(1) (Smooth approximation). C∞(T) is dense in W 1(T).
(2) (Sobolev embedding). W 1(T) ⊂ L4(T), and the inclusion map is bounded.
(3) (Rellich lemma). The inclusion W 1(T) ⊂ L2(T) is compact.

Proof Let η : W 1(T) → W 1(R4) be the bounded linear extension operator provided by
Theorem 2.12. Given f ∈ W 1(T), set f0 := η f ∈ W 1(C2). We regularize f by convolution
fε = f0 ∗ φε , where {φε} is an approximate identity such that each φε is a smooth function
of compact support with

∫
φε = 1. The restrictions of the smooth functions fε to T converge

to f in W 1(T), proving the first claim. By the Sobolev inequality on C2, ∥η f ∥L4(C2) ≤
C∥η f ∥W 1(C2), where C is the Sobolev constant. Since η f agrees with f on T, and η :
W 1(T) → W 1(C2) is bounded, this implies the second claim. Similarly, the Rellich lemma
holds on T because it holds on a ball "0 ⊃ T. ⊓)
Corollary 2.15 (Trace) There exists a bounded linear operator τ : W 1(T) → L2(bT) with
the property that τ f = f

∣∣
bT for every continuous function f on T.

Proof Since T is a uniform domain with Ahlfors-David regular boundary, the existence of
the trace operator follows from [22, Theorem 3]. ⊓)
Corollary 2.16 (Poincaré inequality) There exists a constant C > 0 such that

∥ f ∥2 ≤ C∥d f ∥2

for all f ∈ W 1(T) with ( f , 1) = 0, where ∥ ∥ denotes the L2-norm on T .

Proof The proof is the same as for smooth domains. Let

λ := inf
{
∥du∥2

∣∣ u ∈ W 1(T), ∥u∥ = 1, (u, 1) = 0
}

and consider a minimizing sequence {uν}. By the Rellich lemma, we may assume (after
passing to a subsequence) that uν converges strongly in L2(T), as well as weakly in W 1(T),
to some limit v ∈ W 1(T). The function v is non-constant, because

∥v∥ = lim ∥uν∥ = 1 , (v, 1) = lim(uν, 1) = 0 .

Since ∥dv∥2 ≤ lim ∥duν∥2 = λ by the weak lower semicontinuity of the Dirichlet integral, v
is a minimizer. Therefore λ = ∥dv∥2 > 0, and the Poincaré inequality holds with C = λ−1.

⊓)

3 Identity of weak and strong extensions of @

We collect some basic facts on unbounded operators in Hilbert spaces which will be used
later.

3.1 Basic facts from functional analysis

We recall the definition of an unbounded linear operator from a Hilbert space to another. By
an operator A from a Hilbert space H1 to another Hilbert space H2 we mean aC-linear map
from a linear subspace Dom (A) of H1 into H2. We use the notation

A : H1 !!" H2,
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to denote the fact that A is defined on a subspace of H1. Recall that an operator is said to be
closed if its graph is closed as a subspace of the product Hilbert space H1 × H2. Suppose
that A is defined on all of H1, then we write A : H1 → H2. Notice that if A is defined on the
whole Hilbert space H1, then A has to be a bounded operator from the closed graph theorem.

Let A be a closed densely defined operator from H1 to H2. Let A∗ : H2 !!" H1 be the
(Hilbert space) adjoint of A, defined as follows: An element g ∈ Dom (A∗) if and only if
there exists an element g∗ ∈ H1 such that

(A f , g) = ( f , g∗) for all f ∈ Dom (A) .

In this case, A∗g := g∗. Then A∗ is also a densely defined closed operator, and A∗∗ = A.
We refer the reader to the book of Riesz-Nagy for Hilbert space adjoints (see page 305 in

[32]). We will also need the following lemma (see [17, Theorem 1.1.1]).

Lemma 3.1 Let A be a closed densely defined operator from one Hilbert space H1 to another
H2. Then the following conditions are equivalent:

(1) The range of A is closed.
(2) The range of A∗ is closed.
(3) H1 = Range (A∗) ⊕ Ker (A).
(4) H2 = Range (A) ⊕ Ker (A∗).

