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1. Introduction

In this paper, we survey some results on the estimates for ∂ on pseudoconvex domains
in Cn and CPn, where Sibony’s work has profound influence. Our goal is to highlight some
of his important work that has impacted the author’s own research.

In Section 2 we first discuss some results in Cn, where tremendous work has been done for
the past few decades. For a general pseudoconvex domain with smooth boundary, Sibony’s
deep results provide many counter examples on function spaces other than L2 or Sobolev
spaces (see Theorems 2.3, 2.4, 2.6).

The theory for ∂ is less developed for domains in the complex projective space CPn,
which is not Stein. The Fubini-Study metric on CPn has a positive holomorphic bisectional
curvature which can be used to study these problems for (0, q)-forms, but not for (p, q)-
forms when p ̸= 0. In Section 3 we discuss some methods and results on L2 and Sobolev
estimates on pseudoconvex domains in CPn, where the work of Sibony-Ohsawa (Theorem
3.6) plays an important role.

We also discuss some results on the Hartogs triangles in CP2. These problems are impor-
tant not only in complex analysis, but in complex foliation theory and complex dynamics.
We raise some open questions at the end.

I first met Sibony when I was a graduate student at Princeton in the late seventies. How-
ever, it was at the Albany meeting in 1985 that his insight and enthusiasm in mathematics
really made an impression on me. Some of my research was inspired by his work. I dedicate
this article to his memory.

2. Estimates for ∂ on pseudoconvex domains in Cn

Since the fundamental work of Kohn ([27, 28]) for ∂ on smooth pseudoconvex domains
and that of Hörmander ([24]) on L2-estimates on bounded pseudoconvex domains in Cn,
there has been tremendous progress on L2-Sobolev theory of the ∂-operator and the ∂-
Neumann problem for bounded pseudoconvex domains in Cn (see, for example, monographs
[16, 25, 31, 10, 51] for expositions on the subject).

1



2 MEI-CHI SHAW

Theorem 2.1 (Hörmander [24]). Let Ω be a bounded pseudoconvex domain in Cn. Then
for any f ∈ L2

p,q(Ω) with ∂f = 0, there exists u ∈ L2
p,q−1(Ω) such that ∂u = f in Ω with

∥u∥ ≤
√

e

q
R∥f∥

where R is the diameter of the domain Ω.

Let Hp,q
W s(Ω) be the Dolbeault cohomology with Sobolev W s coefficients defined by

(2.1) Hp,q
W s(Ω) =

{f ∈ W s
p,q(Ω) | ∂f = 0}

{f ∈ W s
p,q(Ω) | f = ∂u, u ∈ W s

p,q−1(Ω)}
.

Let Hp,q(Ω) denote the Dolbeault cohomology group with C∞(Ω) coefficients where we
substitute W s(Ω) in (2.1) by C∞(Ω). Similarly, we denote the cohomology group Hp,q

Lp (Ω)
with forms in Lp(Ω).

The Sobolev estimates and boundary regularity for ∂ on bounded smooth pseudoconvex
domains in Cn are well known.

Theorem 2.2 (Kohn [28]). Let Ω be a bounded pseudoconvex domain in Cn with smooth
boundary. For every 0 ≤ p ≤ n, 0 < q < n and s ≥ 0,

(2.2) Hp,q
W s(Ω) = 0,

In particular, we have

Hp,q(Ω) = 0.

Let Ck,α be the Hölder space of order k, α where k is a nonnegative integer and 0 < α < 1.
The classical Schauder theory states that Ck,α and W k,p are the appropriate spaces to study
the interior regularity for elliptic equations. It is natural to ask if such estimates hold for ∂
with Lp estimates , 1 ≤ p ≤ ∞ when p ̸= 2 or in Hölder spaces. This is true if the domain
is strongly pseudoconvex with smooth boundary using integral kernels. Sibony shows that
this is not true for general pseudoconvex domains.

Theorem 2.3 (Sibony [45]). There exists a bounded smooth pseudoconvex domain Ω in
C3 and a ∂-closed (0,1)-form f ∈ C(Ω) such that every solution ∂u = f is unbounded.

This result is the first of many counterexamples that Sibony and others obtain in various
function spaces. In particular, Hölder and Ck,α estimates also fail on certain pseudoconvex
smooth domains in C3 (see [47]).

