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Abstract. In this article, we study the range of the Cauchy-Riemann operator ∂ on
domains in the complex projective space CPn. In particular, we show that ∂ does not
have closed range in L2 for (2,1)-forms on the Hartogs triangle in CP2. We also study the

∂-Cauchy problem on pseudoconvex domains and use it to prove the Sobolev estimates
for ∂ on pseudoconcave domains in CPn.
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1. Introduction

Since the fundamental work of Kohn for the ∂-Neumann problem on smooth bounded
strongly pseudoconvex domains in Cn, there has been tremendous progress on L2-Sobolev
theory of the ∂-operator and the ∂-Neumann problem for bounded pseudoconvex domains
in Cn. In particular, Kohn proved the following landmark results (see [29, 30]).

Theorem 1.1 (Kohn 1963). Let Ω be bounded strongly pseudoconvex domain with smooth
boundary in Cn, n ≥ 2. Then the ∂-Neumann operator

N : L2
p,q(Ω)→ L2

p,q(Ω)

exists on Ω. Furthermore, the following sub-elliptic estimates hold for any s ≥ 0

‖Nf‖s+1 ≤ C‖f‖s
and

‖∂∗Nf‖s+ 1
2
≤ C‖f‖s

where ‖ ‖s denotes the Sobolev s-norm W s(Ω).

The solution ∂
∗
Nf is called the canonical solution (or Kohn’s solution), since it is the

energy minimizing solution.

Corollary 1.2. Let f ∈ C∞p,q(Ω) with ∂f = 0 in Ω, where 0 ≤ p ≤ n and 1 ≤ q ≤ n. There

exists u = ∂
∗
Nf ∈ C∞p,q−1(Ω) satisfying ∂u = f in Ω.

Another important result for ∂ is the global regularity for ∂ proved later by Kohn based
on the weighted ∂-Neumann problem (see [31]).

Theorem 1.3 (Kohn 1973). Let Ω be bounded pseudoconvex domain with smooth bound-
ary in Cn, n ≥ 2. Let f ∈ W s

p,q(Ω) with ∂f = 0 in Ω, where 0 ≤ p ≤ n and 1 ≤ q ≤ n and

s > 0, there exists us ∈W s
p,q−1(Ω) satisfying ∂us = f in Ω.
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Corollary 1.4. Let Ω be bounded pseudoconvex domain with smooth boundary in Cn, n ≥ 2.
Let f ∈ C∞p,q(Ω) with ∂f = 0 in Ω, where 0 ≤ p ≤ n and 1 ≤ q ≤ n. Then there exists

u ∈ C∞p,q−1(Ω) satisfying ∂u = f in Ω.

For s ≥ 0, let Hp,q
W s(Ω) be the Dolbeault cohomology with Sobolev W s coefficients defined

by

Hp,q
W s(Ω) =

{f ∈W s
p,q(Ω) | ∂f = 0}

{f ∈W s
p,q(Ω) | f = ∂u, u ∈W s

p,q−1(Ω)}
.

When s = 0, we also use the notation Hp,q
L2 (Ω) for the L2 Dolbeault cohomology.

Similarly, we use Hp,q(Ω) and Hp,q(Ω) to denote the Dolbeault cohiomology group for
(p, q)-forms with C∞(Ω) and C∞(Ω) coefficients respectively. Using these notation, Theo-
rem 1.3 can be formulated as

(1.1) Hp,q
W s(Ω) = 0, s > 0.

Corollary 1.4 can be written as

(1.2) Hp,q(Ω) = 0

When s = 0, L2 existence for ∂ was proved by Hörmander [26] for bounded pseudoconvex
convex domains, not necessarily with smooth boundary.

Theorem 1.5 (Hörmander 65). Let Ω be a bounded pseudoconvex domain in Cn. Then

Hp,q
L2 (Ω) = 0, q > 0.

Similar results also hold for domains in a Stein manifold. Both L2 and Sobolev regularity
for ∂ have numerous applications. Though the L2 and Sobolev theory for ∂ has been
studied extensively for domains in Cn, (see monographs [14, 27, 11, 47] for expositions on
the subject), much less is known for ∂ on domains in complex manifolds which are not
Stein.