Proof For a proof that (1) and (2) are equivalent, see [17]. By definition of the adjoint operator,
the range of A is the closure of the orthogonal complement of the kernel of A∗. Thus if the
range of A is closed, then it is the orthogonal complement of the kernel of A∗. Thus (1) and
(4) are equivalent. Similarly, (2) and (3) are equivalent. ⊓)

3.2 Maximal extensions andminimal closures of@

Let " be a bounded domain in Cn . Let

∂ : C∞
p,q−1(") → C∞

p,q(") , 0 ≤ p ≤ n, 1 ≤ q ≤ n (3.1)

be the classical Cauchy-Riemann operator on smooth forms. We will use the same symbol,
∂ , to denote the weak Cauchy-Riemann operator acting on currents. Since the index p plays
no role on Cn , we will make convenient choices for the value of p in our arguments.

Let L2
p,q(") be the space of square-integrable (p, q)-forms on". The classical ∂ operator

on smooth forms can be extended to a closed densely defined unbounded operator from
L2
p,q−1(") to L2

p,q(") in several different ways.

Definition 3.2 Let " be a bounded domain in Cn .

(1) The weak maximal extension of ∂ , denoted by

∂ : L2
p,q−1(") !!" L2

p,q(") ,

is defined by f ∈ Dom (∂)∩ L2
p,q−1(") if and only if ∂ f ∈ L2

p,q(") in the distribution
sense.

(2) The strong maximal extension of ∂ , denoted by

∂s : L2
p,q−1(") !!" L2

p,q(") ,

is the closure in the graph norm of the restriction of ∂ to the smooth forms in C∞("). In
other words, f ∈ Dom (∂s) if and only if there exists a sequence of smooth forms fν in
C∞

p,q−1(") such that fν → f and ∂ fν → ∂ f in L2.
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It is easy to check (by smooth approximation) that if f ∈ Dom (∂s), then f ∈ Dom (∂)

and ∂ f = ∂s f . Hence ∂ is a closed extension of ∂s . On any bounded Lipschitz domain ",
the Friedrichs lemma implies that ∂ = ∂s , see Hörmander [16,17] (or Lemma 4.3.2 in the
book by Chen–Shaw [9]).

In addition to the maximal extensions, we will consider the following minimal closures
of the Cauchy–Riemann operator.

Definition 3.3 Let " be a bounded domain in Cn .

(3) The strong minimal closure of ∂ , denoted by

∂c : L2
p,q−1(") !!" L2

p,q(")

is the closure in the graph norm of the restriction of ∂ to the smooth compactly supported
forms. In other words, f ∈ Dom (∂c) if and only if there is a sequence of smooth forms
fν in C∞

p,q−1(") compactly supported in ", such that fν → f and ∂ fν → ∂ f in L2.
(4) The weak minimal closure, denoted by

∂ c̃ : L2
p,q−1(") !!" L2

p,q(")

is defined by f ∈ Dom (∂ c̃)∩ L2
p,q−1(") if and only if ∂ f 0 is in L2

p,q−1(C
2), where f 0

is the extension of f to zero outside " and ∂ f 0 is defined in sense of distribution on C2.

As above, it is easy to check that ∂ c̃ is a closed extension of ∂c. In fact,

Dom (∂) ⊃ Dom (∂s) ! Dom (∂ c̃) ⊃ Dom (∂c) ,

and the corresponding inclusions hold for the ranges and the kernels. The middle inclusion
is proper, because non-zero constant functions lie in the domain of ∂s , but not in the domain
of ∂ c̃.

3.3 The operators @s and@c̃ on functions

We start with some simple observations about the Sobolev space W 1. Since ∂ is a first-order
differential operator, Dom (∂) ⊃ W 1, and Dom (∂c) ⊃ W 1

0 , the closure of C
∞
0 (") in W 1.

Lemma 3.4 For any bounded domain " ⊂ Cn, we have Dom (∂ c̃) ⊂ W 1("). If, moreover,
" is a Sobolev extension domain, then Dom (∂s) ⊃ W 1(").