Theorem 2.4 (Fornaess-Sibony [14, 15]). There exists a smooth bounded pseudoconvex
domain Ω in C2 such that for each p > 2, ∂ : Lp(Ω) → Lp

0,1(Ω) does not have closed range.

The sup-norm estimate for ∂ is especially important since it is related to the Corona
problem. It is also proved in [15] that the Corona problem fails on certain pseudoconvex
domains with smooth boundary. The Corona problem for strongly pseudoconvex domains
remains to be one of the most important open problems in several complex variables. It is
not known even for the ball in Cn when n ≥ 2.

Corollary 2.5. Let Ω and p be be the same as in Theorem 2.4. Then H0,1
Lp (Ω) is non-

Hausdorff.
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Recall that the Hausdorff property of the quotient group H1,0
Lp (Ω) is equivalent to the

closed range property of ∂. Not only can one not solve ∂ with Lp estimates for some
(0, 1)-forms on such domain, but they fail badly. Thus L2 is the only function space that

H0,1
L2 (Ω) = 0 for any bounded pseudoconvex domain. These results show the importance of

L2 Hilbert space techniques for ∂ in complex analysis. These counterexamples show that
in order to to obtain Lp estimates for ∂, certain conditions have to be imposed. This has
been carried out by many people under various finite type conditions. We refer the reader
the the excellent survey article by Sibony [46].

2.1. The Hartogs triangle in C2. We first recall some results in C2. Let T be the
Hartogs triangle in C2 defined by

T = {(z1, z2) ∈ C2 | |z1| < |z2| < 1}.
Since T is a pseudoconvex domain, we have H0,1(T ) = 0. Moreover, using Hörmander’s
theorem, we have

Hp,1
L2 (T ) = 0, p = 0, 1, 2.

The Hartogs triangle T is not Lipschitz near 0 in the sense that the boundary is not the
graph of a Lipschitz function near 0.

Theorem 2.6 (Sibony[44, 45]). For any ζ in the bidisc P = ∆×∆ and ζ ∈ P \ T , there
exists a C∞-smooth, ∂-closed (0, 1)-form αζ defined in C2 \ {ζ} such that there does not

exist any C∞-smooth function β on T such that ∂β = αζ .

We also refer the reader to the paper [11]) for related problems. One has a strengthened
version of Theorem 2.6 (see [34]).

Corollary 2.7. The cohomology group H0,1(T ) is non-Hausdorff.

On the other hand, one has the following results.

Theorem 2.8 (Chaumat-Chollet[11]). For each nonnegative integer k and 0 < α < ∞,

we have H0,1
Ck,α(T ) = 0.

Remark. Notice that
∩kC

k,α(T ) = C∞(T ).

Theorem 2.8 is in sharp contrast with Theorem 2.6. One should also compare it with the
results by Sibony in [47].

There have been numerous works on Hartogs triangles in recent years (see e.g. [34, 35]).
One of the most basic question is to ask if the Hartogs triangle is an extension domain.

Definition 2.1. A domain Ω ⊂ RN is called a (Sobolev) extension domain, if for each
k ∈ N and 1 ≤ p ≤ ∞, there exists a bounded linear operator

ηk : W k,p(Ω) → W k,p(RN )

such that ηkf
∣∣
Ω
= f for all f ∈ W k,p(Ω).

It is well known by a theorem of Calderon-Stein that every bounded Lipschitz domain
in RN is an extension domain (see [50, 36]).

Theorem 2.9. The Hartogs triangle T is a Sobolev extension domain.

Proof. This is proved in the recent paper that the Hartogs triangle T is a uniform domain,
hence an extension domain (see Theorem 2.12 in [2]). □
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Now we consider the annulus domain Ω = B \T , where B is the ball of radius 2 centered
at 0. The following results are known for the annulus between the ball and the Hartogs
triangle.

Theorem 2.10. Let Ω = B \ T . Then

(1) H0,1(Ω) is non-Hausdorff.

(2) H0,1
W 1(Ω) is Hausdorff.

(1) is proved in [33], while (2) is proved in the recent paper in [2].

Question. (1) Determine if H0,1
L2 (Ω) is Hausdorff.