In this paper we present some recent results of the L2 and Sobolev theory for ∂ on domains
in the complex projective space CPn. There are many known results on L2 existence
theorems for ∂ on pseudoconvex domains in CPn. In particular, we have

Hp,q
L2 (Ω) = 0 for all 0 ≤ p ≤ n, 1 ≤ q ≤ n

for any pseudoconvex domain Ω ⊂ CPn with Lipschitz boundary bΩ (see Theorem 2.9).
One of the main results in this paper is to show that ∂ might not have closed range on

some pseudoconvex domain in CP2 if the Lipschitz condition is dropped. In particular,
Theorem 1.5 does not hold for arbitrary pseudoconvex domains in CPn. The examples are
given by the Hartogs triangles in CP2 (see Theorem 5.1 and Corollary 5.2).

The Hartogs triangles in C2 and CP2 are important examples of domains which are
not Lipschitz. Hartogs triangles in CP2 are also interesting examples in complex foliation
theory. They can be viewed as Levi-flat hypersurfaces with singularities since they are
both pseudoconvex and pseudoconcave. Non-closed range properties for ∂ on domains in
complex manifolds with smooth Levi-flat boundaries have been obtained in [9] (see also
[35]).

The plan of the paper is as follows. In section 2 we summarize some known results for
∂ in L2 for pseudoconvex domains in CPn and give an alternative proof for Theorem 1.5
(see Theorem 2.6). In section 3, we prove the Sobolev estimates for ∂ on pseudoconcave
domains in CPn using the ∂-Cauchy problem with weights. In section 4, we give some basic
properties of holomorphic functions and forms on the Hartogs triangles. The non-closed



3

range property for ∂ for (2, 1)-forms with L2 coefficients on Hartogs triangles in CP2 is
proved in section 5. Theorem 5.1 is a stronger assertion of the earlier results proved in [36]

and [2]. The dimension of H2,1
L2 (H+) is not only infinite, but is uncountable.

We collect several open problems which are related to the L2 or Sobolev estimates for ∂
on domains in Cn or CPn in section 6. Since Hartogs triangles in CP2 are both pseudoconvex
and pseudconcave, Theorem 5.1 also provide examples that ∂ does not have closed L2 range
on some pseudoconcave domains in CP2. We remark that L2 theory for even pseudoconcave
domains with smooth boundary remains an open question (see Problem 2). The missing
ingredient is exactly the lack of Kohn’s type Sobolev estimates (1.1) for pseudoconvex
domains in CPn (see Problem 1).

2. L2 theory for ∂ on pseudoconvex domains in CPn

In this section, we review some known results on pseudoconvex domains in CPn. Let ω be
the Kähler form associated with the Fubini-Study metric in CPn. Let Ω be a pseudoconvex
domain in CPn such that Ω 6= CPn and Ω has C2-smooth boundary bΩ. Let δ be the
distance function from z to bΩ.

Let δ(z) = dist(z, bΩ) be the distance, with respect to the Fubini-Study metric, from
z to the boundary bΩ. Let Ωε = {z ∈ Ω | δ(z) > ε}. It then follows from Takeuchi’s
theorem [48] that there exists a universal constant K0 > 0 such that

(2.1) i∂∂(− log δ) ≥ K0ω

on Ω. In particular, there exists ε0 > 0 such that

(2.2) ∂∂(−δ)(ζ, ζ) ≥ K0ε|ζ|2ω
for all ζ ∈ T 1,0

x (bΩε) for 0 ≤ ε ≤ ε0. (See also [19, 6] for different proofs of Takeuchi’s
theorem.)

Using (2.2), we have the following theorem.

Theorem 2.1 (Takeuchi). Let Ω be a pseudoconvex domain in CPn such that Ω 6= CPn.
Then the Dolbeault cohomology group Hp,q(Ω) = 0 for all q > 0.

2.1. L2 existence theorems for (0, q)-forms. Let L2
p,q(Ω) be the space of (p, q)-forms u

on Ω with respect to the Fubini-Study metric ω such that

‖u‖2ω =

∫
Ω
|u|2ωdVω <∞.