Proof Let f ∈ Dom (∂ c̃), and let f 0 be its trivial extension. By definition, f ∈ L2(") and
∂ f 0 ∈ L2

0,1(C
n) in the sense of distributions. Let {φε} be an approximate identity such that

φε ∈ C∞
0 (Bε(0)), φε ≥ 0 and

∫
φε = 1. We regularize f by convolution fε = f 0 ∗φε. Then

fε ∈ C∞
0 (C2), and

fε → f 0 , ∂ fε → ∂ f 0 in L2(C2). (3.2)

Using integration by parts, we have

(∂ fε, ∂ fε) = −
n∑

j=1

(
∂2 fε

∂z j∂z j
, fε

)
= (∂ fε, ∂ fε). (3.3)

It follows that fε → f 0 in W 1(C2), and hence f ∈ W 1(").
For the second claim, let f ∈ W 1("), where " is an extension domain. Then there exists

a sequence of smooth functions fν on" such that fν converges to f inW 1("). In particular,
fν → f and ∂ fν → ∂ f in L2("), that is, f ∈ Dom (∂s) and ∂s f = ∂ f . ⊓)
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Definition 3.5 The Bergman space H(T) is the closed subspace of L2(T) consisting of the
holomorphic functions on T, i.e., H(T) = Ker (∂). The orthogonal projection

B : L2(T) → H(T)

is called the Bergman projection.

We next analyze the kernel of ∂s . Any function f ∈ H(T) admits a Laurent expansion of
the form

f =
∞∑

j=0

∞∑

k=−1

a jk

( z
w

) j
wk (3.4)

that converges in L2(T). The functions

v jk(z, w) :=
( z
w

) j
wk , j ≥ 0, k ≥ −1 (3.5)

that appear in the expansion are pairwise orthogonal, since their restrictions to any torus
{|z| = r , |w| = s} agree (up to re-labeling and multiplication by constants) with a subset of
the standard Fourier basis ei(ℓα+mβ). By Eq. (3.4) they form a complete orthogonal system
for Ker (∂).

Proposition 3.6 On T, we have Ker (∂s) = Ker (∂) on functions.

Proof We will show that Ker (∂s) contains the functions v jk from Eq. (3.5). Since v jk ∈
W 1(T) for j, k ≥ 0, Lemma 3.4 implies that

v jk ∈ Ker (∂) ∩ W 1(T) ⊂ Ker (∂s) , j ≥ 0, k ≥ 0 .

For k = −1, fix j ≥ 0 and set u := v j,−1. Given 0 < δ ≤ 1, consider the subdomain

Tδ :=
{
(z, w) ∈ T

∣∣ |z| < |w| < δ
}
,

and define the function

uδ =
{( |w|

δ

)δu, on Tδ,

u, on T\Tδ .
(3.6)

Clearly, |uδ| ≤ |u|, and uδ → u in L2(T) by dominated convergence.
By construction, uδ is piecewise C1. Its first-order partial derivatives are pointwise

bounded by C |w|−2+δ , where C depends on j . For δ > 0 this is square integrable, and
uδ ∈ W 1(T). Therefore uδ ∈ Dom (∂s) and ∂suδ = ∂uδ . Since ∂u = 0, we see that
∂suδ = u ∂

( |w|
δ

)δ on Tδ , and vanishes on the complement. By scaling,

∥∂suδ∥L2(T) = ∥∂uδ∥L2(Tδ)
= δ∥∂u1∥L2(T) → 0

as δ → 0. Hence u ∈ Dom (∂s) and ∂su = 0.
ThusKer (∂s) contains an orthonormal basis ofKer (∂). SinceKer (∂s) is a closed subspace

of Ker (∂), the two spaces agree. ⊓)

Proposition 3.7 On T, we have ∂ c̃ = ∂c on functions.
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Proof Since ∂ c̃ is an extension of ∂ , we have that Dom (∂c) ⊂ Dom (∂ c̃). We now establish
the reverse inclusion. By Lemma 3.4 and the Sobolev Embedding Theorem,

Dom (∂ c̃) ⊂ W 1(T) ⊂ L4(T) (3.7)