This question is equivalent to ask the following:

Question. (2) Determine if

(2.3) H0,1
W 1(T ) = 0.

We refer the reader to the papers [2] and [33], where Question (1) and Question (2) are
proved to be equivalent.

Remark. Question (1) is raised in [2] and is called the Dolloar Bill Problem since the
shape of Ω appears in the U. S. dollar bill.

An earlier question when the domain is the annulus between the ball B and the the
bidisk P = ∆×∆ is called the Chinese Coin Problem. It is proved in [9] that H0,1

L2 (B \ P )

is Hausdorff. Hence H0,1
W 1(P ) = 0. In view of Theorem 2.8, it is plausible (2.3) could hold.

A more general question arises naturally.

Question. Let D be a bounded pseudoonvex domain Cn with Lipschitz boundary. Deter-
mine if

• H0,1
W 1(D) = 0;

• H0,1(D) = 0.

We remark that if D has C2 boundary, we have H0,1
W 1(D) = 0. This is proved by Kohn

[28] for domains with C4 boundary and by Harrington [20]) for domains with C2 boundary.

The proof forH0,1
W 1(P ) = 0 in [9] is completely different from the proof of Kohn’s theorem on

Sobolev W 1 estimates for smooth domains (Theorem 2.2). There are many open questions
related to the Hartogs triangle in C2. We refer the reader to [43, 2].

3. L2 theory for ∂ on pseudoconvex domains in CPn

Let Ω be a relatively compact domain in a complex Kähler manifold X with C2-smooth
boundary bΩ and Kähler metric ω. Let ρ(z) be the signed distance function from z to bΩ
such that ρ(z) = −d(z, bΩ) for z ∈ Ω and ρ(z) = d(z, bΩ) when z ∈ X \ Ω. Let φ be a
real-valued C2 function on Ω. Let L2

p,q(Ω, e
−φ) be the space of (p, q)-forms u on Ω such

that

∥u∥2φ =

∫
Ω
|u|2ωe−φdV < ∞.

We use (·, ·)φ to denote the associated inner product. Let ∂
∗
φ be the adjoint of the maximally

defined ∂ : L2
p,q(Ω, e

−φ) → L2
p,q(Ω, e

−φ).

Let Θ be the curvature term with respect to the Kähler metric ω and |∇u|2 =
∑n

j=1 |∇L̄j
u|2,

where {L1, . . . , Ln} is an orthonormal frame for T 1,0(X). The following Basic Identity (see
[53, 7]) is of fundamental importance in several complex variables and complex geometry.
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Theorem 3.1 (Bochner-Kodaira-Morrey-Kohn-Hörmander). Let Ω be a relatively
compact domain in a Kähler manifold X with C2-smooth boundary bΩ. For any u ∈
C1
p,q(Ω) ∩ dom (∂

∗
), we have

(3.1) ∥∂u∥2φ + ∥∂∗
φu∥2φ = ∥∇u∥2φ + (Θu, u)φ + ((∂∂φ)u, u)φ +

∫
bΩ
⟨(∂∂ρ)u, u⟩e−φdS

where dS is the induced surface element on bΩ,

The Kähler form associated with the Fubini-Study metric ω in the complex projective
space CPn is given by

ω = i∂∂ log(1 + |z|2)(3.2)

= i

n∑
α,β=1

gαβ̄(z) dzα ∧ dz̄β(3.3)

in local inhomogeneous coordinates, where

(3.4) gαβ̄(z) =
∂2 log(1 + |z|2)

∂zα∂z̄β
=

(1 + |z|2)δαβ̄ − z̄αzβ

(1 + |z|2)2
.

The volume form is then

(3.5) dVω = det(gαβ̄(z))dVE =
1

(1 + |z|2)n+1
dVE

where dVE is the Euclidean volume form. The curvature tensor is then given by

Rαβ̄γδ̄ = gαβ̄gγδ̄ + gαδ̄gβ̄γ .

It follows that the complex projective space CPn with the Fubini-Study metric has constant
holomorphic sectional curvature 2 and its holomorphic bisectional curvature is bounded
between 1 and 2. Furthermore, we have that if u is a (p, q)-form on CPn with q ≥ 1, then

(3.6) ⟨Θu, u⟩ = 0, if p = n; ⟨Θu, u⟩ ≥ 0, if p ≥ 1;

and

(3.7) ⟨Θu, u⟩ = q(2n+ 1)|u|2 if p = 0.