We will also use (·, ·)ω to denote the associated inner product. Let ∂ : L2
p,q−1(Ω)→ L2

p,q(Ω)

be the weak maximal closure of ∂ and let ∂
∗
ω be the Hilbert space adjoint of ∂. We now

recall an integration by parts formula.
Let L1, . . . , Ln be a local orthonormal frame field of type (1, 0) and φ1, . . . , φn be the

coframe field. For a (p, q)-form u, we set

〈Θu, u〉ω =
n∑

j,k=1

〈φ̄j ∧
(
L̄kyR(Lj , L̄k)u

)
, u〉ω,

where R is the curvature operator on (p, q)-forms with respect to the Fubini-Study metric
and y is the usual contraction operator (see e.g [5, 18]). We have that if u is a (p, q)-form
on CPn with q ≥ 1, then

(2.3) 〈Θu, u〉ω = 0, if p = n; 〈Θu, u〉ω ≥ 0, if p ≥ 1;
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and

(2.4) 〈Θu, u〉ω = q(2n+ 1)|u|2 if p = 0.

With the above notations, we can now state the following Basic Identity (see [50, 45, 5]).

Theorem 2.2 (Bochner-Kodaira-Morrey-Kohn). Let Ω be a domain with C2 boundary

bΩ in in CPn and let ω be the Fubini-Study metric. For any u ∈ C1
p,q(Ω) ∩ dom (∂

∗
ω), we

have

(2.5) ‖∂u‖2ω + ‖∂∗ωu‖2ω = ‖∇u‖2ω + (Θu, u)ω +

∫
bΩ
〈(∂∂ρ)u, u〉ωdSω

where dSω is the induced surface element on bΩ and ‖∇u‖2ω =
∑n

j=1 ‖∇L̄j
u‖2ω.

For a proof of these results, see [50] or Proposition A.5 in [5]. We first exploit the
positivity of the curvature Θ for (0, q)-forms. When p = 0, we have the following proposition
using (2.4).

Proposition 2.3. Let Ω be a pseudoconvex domain in CPn with C2 boundary and 1 ≤ q ≤
n− 1. Then

(2.6) ‖∂u‖2ω + ‖∂∗u‖2ω ≥ q(2n+ 1)‖u‖2ω
for any (0, q)-form u ∈ dom (∂) ∩ dom (∂

∗
ω).

Theorem 2.4 (L2 existence for (0, q)-Forms). Let Ω be a pseudoconvex domain in CPn
such that Ω 6= CPn and 1 ≤ q ≤ n − 1. For any ∂-closed (0, q)-form f ∈ L2

0,q(Ω), there

exists a (0, q − 1)-form u ∈ L2
0,q−1(Ω) such that ∂u = f with

(2.7) ‖u‖2ω ≤
1

q(2n+ 1)
‖f‖2ω.

Proof. If Ω has C2 boundary, estimate (2.7) is then a consequence of (2.6). The general
case is then proved by exhausting Ω from inside by pseudoconvex domains with smooth
boundaries. �

Notice that the constant 1/q(2n+ 1) in (2.7) is independent of the diameter of the domain
in CPn with respect to the Fubini-Study metric.

Corollary 2.5. Let Ω be a pseudoconvex domain in CPn such that Ω 6= CPn. We have

H0,q
L2 (Ω) = 0 for every q > 0.

Theorem 2.4 gives an alternative proof of Hörmander’s L2 existence for ∂ for bounded
pseudoconvex domains in Cn.

Theorem 2.6 (Hörmander’s Theorem Revisited). Let Ω be a bounded pseudoconvex
domain in Cn with diameter d, where d = supz,z′∈Ω |z− z′|. Then for any f ∈ L2

p,q(Ω) with

∂f = 0, there is a (p, q − 1)-form u ∈ L2
(p,q−1)(Ω) such that ∂u = f with

(2.8) ‖u‖2 ≤ cn,qd2‖f‖2

where ‖ ‖ is the Euclidean norm and

(2.9) cn,q =
e(n+ 2q + 1)

4q(2n+ 1)
.
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Proof. Since the domain Ω is in Cn, p plays no role. We may assume that p = 0. We first
embed Cn in CPn and view Ω as a domain in CPn endowed with the Fubini-Study metric.
Using Theorem 2.4, there exists u ∈ L2

0,q−1(Ω) such that

(2.10) ‖u‖2ω ≤
1

q(2n+ 1)
‖f‖2ω.