Given f ∈ Dom (∂ c̃), we approximate f by a function that vanishes near the singular
point at the origin. Let χδ be a smooth cut-off function such that χδ = 1 outside the ball
B2δ(0), χδ vanishes on Bδ(0), and its differential satisfy the pointwise bound |dχδ| ≤ Cδ−1

where C is a constant independent of δ.
By the chain rule,

∂(χδ f ) = (∂χδ) f + χδ∂ f . (3.8)

It is clear that χδ f → f and χδ∂ f → ∂ f in L2 as δ → 0.
It remains to show that (∂χδ) f → 0. By the Cauchy–Schwarz inequality, we have

∫

T
|∂(χδ) f |2dV ≤

( ∫

B2δ(0)∩T
|∂χδ|4 dV

) 1
2
( ∫

B2δ(0)∩T
| f |4dV

) 1
2

.

The first factor is bounded independently of δ. Since f ∈ L4("), it follows that

∥∂(χδ) f ∥2 ≤ C̃
( ∫

B2δ(0)∩T
| f |4dV

) 1
2

→ 0 .

Therefore ∂(χδ f ) → ∂ f as δ → 0.
We have approximated f ∈ Dom (∂ c̃) in the graph norm of ∂ by χδ f . Since χδ f is

supported in the bounded Lipschitz domain T\Bδ(0), it can be further approximated by
compactly supported functions in T. This proves that f ∈ Dom (∂c). ⊓)

3.4 Weak equals strong

We need two more tools, Serre duality and Dolbeault cohomology. L2 Serre duality estab-
lishes a relation between ∂ and ∂c, and correspondingly between ∂s and ∂ c̃. Denote by
⋆ : L2

p,q(") → L2
n−p,n−q(") the Hodge star operator.

Lemma 3.8 Let " be a bounded domain in Cn. Then ∂c = −⋆∂
∗
⋆.

Proof See [4, Proposition 1] or [27, Lemma 2.2]. ⊓)

Lemma 3.9 On T, we have ∂ c̃ = −⋆∂
∗
s ⋆.

Proof Since the boundary ofT is rectifiable, the weakminimal closure ∂ c̃ is dual to the strong
maximal extension ∂s (see [26]). ⊓)

Definition 3.10 For 0 ≤ p ≤ n and 0 ≤ q ≤ n, the L2 Dolbeault cohomology groups are
defined by

H p,q
L2,∂

(") =
{ f ∈ L2

p,q(") | ∂ f = 0}
{ f ∈ L2

p,q(") | f = ∂u for some u ∈ L2
p.q−1(")}

.

Similarly, we define H p,q
L2,∂s

(") by substituting ∂ with ∂s .
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When " is a bounded pseudoconvex domain in Cn , the L2 theory for ∂ is completely
known from Hörmander’s L2 theorem for ∂ (see [17]). The key result is that

H p,q
L2,∂

(") = 0 , 1 ≤ p ≤ n, 1 ≤ q < n .

For the strongmaximal extension ∂s on a pseudoconvex domain with rectifiable boundary,
it was proved in [26] that either H0,1

L2,∂s
(") = 0, or H0,1

L2,∂s
(") is not Hausdorff.

Theorem 3.11 On T, the strong maximal extension ∂s of the Cauchy-Riemann operator has
closed range.

Proof We will show that ∂s : L2
p,q−1(T) !!" L2

p,q(T) has closed range for p = 0, 1, 2 and
q = 1, 2. As noted above, the value of p plays no role here.

q=2: Take p = 2. By Proposition 3.7, ∂ c̃ = ∂c on functions. By Lemmas 3.8 and 3.9, this
is equivalent to

∂s = ∂ : L2
2,1(T) !!" L2

2,2(T) . (3.9)

In particular, Range (∂s) = Range (∂) = L2
2,2(T), which is closed.

q=1: Take p = 0, and consider ∂s : L2(T) !!" L2
0,1(T). By combining Proposition 3.6

with Lemma 3.1, we see that

Range (∂
∗
s ) ⊂ (Ker (∂s))⊥ = (Ker (∂))⊥ = Range (∂

∗
) ,

where we have used that Range (∂
∗
) ⊂ L2(T) is closed by Hörmander’s L2-theory. Since ∂

is an extension of ∂s , we also have the reverse inclusion

Range (∂
∗
s ) ⊃ Range (∂

∗
) .