For a proof of these results, see [53] or Proposition A.5 in the Appendix in [7].

3.1. L2 theory of ∂ for (0, q)-forms. The positive curvature gives the following estimates
for (0, q)-forms.

Proposition 3.2. Let Ω be a pseudoconvex domain in CPn with C2 boundary and 1 ≤ q ≤
n− 1. Let φ be a plurisubharmonic function on Ω. Then

(3.8) ∥∂u∥2φ + ∥∂∗
φu∥2φ ≥ q(2n+ 1)∥u∥2φ

for any (0, q)-form u ∈ dom (∂) ∩ dom (∂
∗
φ).

Proof. This is a direct consequence of the curvature property (3.1) and (3.1):

∥∂u∥2φ + ∥∂∗
φu∥2φ = ∥∇u∥2φ + (Θu, u)φ + ((∂∂φ)u, u)φ +

∫
bΩ
⟨(∂∂ρ)u, u⟩e−φdS(3.9)

≥ (Θu, u)φ ≥ q(2n+ 1)∥u∥2φ.
□
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Theorem 3.3. Let Ω be a pseudoconvex domain in CPn such that Ω ̸= CPn and 1 ≤
q ≤ n − 1. Let φ be a plurisubharmonic function on Ω. For any ∂-closed (0, q)-form
f ∈ L2

0,q(Ω, e
−φ), there exists a (0, q − 1)-form u ∈ L2

0,q−1(Ω, e
−φ) such that ∂u = f with

(3.10) ∥u∥2φ ≤ 1

q(2n+ 1)
∥f∥2φ.

Proof. If Ω has C2 boundary, estimate (3.10) is then a consequence of (3.9). The general
case is then proved by exhausting Ω from inside by pseudoconvex domains with smooth
boundaries. □

Corollary 3.4. Let Ω be a bounded pseudoconvex domain in Cn with the Euclidean diameter
R, where R = supz,z′∈Ω |z−z′|. Then for any f ∈ L2

p,q(Ω) with ∂f = 0, there is a (p, q−1)-

form u ∈ L2
(p,q−1)(Ω) such that ∂u = f with

(3.11) ∥u∥2 ≤ Cn,qR
2∥f∥2

where Cn,q is a constant depending only on n and q, but is independent of Ω.

Proof. Since Ω ∈ Cn equipped with the Euclidean metric, we may assume that p = 0.
From (3.10) with φ = 0, we have

(3.12)

∫
Ω
|u|2ωdVω ≤ 1

q(2n+ 1)

∫
Ω
|f |2ωdVω.

First we assume that Ω ⊂ Cn with diameter R < 1. It follows from (3.5) that

(3.13)

∫
Ω
|u|2dVE ≤ Cn

∫
Ω
|u|2ωdVω ≤ Cn

q(2n+ 1)

∫
Ω
|f |2ωdVω ≤ Cn,q

∫
Ω
|f |2dVE

where Cn,q is a constant depending only on n and q, but is independent of Ω.
For general bounded domain Ω ⊂ Cn with diameter 1 ≤ R < ∞, the estimate (3.11)

follows from scaling argument with z → z/R.
□

We remark that Corollary 3.4 gives an alternative proof of the Hörmander’s L2 theorem
(Theorem 2.1).

3.2. Bounded plurisubharmonic exhaustion functions. The classical Oka’s lemma
states that for a pseudoconvex domain in Cn, any distance function δ for Ω satisfies

(3.14) i∂∂(− log δ) ≥ 0.

Let Ω be a pseudoconvex domain in CPn. We first recall the following theorem of Takeuchi
[52] (see also [5] for an alternative approach).

Theorem 3.5 (Takeuchi). Let Ω ⊂⊂ CPn be a pseudoconvex domain. Then the distance
function δ satisfies

(3.15) i∂∂(− log δ) ≥ C0ω

as currents where C0 > 0 and ω is the Kähler form of the Fubini-Study metric on CPn.

Definition 3.1. A distance function δ satisfying (3.15) is said to satisfy the strong Oka’s
lemma.
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In a Kähler manifold with strictly positive holomorphic curvature, Ohsawa-Sibony [38]
showed that there exists a bounded plurisubharmonic exhaustion function for any pseudo-
convex domain with C2 boundary.