Next we compare norm ‖ ‖ω with the Euclidean norm ‖ ‖. The Kähler form ω is given
by

ω = i∂∂ log(1 + |z|2)(2.11)

= i
n∑

α,β=1

gαβ̄(z) dzα ∧ dz̄β(2.12)

where

(2.13) gαβ̄(z) =
∂2 log(1 + |z|2)

∂zα∂z̄β
=

(1 + |z|2)δαβ̄ − z̄αzβ
(1 + |z|2)2

.

The volume form dVω with respect to ω is

(2.14) dVω = det(gαβ̄(z))dVE =
1

(1 + |z|2)n+1
dVE

where dVE is the Euclidean volume form. Furthermore, we have

(2.15)
1

(1 + |z|2)2
ωE ≤ ω ≤

1

1 + |z|2
ωE.

Assume that Ω has diameter d = 2ε in Cn with respect to the Euclidean norm for some
ε > 0. Without loss of generality, we may assume that Ω ⊂ Bε(0) = {z ∈ Cn | |z| < ε}.
Then using (2.14), we have

1

(1 + ε2)n+1
dVE ≤ dVω ≤ dVE.

Using (2.15), we have
1

(1 + ε2)2
ωE ≤ ω ≤ ωE

and

(2.16) 1 ≤ |dzj |ω ≤ (1 + |z|2).

Let f =
∑

K fKdz̄K , where K is a multi-index with |K| = q. It follows from (2.14) and
(2.16) that

|f |2ωdVω ≤ |f |2(1 + |z|2)2qdVω ≤ (1 + ε2)2q|f |2dV0,

and

(2.17) ‖f‖2ω ≤ (1 + ε2)2q‖f‖2.
Similarly, we have

|u|2ωdVω ≥ |u|2dVω ≥
1

(1 + ε2)n+1
|u|2dV0,

and

(2.18) ‖u‖2ω ≥
1

(1 + ε2)n+1
‖u‖2.
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It follows from (2.10), (2.17) and (2.18) that we have

(2.19) ‖u‖2 ≤ (1 + ε2)n+1+2q

q(2n+ 1)
‖f‖2,

when we assume that Ω has diameter 2ε.
Suppose that Ω lies in B1(0), the ball of radius 1. By scaling, we have for any ε > 0,

(2.20) ‖u‖2 ≤ 1

q(2n+ 1)

(1 + ε2)n+1+2q

ε2
‖f‖2.

Since ε > 0 is arbitrary, we see that the function

φ(ε) =
(1 + ε2)n+1+2q

ε2

achieves its minimum m at ε = 1/
√
n+ 2q with

m = (n+ 2q + 1)

(
1 +

1

n+ 2q

)n+2q

.

Since (1 + 1/(n + 2q))n+2q ↗ e, let cn,q be defined by (2.9). Then it follows from (2.20)
that

‖u‖2 ≤ cn,q22‖f‖2.
when Ω has diameter 2.

Suppose the domain Ω in Cn is with arbitrary diameter d. Notice that the Euclidean
metric admits a dilation. Thus (2.8) follows easily from a scaling argument. �

Remark. Theorem 2.6 is an alternative proof of the Hörmander’s L2 theory (see Theorem
1.5 and [26]). Hörmander’s method is to use the weight function ϕ = t|z|2 to obtain
the L2 existence with estimate (2.8) with cn,q = e/q. In comparison, the proof here uses
the positive curvature of the Fubini-Study metric and the constant cn,q given by (2.9) is
comparable up to a factor to Hörmander’s results.

2.2. The ∂-Neumann operator with weights. When p > 0, L2 theory for ∂ on a
domain Ω in CPn requires more work since the curvature Θ is only nonnegative. Let Ω be
a pseudoconvex domain with Lipschitz boundary bΩ in CPn. We may assume that there
exists a Lipschitz defining function ρ = −δ such that

(2.21) i∂∂(− log δ) ≥ Cω
for some C > 0. Let t > 0 and let φt = −t log δ. Then φt is a strictly plurisubharmonic
function on Ω. Using φt as the weight function in Hörmander’s L2 methods with the weight
function φt, we have

e−φt = et log δ = δt.