Therefore Range (∂
∗
s ) = Range (∂

∗
) ⊂ L2(T). By Lemma 3.1, ∂s : L2(T) !!" L2

0,1(T) has
closed range as well. ⊓)
Proposition 3.12 H p,1

L2,∂s
(T) = 0 for 0 ≤ p ≤ 2.

Proof Take p = 0. Since ∂s : L2(T) !!" L2
0,1(T) has closed range by Theorem 3.11, the

corresponding cohomology group H0,1
L2,∂s

(T) is Hausdorff (see [39, Proposition 4.5]). It

follows from [26, Theorem 3.2 (iv)] that H0,1
L2,∂s

(T) = 0. ⊓)

Theorem 3.13 On T, the strong maximal extension ∂s of the Cauchy-Riemann operator
equals the weak maximal extension ∂ .

Proof q=2: By Eq. (3.9), we have that ∂s = ∂ on (p, 1)-forms for p = 0, 1, 2.
q=1: Take p = 0 and consider ∂s : L2(T) !!" L2

0,1(T). By Proposition 3.6

Ker (∂s) = Ker (∂) = H(T)

on functions. Since ∂ = ∂s : L2
0,1 !!" L2

0,2 by the first part of the proof, we have that

Ker (∂s) = Ker (∂) ⊂ L2
0,1(T). By Proposition 3.12 and Hörmander’s L2 results, H0,1

L2,∂s
=

H0,1
L2,∂

= 0, which means by the definition of the cohomology groups that

Range (∂s) = Range (∂) ⊂ L2
0,1(T).

Since ∂ is a closed extension of the densely defined operator ∂s , with the same kernel and
range, ∂ = ∂s on functions. ⊓)
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Corollary 3.14 (Bergman projection) Let Bs : L2(T) → H(T) be the Bergman projection
with respect to ∂s on T. Then B = Bs. Moreover, for any f ∈ L2(T), the complementary
projection satisfies

f − B f = ∂
∗
s ∂s N0 f = ∂

∗
s N1∂s f ,

where N0 is the ∂-Neumann operator on functions, and N1 is the ∂-Neumann operator on
(0, 1)-forms.

Proof Since Ker (∂s) = H(T) = Ker (∂), either ∂s or ∂ can be used to define the Bergman
projection. The formulas for the orthogonal projection hold for ∂ by Hörmander’s theory and
by Kohn’s formula for the Bergman projection (see Theorem 4.4.3 and Corollary 4.4.4 in
[9]). Since ∂ = ∂s , the corollary follows. ⊓)

4 Dolbeault cohomology on the complement of T

In this section, we study the Dolbeault cohomology groups on an annulus between a pseu-
doconvex domain and the Hartogs triangle T.

Definition 4.1 Let " be a bounded domain in Cn . Let Wk(") be the Sobolev space of order
k ∈ N ∪ {0}. We denote by H p,q

Wk (") the associated cohomology group defined by

H p,q
Wk (") =

{ f ∈ Wk
p,q(") | ∂ f = 0}

{ f ∈ Wk
p,q(") | f = ∂u for some u ∈ Wk

p.q−1(")}
.

When k = 0, we also use the notation H p,q
L2 (") to denote the L2 Dolbeault cohomology

groups with respect to ∂ .

We will need the following result from the book of Chen–Shaw ( [9, Theorem 9.1.3]).

Lemma 4.2 Let" be a bounded pseudoconvex domain inCn, n ≥ 2. For any f ∈ L2
p,q(C

n),
0 ≤ p ≤ n, 1 ≤ q ≤ n, such that f is supported in " and

∫

"
f ∧ φ = 0, φ ∈ L2

2−p,0(") ∩ Ker (∂)

there exists u ∈ L2
p,q−1(C

n) such that ∂ c̃u = f .

Consider an annular domain

" = "1\T (4.1)

where "1 is a pseudoconvex domain in C2 containing T.