Theorem 3.6 (Ohsawa-Sibony). Let Ω ⊂⊂ X be a pseudoconvex domain with C2 bound-
ary in a complete Kähler manifold M . Assume that the holomorphic curvature of M is
strictly positive. let δ(x) = d(x, bΩ) be the distance function to bΩ with the Kähler metric
ω. Then there exists t with 0 < t ≤ 1 and a constant C > 0 such that

(3.16) i∂∂(−δt) ≥ Cδtω.

In particular, Theorem 3.6 holds for CPn. We will show that the strong Oka’s lemma
is equivalent to the eixistence of a Hölder continuous strictly plurisubharmonic exhaustion
function for Ω. This follows from ideas used in [7, 6, 22]).

Proposition 3.7. Let M be a complex hermitian manifold with metric ω and let Ω ⊂⊂ M
be a pseudoconvex domain with C2 boundary bΩ. Let δ be a C2 distance function for Ω.
The following conditions are equivalent:

(1) The function δ satisfies

i∂∂(− log δ) ≥ C0ω

for some constant C0 > 0.
(2) There exists a constant 0 < t ≤ 1 such that

i∂∂(−δt) ≥ Ctδ
t(ω + i

∂δ ∧ ∂δ

δ2
)

for some Ct > 0.

Proof. We first prove (1) implies (2).
From (1), we have

(3.17) ⟨∂∂(− log δ), a ∧ ā⟩ ≥ C0|a|2

where a is any (1, 0)-vector.
To prove (2), we first prove that there exists t0 such that

(3.18) i∂∂(−δt0) ≥ 0.

Observe that inequality (3.18) is equivalent to

(3.19) i
∂∂(−δ)

δ
+ (1− t0)

i∂δ ∧ ∂δ

δ2
≥ 0.

Comparing (3.19) with

(3.20) i∂∂(− log δ) = i
∂∂(−δ)

δ
+

i∂δ ∧ ∂δ

δ2
,

we see that (3.18) is equivalent to

(3.21) i∂∂(− log δ) ≥ t0
i∂δ ∧ ∂δ

δ2
.

We will show that (3.21) holds for some 0 < t0 ≤ 1.
Near a boundary point, we choose a special orthonormal basis w1, · · · , wn for (1, 0)-forms

such that wn =
√
2∂(−δ). Let L1, · · · , Ln be its dual and let a be any (1, 0)-vector. We
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decompose a = aτ + aν where aν = ⟨a, Ln⟩ is the complex normal component and aτ is the
complex tangential component. We have

(3.22)

⟨∂∂(− log δ), a ∧ ā⟩

= ⟨∂∂(−δ)

δ
, aτ ∧ āτ ⟩+ 2Re ⟨∂∂(−δ)

δ
, aτ ∧ āν⟩

+ ⟨∂∂(−δ)

δ
, aν ∧ āν⟩+

|aν |2

δ2
.

From (3.20) and (3.22), we have

⟨∂∂(− log δ), aτ ∧ āτ ⟩ = ⟨∂∂(−δ)

δ
, aτ ∧ āτ ⟩ ≥ C0|aτ |2.

Thus from (3.22),

(3.23)
⟨∂∂(− log δ), a ∧ ā⟩ ≥ |aτ |2 +

|aν |2

δ2
− 2|⟨∂∂(−δ)

δ
, aτ ∧ āν⟩|

− |⟨∂∂(−δ)

δ
, aν ∧ āν⟩|.

Since δ is a C2 function, all second derivatives of δ are bounded. Thus for any ϵ > 0, we
have

(3.24) |⟨∂∂(−δ)

δ
, aτ ∧ āν⟩| ≤ C

(
1

ϵ
|aτ |2 + ϵ

|aν |2

δ2

)
,

and

(3.25) |⟨∂∂(−δ)

δ
, aν ∧ āν⟩| ≤ C

ϵ

δ2
|aν |2

on a sufficiently small neighborhood Uϵ near the boundary.
Substituting (3.24) and (3.25) into (3.21) and choosing ϵ sufficiently small, we have

(3.26) ⟨∂∂(− log δ), a ∧ ā⟩ ≥ 1

2

|aν |2

δ2
−K|aτ |2

for some large constant K depending on ϵ.
Multiplying (3.17) by K/C0 and adding it to (3.26), we have

(K + 1)⟨∂∂(− log δ), a ∧ ā⟩ ≥ 1

2

|aν |2

δ2
.