We use ‖ ‖t to denote the L2 norm with weight under the under the Fubini-Study metric.
Let

∂ : L2
p,q−1(Ω, δt)→ L2

p,q(Ω, δ
t)

be the weak maximal L2 closure of ∂ and its Hilbert space adjoint is denoted by ∂
∗
t such

that ∂
∗
t : L2

p,q(Ω, δ
t)→ L2

p,q−1(Ω, δt) and if v ∈ Dom(∂
∗
t ) if and only if

(∂u, v)t = (u, ∂
∗
t v)t for every u ∈ Dom(∂).

Now we use the Hörmander’s L2 methods with the weight function φt combined with the
Bochner-Kodaira-Morrey-Kohn formula. Using the same notation as before, but now we
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suppress the dependence of the Fubini-Study metric ω and emphasize on the weighted norm
with respect to φt.

Theorem 2.7 (Bochner-Kodaira-Morrey-Kohn-Hörmander). Let Ω be a domain in

CPn with C2 boundary bΩ. For any u ∈ C1
p,q(Ω) ∩ dom (∂

∗
t ), we have

(2.22) ‖∂u‖2t + ‖∂∗tu‖2t = ‖∇u‖2t + (Θu, u)t + ((i∂∂φt)u, u)t +

∫
bΩ
〈(∂∂ρ)u, u〉te−φtdS

where dS is the induced surface element on bΩ and ‖∇u‖2t =
∑n

j=1 ‖∇L̄j
u‖2t .

Corollary 2.8 (Weighted L2 Existence for ∂). Let Ω be a domain in CPn with Lipschitz
boundary bΩ. For any 0 ≤ p ≤ n−1, 1 ≤ q ≤ n and f ∈ L2

p,q(Ω, δ
t) such that f is ∂-closed,

there exists a (p, q − 1)-form u ∈ L2
p,q−1(Ω, δt) such that ∂u = f with

(2.23) Ct‖u‖2t ≤ ‖f‖2t
where C is the same constant as in (2.21).

Proof. Suppose Ω is a domain with C2 boundary, this follows from (2.22) since

‖∂u‖2t + ‖∂∗tu‖2t ≥ Ct‖u‖2t .
For a domain with Lipschitz boundary, we can use an exhaustion argument. �

Suppose that Ω is a bounded domain in Cn with C2 boundary. Diederich and Fornaess
[13] proved that there exists a defining function ρ and an exponent 0 < η < 1 such that
−(−ρ)η is strictly plurisubharmonic in Ω. Based on Takeuchi’s theorem, Ohsawa and Sibony
[38] generalized the Diederich-Fornaess results to domains in CPn. In fact, they showed
that one can take ρ = −δ where δ is the distance function from z ∈ Ω to bΩ. Ohsawa-
Sibony results have been extended to domains with Lipschitz boundary by Harrington in
[24], where he proved that there exists a Lipschitz defining function ρ and 0 < η < 1 such
that

(2.24) i∂∂(−δη) ≥ Cηδηω
in the sense of currents for some constant C > 0.

Using (2.24) and a technique of Berndtsson-Charpentier [3] have the following L2 exis-
tence theorem without weights.

Theorem 2.9 (L2 Existence for (p, q)-Forms). Let Ω be a pseudoconvex domain in CPn
with Lipschitz boundary. Then

(2.25) Hp,q
L2 (Ω) = 0 for every q > 0.

Furthermore, for any s < η
2 , where η is the exponent in (2.24), we have

(2.26) Hp,q
W s(Ω) = 0 for every q > 0.

Proof. We refer the reader to [3, 25, 18] for a proof of this theorem. �

The following proposition is a consequence of the above L2-theory for ∂ on CPn. Its
proof follows the same lines of arguments as those in [20, 12, 25, 5] when the boundary is
C2-smooth.

Proposition 2.10. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary.
Then the L2 holomorphic (n, 0)-forms in L2

n,0(Ω) 6= {0}. Furthermore, L2 Holomorphic

(n, 0)-forms separate points.
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Notice that in Theorem 2.9, we need the assumption of Lipschitz boundary for Ω when
p > 0. We will prove that Theorem 2.9 does not hold if the Lipschitz condition is dropped.
In contrast, if p = 0, we do not need any regularity for Ω in Theorem 2.4.