Theorem 4.3 Let" be given byEq. (4.1), where"1 ⊂ C2 is a bounded pseudoconvex domain
with C2-boundary, and T ⊂ "1. Then

H p,1
W 1 (") ∼= H(T) , 0 ≤ p ≤ 2 ,

where H(T) is the Bergman space of T. In particular, H p,1
W 1 (") is Hausdorff and infinite-

dimensional.
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Proof We will prove that H p,1
W 1 (") ∼= (H(T))′, the space of bounded linear forms on the

Bergman space. It suffices to consider p = 2.
By Lemma 2.13, there is a bounded linear extension operator η : W 1(") → W 1("1).

For f ∈ W 1
2,1("), define ℓ f ∈ (H(T))′ by

ℓ f (h) :=
∫

T
∂(η f ) ∧ h, h ∈ H(T) . (4.2)

Clearly, ℓh( f ) is bilinear and jointly continuous in f ∈ W 1
2,1(T) and h ∈ H.

Smooth approximation. Let h ∈ H(T). Since H(T) = Ker (∂s) by Proposition 3.6, there
is a sequence {hν} in C∞(T) such that

{
hν → h, in L2(T),
∂hν → 0 in L2

0,1(T).
(4.3)

Since ∂(η f ) ∧ h = ∂(η f ∧ h), Stokes’ theorem implies that

ℓ f (h) = lim
ν→∞

∫

T
∂(η f ∧ hν) = lim

ν→∞

∫

bT
τ f ∧ hν , (4.4)

where τ f is the trace of f . We have used that τ f ∈ L2(bT) by Corollary 2.15. It is apparent
from Eq. (4.4) that ℓ f does not depend on the choice of the extension η.

ℓ f is determined by the cohomology class [ f ]. Suppose that f = ∂u for some u ∈
W 1

2,0("). Let ηu be the extension of u to W 1("1). Since "1 is a Lipschitz domain, there
exists a sequence u j ∈ C∞(C2) with u j → ηu in W 1("1). By Eq. (4.4) and two more
applications of Stokes’ theorem,

ℓ∂u j
(hν) =

∫

bT
(∂u j ) ∧ hν =

∫

bT
u j ∧ ∂hν =

∫

T
∂u j ∧ ∂hν .

Taking first j → ∞ and then ν → ∞, we arrive at ℓ∂u(h) = 0. Thus the map [ f ] 8→ ℓ f is
well-defined from H0,1

W 1 (") to (H(T))′.
[ f ] 8→ ℓ f is injective. Suppose that ℓ f vanishes on H(T). By Lemma 4.2, there exists

g ∈ L2
2,1(T) such that ∂ c̃g = ∂(η f ) on T. In fact, the trivial extension g0 of g lies in

W 1
2,1(C

2). Set F = η f − g0 ∈ W 1("1).
By construction, ∂F = 0 on ". Since "1 has C2 boundary, we can solve ∂u = F for

some function u ∈ W 1
2,0("1) (see [25] and [15]). In particular, ∂u = f on ".

[ f ] 8→ ℓ f is surjective. Let ℓ ∈ (H(T))′. Since H(T) is a Hilbert space, ℓ can be
represented by some holomorphic function g ∈ H(T). Let g0 ∈ L2("1) be the trivial
extension of g, and let ⋆g0 be the dual (2, 2)-form on "1. Since a top degree form is always
∂-exact, there exists v ∈ W 1

2,1("1) that solves ∂v = ⋆g0 on "1. By construction,

ℓ(h) = (g, h) =
∫

bT
∂v ∧ h , h ∈ H(T) .

Let f be the restriction of v to". Then f ∈ W 1
2,1("), and v is an extension of f to"1. Since

the extension does not matter, ℓ = ℓ f .
We conclude that [ f ] 8→ ℓ f is a linear isomorphism from H2,1

W 1 (") to H(T)′. Since H is
a Hilbert space, the theorem is proved. ⊓)
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5 Some open questions

Let "1 and "2 be two bounded pseudoconvex domains inCn and let "2 ⊂ "1. Let " be the
annulus between the two pseudoconvex domains with

" = "1\"2.