This proves (3.21) with t0 = C0/2(K + 1) near the boundary, or equivalently, (3.19) is
proved near the boundary. Since Ω is Stein, on any relatively compact submanifold Ω′ ⊂⊂
Ω, there exists a bounded strictly plurisubharmonic function on Ω

′
.

By standard arguments one can extend δ so that δ is the distance function near the
boundary and δ satisfies (3.21) in Ω. Since (3.21) implies (3.18), we have proved that

(3.27) i
∂∂(−δ)

δ
+ (1− t0)

i∂δ ∧ ∂δ

δ2
≥ 0.

For any 0 < t < t0, we have from (3.27)

(3.28) i∂∂(−δt) = itδt
(
∂∂(−δ)

δ
+ (1− t)

∂δ ∧ ∂δ

δ2

)
≥ Ctδ

t i∂δ ∧ ∂δ

δ2
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for some Ct = t(t0 − t) > 0. On the other hand,

∂∂(− log δ)− t
∂δ ∧ ∂δ

δ2
≥ (1− t

t0
)∂∂(− log δ) ≥ C0(1−

t

t0
)ω.

Thus

(3.29) i∂∂(−δt) = itδt(∂∂(− log δ)− t
∂δ ∧ ∂δ

δ2
) ≥ Ctω.

Combining (3.28) and (3.29), we have proved (2).
It is easy to see that (2) implies (1). Using (2) and (3.28), we have

(3.30) i∂∂(− log δ) ≥ Ct(ω +
∂δ ∧ ∂δ

δ2
)

which is even stronger than (1).
□

Remark. (1) If Ω is a pseudoconvex domain in Cn with C2 boundary, let δ̃ = δe−λ|z|2

with λ > 0. Diederich-Fornaess [13] first showed that then (2) holds with δ substituted by

δ̃ for some large λ. For this reason, the best exponent t0 is sometimes called the Diederich-
Fornaess exponent.

From Proposition 3.7, we proved that actually any λ > 0 suffices. This follows from
Oka’s lemma (3.14) and

i∂∂(− log δ̃) = i∂∂(− log δ) + λωE ≥ λωE

where ωE is the Kähler form for Cn.
(2) If Ω is a Lipschitz bounded pseudoconvex domain in Cn or a Stein manifold, Demailly

[12] showed that there exists a bounded strictly plurisubharmonic function in Ω (see also
Kerzman-Rosay [30] for the C1 case).

(3) Theorem 3.6 also holds for pseudoconvex domains with Lipschitz boundary in CPn

(see Harrington [21]).

3.3. Applications of the Ohsawa-Sibony Theorem. Based on an earlier result of
Berndtsson and Charpentier [3, Theorem 2.3] (see also [23, 7]), we obtain the following
theorem.

Theorem 3.8. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary. Then
the ∂-Neumann Laplacian □ has a bounded inverse N on L2

p,q(Ω) and for u ∈ Dom(∂) ∩
Dom(∂

∗
),

(3.31)
qηK

4
∥u∥2 ≤ ∥∂u∥2 + ∥∂∗

u∥2.

Furthermore, the operator N is bounded from W s
p,q(Ω) → W s

p,q(Ω) with

(3.32) ∥∂∗
Nu∥2s ≤ Cη∥u∥2s; ∥∂Nu∥2s ≤ Cη∥u∥2s.

for any u ∈ W s
p,q(Ω) with 0 < s < t0/2.

The exponent t0 in Theorem 3.6 is closely related to the Levi-flat hypersurfaces in CPn,
see the articles by Fu-Shaw [17] and Adachi-Brinkschulte [1].

Theorem 3.9. Let Ω be a bounded Stein domain with C2 boundary in a complex manifold
M of dimension n. If the Diederich-Fornæss index t0 of Ω is greater than k/n, 1 ≤ k ≤
n− 1, then Ω has a boundary point at which the Levi form has rank ≥ k.
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The proof of Theorem 3.9 is based on an earlier reuslt of Nemirovski [37], where k = n
and t0 = 1.