Remark. Bounded plurisubharmonic exhaustions functions have been studied in Cn and
CPn extensively. The Diederich-Fornaess theorem has been extended to pseudoconvex do-
mains in Cn with Lipschitz boundary (see Demailly [12]). The Diederich-Fornaess exponent
is the supremum of 0 < η < 1 such that (2.24) holds. It is related to the nonexistence of
Levi-flat hypersurfaces in complex manifolds (see [1, 16, 17]).

2.3. The ∂-Cauchy problem with weights. For fixed t ≥ 0, let

∂c : L2
p,q−1(Ω, δ−t)→ L2

p,q(Ω, δ
−t)

be the minimal (strong) closure of ∂. By this we mean that f ∈ Dom(∂c) if and only if
there exists a sequence of smooth compactly supported forms fν in C∞p,n−1(Ω) such that

fν → f and ∂fν → ∂f in L2(Ω, δ−t).

Lemma 2.11. The following conditions are equivalent:

(1) ∂ : L2
p,q−1(Ω, δt)→ L2

p,q(Ω, δ
t) has closed range.

(2) ∂
∗
t : L2

p,q(Ω, δ
t)→ L2

p,q−1(Ω, δt) has closed range.

(3) ∂c : L2
n−p,n−q(Ω, δ

−t)→ L2
n−p,n−q+1(Ω, δ−t) has closed range.

Proof. It is well-known that ∂ has closed range if and only if ∂
∗
t has closed range (see [26]

or Lemma 4.1.1 in [11]). By using the Hodge star operator, we have that (1) and (3) are
equivalent (see [8, 34]). �

Theorem 2.12 (L2 Serre Duality with Weights). Let Ω be a pseudoconvex domain
with Lipschitz boundary in CPn. We have for any t ≥ 0,

Hp,q
L2 (Ω, δt) ∼= Hn−p,n−q

∂c,L2
(Ω, δ−t) = {0}, q 6= 0.

Proof. Using Corollary 2.8, ∂ has closed range in L2
p,q(Ω, δ

t) for all degrees and t ≥ 0. Thus

using Lemma 2.11 and the L2 Serre duality (see [8]), the theorem follows.
�

Corollary 2.13 (∂-Cauchy Problem in L2 Spaces with Weights). Let Ω be a pseu-
doconvex domain with Lipschitz boundary in CPn, n ≥ 2. Suppose that f ∈ L2

p,q(Ω, δ
−t)

where t ≥ 0, 0 ≤ p ≤ n and 1 ≤ q < n. Assuming that ∂f = 0 in CPn with f = 0 outside
Ω. Then there exists u ∈ L2

p,q−1(Ω, δ−t) with u = 0 outside Ω satisfying ∂̄u = f in the
distribution sense in CPn.

For q = n, if f satisfies the compatibility condition

(2.27)

∫
Ω
f ∧ φ = 0, φ ∈ L2

n−p,0(Ω, δt) ∩Ker(∂),

then the same conclusion holds.

Proof. Since the boundary is Lipschtiz, we have that solving ∂c is the same as solving ∂
with prescribed support in Ω (see Lemma 2.3 in [34]). �
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3. Sobolev estimates for ∂ on pseudoconcave domains in CPn

Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary, where n ≥ 2. We
always assume that Ω 6= CPn. Let Ω+ be the complement of Ω defined by

Ω+ = CPn \ Ω.

Then Ω+ is a pseudoconcave domain with Lipschitz boundary. Estimates for the ∂-equation
in Sobolev spacesW k(Ω+) have been obtained for k = 1 in earlier papers using the ∂-Cauchy
problem (see [5, 7]. For k ≥ 2, it is proved in Henkin-Iordan [25]) under the condition that
the boundary bΩ+ is C2. Here we will give a streamlined proof of Sobolev estimates for
k ≥ 1 for pseudoconcave domains with Lipschtiz boundary using the ∂-Cauchy problem
with weights.

Let W k
0 (Ω) be the Sobolev space which is the completion of C∞0 (Ω) under the W k(Ω)

norm. We have the following characterization of the space W k
0 (Ω).

Lemma 3.1. Let Ω be a bounded Lipschitz domain in CPn. Let δ(z) be the distance function
from z ∈ Ω to bΩ. Then for k ≥ 1, g ∈W k

0 (Ω) if and only if g ∈W k(Ω) and

(3.1) δ−s+|β|Dβg ∈ L2(Ω) for all |β| < k.