It is known for " = "1\T that the classical Dolbeault cohomology with smooth coefficients
on ",

H0,1(") :=
{ f ∈ C∞

0,1(") | ∂ f = 0}
{ f ∈ C∞

0,1(") | f = ∂u for some u ∈ C∞(")}
is non-Hausdorff (see [26, Corollary 4.6]). This is in sharp contrast to Theorem 4.3.

Theorem 4.3 is a generalization of a result by Hörmander for the case when " is the
annulus between two concentric balls in Cn (see [19]. In that case, H0,n−1

L2 (") is Hausdorff,

and one can realize the space H0,n−1
L2 (") explicitly as the Bergman space of the inner domain.

When "2 is a pseudoconvex domain with C3 boundary and 0 < q < n − 1, the L2 and
Sobolev cohomology groups for ∂ on the annulus were studied much earlier in [33]. For
general pseudoconvex domains with C2 boundary, the Hausdorff property for the critical
degree q = n − 1 is proved in [34]. The necessary conditions for the Hausdorff properties
for the Dolbeault cohomology group for ∂ on annuli is proved in [12].

In view of Theorem 4.3 and the remarks above, it is natural to ask the following question.

Problem 1 Let " = "1\T. Determine if H0,1
L2 (") is Hausdorff.

Without loss of generality, we can take the outer domain "1 in Problem 1 to be the ball
of radius r ≥ 2 centered at 0 (see [2] for a discussion on this). Problem 1 can be called the
Dollar Bill problem since the shape is featured on the reverse of the American one-dollar
bill.

When the inner domain is the bidisk D2, the corresponding problem for " = B\D2,
is called the Chinese Coin problem since it has the shape of an ancient Chinese coin. The
Chinese coin problem is solved in [2]. Problem 1 has an equivalent formulation in terms of
the W 1 Dolbeault cohomology of T:

Proposition 5.1 Let " = "1\T, where "1 is a bounded pseudoconvex domain in C2 with
T ⊂ "1. Then the following are equivalent:

(1) H0,1
L2 (") is Hausdorff;

(2) H0,1
W 1 (T) = 0.

The proof of Proposition 5.1 is the same as for Lipschitz domains, as given in [26, Corol-
lary 4.8]. The key points are the L2-duality between ∂s and ∂ c̃ and the extension property
(Lemma 2.13).

This leads to a more general question.

Problem 2 Determine if H0,1
Ws (T) = 0, where s > 0.

We remark that if " is a bounded pseudoconvex domain with smooth boundary in Cn ,
it follows from [25] that H0,1

Ws (") = 0 for all s > 0. Not much is known about Sobolev
estimates for solutions of ∂ for the Hartogs triangle. But there has been a lot of work for ∂ in
other function spaces.
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It is proved in [36] that there is a form f ∈ C∞
(0,1)(T) with ∂ f = 0 such that the equation

∂u = f has no solution u ∈ C∞(T). Furthermore, it is proved in [27] that the Dolbeault
cohomology with smooth coefficients on T is non-Hausdorff.

On the other hand, since T is pseudoconvex, we have from the Dolbeault theorem that

H0,1(T) = 0 (5.1)

where H0,1(T) denotes the Dolbeault cohomology with smooth C∞(T) coefficients. Fur-
thermore, there do exist almost smooth solutions to the ∂ problem on the Hartogs triangle:
For every k ∈ N and 0 < α < 1, let Ck,α(T) denote the Hölder continuous function spaces
of order k, α. Let H p,q

Ck,α (T) denote the Dolbeault cohomology of (p, q)-forms with Ck,α(T)
coefficients. Using the integral kernel method, it is proved in [10] that

H0,1
Ck,α (T) = 0.

Notice that the intersection ∩kCk,α(T) = C∞(T). These results show the subtlety of such
problems on the Hartogs triangle.