4. Some Open Questions for ∂ in CPn

4.1. Non-vanishing Results for L2 Dolbeault Cohomolgy. The situation is different
if the pseudoconvex domain Ω is not Lipschitz in CPn. Theorem 3.8 might not hold for
(p, q)-forms, where p ̸= 0.

We consider the Hartogs triangles in CP2. We denote the homogeneous coordinates by
[z0, z1, z2]. On the domain where z0 ̸= 0, we set z = z1

z0
and w = z2

z0
. Define the domains

H+ and H− by

H+ = {[z0 : z1 : z2] ∈ CP2 | |z1| < |z2|}
H− = {[z0 : z1 : z2] ∈ CP2 | |z1| > |z2|}

then H+∩H− = ∅ and H+∪H−
= CP2. These domains are called Hartogs’ triangles in CP2.

They are not Lipschitz domains at [1, 0, 0]. The Hartogs triangles are both pseudoconvex
and pseudoconcave. They are especially important since they provide simple examples of
singular Levi-flat hypersurfaces (see [8]).

Theorem 4.1. The L2 Dolbeault cohomology group H2,1
L2 (H−) (or H2,1

L2 (H+)) is infinite
dimensional.

The proof of Theorem 4.1 essentially follows from [35] and the recent work [2]. In [35],

it is proved that H2,1

∂s,L2
(H−) is infinite dimensional where ∂s is the ∂ closure in the strong

sense of Kohn. In [2], we show that the strong closure ∂s is equal to the weak closure ∂ (in
Hörmander’s sense). Combining these two results, Theorem 4.1 follows.

From Theorem 3.3, we have H0,1(H−) = 0. The following question remains open.

Question. (1) Determine if H2,1
L2 (H−) is Hausdorff.

(2) Determine if H1,1
L2 (H−) = 0.

We refer the reader to the papers [19, 26, 39, 41, 42] for related results.

4.2. Sobolev Estimates for ∂. Suppose that Ω is a pseudoconvex domain in CPn. Not
much is known for Sobolev estimates for ∂ if Ω is a smooth pseudoconvex domain in CPn

except for small s < 1
2 (see Theorem 3.8).

However, if we consider the complement of a pseudoconvex domain, a pseudoconcave
domain, then the following results are known.

Theorem 4.2. Let Ω+ = CPn\Ω, where Ω is a pseudoconvex domain in CPn with Lipschitz
boundary. Then

• Hp,q
W 1(Ω

+) = 0 for all 0 ≤ p ≤ n and p ̸= q;

• Hp,q(Ω+) is Hausdorff for all p = q or q = n− 1.

Here we only need that bΩ+ to be Lipschitz (see [7, 6] and the recent paper [18]). We
finish the paper by raising the following questions.

Question. Let Ω be a bounded pseudoconvex domain in CPn with smooth boundary. For
every 0 ≤ p ≤ n, 0 < q < n, determine for k ∈ N,

(4.1) Hp,q
Wk(Ω) = 0.
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It is especially interesting to know if (4.1) holds for k = 1 and n = 2. An affirmative
answer to this question will complete the proof of the nonexistence of Levi-flat hypersurfaces
in CP2 in [7]. For the nonexistence of Levi-flat hypersurfaces in CPn with n ≥ 3, see [32],
[49], [7] and [6]). Sibony’s most recent paper [48] is very closely related to this question. If
(4.1) is not possible, perhaps one should ask a weaker result.

Question. Determine if

(4.2) Hp,q

W
1
2
(Ω) = 0.

The Sobolev 1/2-estimates are related to the closed range of ∂b. If Ω is a domain in Cn

with C2 boundary, then we have L2 existence for ∂b (see [40, 4, 29] and [10]). We remark
that Theorem 3.8 yields only Sobolev regularity for s < 1

2 . The lack of Sobolev estimates

for ∂ in the complex projective space CPn is one of the most challenging open questions.
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solution bornée pour f bornée, Invent. Math. 62 (1980), 235-242.



13

[46] N. Sibony, Some aspects of weakly pseudoconvex domains, Several Complex Variables and Complex
Geometry, Part I (Santa Cruz, CA 1989), Proc. Symp. Pure Math. 52, (1991), 199-231.
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