We can also consider the de Rham complex d on T instead of ∂ . Let d and ds denote the
weak and strong maximal extensions from L2

q(T) to L2
q+1(T). Consider the d-Laplacian

4 = dd∗ + d∗d : L2
q(T) !!" L2

q(T),

where 0 ≤ q ≤ 4. Similarly, we can consider 4s = dsd∗
s + d∗

s ds . We refer to the paper
by Hörmander (see [18]) for a historical overview of the Hodge theorem for domains with
smooth boundary. The Hodge theorem on Lipschitz domains in Rn was studied in [30]

Problem 3 On the Hartogs triangle T, determine

• if the Hodge theorem holds for △ (or △s );
• if the spectrum of △ (or △s ) on forms is discrete;
• if d = ds .

Notice that on functions we have d = ds : L2(T) !!" L2
1(T), since smooth functions are

dense in Dom(d) = W 1(T) by Corollary 2.14. We can also show that d = ds : L2
3(T) !!"

L2
4(T) by using arguments similar to the proof of Proposition 3.7. It is not known if d = ds

for other degrees. We refer the reader to [17] for the identity of weak and strong extensions
of general systems of first-order differential operators on Lipschitz domains.

The Neumann problem is the natural boundary value problem for 4 : L2(T) !!" L2(T)
on functions, where 4 = d∗d . By definition, u ∈ Dom(4) if and only if du ∈ Dom (d∗),
i.e., if there exists some f ∈ L2(T) such that

(du, dv) = ( f , v) for all v ∈ W 1(T). (5.2)

By taking v to be a smooth test function onT, we see that4u = f in the sense of distributions.
Moreover, any f ∈ Range (4) satisfies ( f , 1) = 0.

Corollary 2.16 directly yields the solution of the Neumann problem, by providing for each
f ∈ L2(T) with ( f , 1) = 0 a unique u ∈ W 1(T) such that Eq. (5.2) holds.
To see this, consider the closed subspace

V :=
{
v ∈ W 1(T)

∣∣ (v, 1) = 0
}
,

equipped with the inner product Q(u, v) := (du, dv). By the Poincaré inequality (Corol-
lary 2.16), Q is positive definite, hence an inner product on V , and the resulting norm
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Q(v, v)
1
2 is equivalent to the W 1-norm. The map v 8→ ( f , v) defines a continuous linear

form on V . Since V is a Hilbert space, there exists a unique u ∈ V such that

( f , v) = Q(u, v) = (du, dv), v ∈ V .

Since ( f , 1) = 0 by assumption, this holds also for v = 1, proving Eq. (5.2).
For f ∈ L2("), let fa be the average of f over T. The operator GN : L2(T) → L2(T)

that maps f to the unique solution of the Neumann problem 4u = ( f − fa) is called the
Neumann operator on L2(T). Since Range (GN ) ⊂ W 1(T), the Rellich lemma implies that
GN is compact. Its spectrum consists of a sequence of eigenvalues µ j of finite multiplicity,
with µ j → 0. Its the eigenvalues are positive (except for the simple eigenvalue at zero), and
L2(T) has an orthonormal basis of eigenvectors. This implies that 4 has discrete spectrum
λ j = 1

µ j
→ ∞ on L2(T).

We also know that 4 = dd∗ on the top degree (q = 4) has discrete spectrum since it
corresponds to the Dirichlet problem. However, it is not known if 4 = dd∗ + d∗d on L2

q(T)
has closed range when 1 ≤ q ≤ 3, and if the de Rham cohomology is represented by the
harmonic forms.

Problem 4 Determine the spectrum of the ∂-Neumann operator

N1 : L2
0,1(T) → L2

0,1(T) .

The operator N1 is not compact on L2
0,1(T), sinceT is biholomorphic to a product domain

(see [3]). It is not known whether the spectrum consists of a sequence of eigenvalues (of
possibly infinitemultiplicity), or if continuous spectrummay be present. Sincewe can express
N0 by the formula (see [9, Theorem 4.4.3])

N0 = ∂
∗
N 2
1 ∂, (5.3)

we have that N0 : L2(T) → L2(T) is also non-compact on the orthogonal complement of
the Bergman space.

We note that for q = 2, the operator N2 : L2
0,2(T) → L2

0,2(T) is compact since it
corresponds to the Dirichlet problem. Thus the spectrum of N2 is discrete.
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