For a proof of this lemma, see Theorem 11.8 in Lions-Magenes [37], where theorem
is stated for smooth domains. Similar proof can be applied to domains with Lipschtiz
boundary (see also Grisvard [22]).

Theorem 3.2. Let Ω+ be a pseudoconcave domain in CPn with Lipschitz boundary, n ≥ 2.
Let k ∈ N. For any ∂-closed f ∈ W k

p,q(Ω
+), where 0 ≤ p ≤ n, 0 ≤ q < n − 1, there exists

F ∈W k−1
p,q (CPn) with F |Ω+ = f and ∂F = 0 in CPn in the distribution sense.

Proof. The W 1(Ω+) estimates have already been proved earlier (see [5, 7, 18, 25]). We
will show that the proof can be modified for k ≥ 2. Since Ω+ has Lipschitz boundary,
there exists a bounded extension operator from W k(Ω+) to W k(CPn) (see, e.g., [46]). Let

f̃ ∈ W k
p,q(CPn) be the extension of f so that f̃ |Ω+ = f with ‖f̃‖Wk(CPn) ≤ C‖f‖Wk(Ω+).

We have ∂f̃ ∈ L2
p,q+1(Ω, δ−2k+2), where Ω = CPn \ Ω+).

From Corollary 2.13, there exists uc ∈ L2
p,q(Ω, δ

−2k+2) such that ∂uc = ∂f̃ . Extending

uc to be zero outside Ω, we have

∂uc = ∂f̃ in CPn.

Since uc satisfies an elliptic system, we have that uc ∈ L2
p,q(Ω, δ

−2k+2) implies that uc ∈
W k−1

0,p,q(Ω). Define

(3.2) F = f̃ − uc.

Then F ∈W k−1
p,q (CPn) and F is a ∂-closed extension of f . �

Corollary 3.3. Let Ω+ be a pseudoconcave domain in CPn with Lipschitz boundary, where
n ≥ 2. Then W 1

p,0(Ω+) ∩Ker(∂) = {0} for every 1 ≤ p ≤ n and W 1(Ω+) ∩Ker(∂) = C.

Proof. Using Theorem 3.2 for q = 0, we have that any holomorphic (p, 0)-form on Ω+

extends to be a holomorphic (p, 0) in CPn, which are zero (when p > 0) or constants (when
p = 0). �
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Theorem 3.4. Let Ω+ be a pseudoconcave domain in CPn with Lipschitz boundary, where
n ≥ 3. For any ∂-closed f ∈ W k

p,q(Ω
+), where 0 ≤ p ≤ n, 1 ≤ q < n− 1, p 6= q and k ∈ N,

there exists u ∈W k
p,q−1(Ω+) with ∂u = f in Ω+.

Proof. Let F ∈W k−1
p,q (CPn) be the ∂̄-closed extension of f from Ω to CPn. Since

Hp,q
Wk−1(CPn) = {0},

there exists u ∈ W k
p,q−1(Ω) such that ∂̄u = F on CPn. By the elliptic theory of the ∂̄-

complex on compact complex manifolds, one can choose such a solution u ∈W k
p,q−1(CPn).

�

For q = n−1, there is an additional compatibility condition for the ∂-closed extension of
(p, n−1)-forms from Ω+ to the whole space CPn. This case differs from the others since the
cohomology group does not vanish in general (see [15]). We first derive the compatibility
condition for the extension of ∂-closed forms when q = n− 1.

Lemma 3.5. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary and let
Ω+ = CPn \ Ω. For any f ∈ W k

p,n−1(Ω+), k ∈ N and φ ∈ L2
n−p,0(Ω, δ2k−2) ∩ Ker(∂), the

pairing

(3.3)

∫
bΩ+

f ∧ φ

is well-defined.

Proof. Since the boundary is Lipschitz, any function in W k(Ω+) has a trace in W k− 1
2 (bΩ+).

Also holomorphic functions or forms in L2(Ω, δ2k−2) have trace in W−k+ 1
2 (bΩ). The pairing

(3.3) is well-defined follows from these known facts on Lipschtiz domains. The rest of the
proof of the lemma is exactly the same as in [42] and we give a sketch of the arguments.

Since the boundary is Lipschitz, for any ∂-closed (holomorphic) (n − p, 0)-form φ with
L2(Ω, δ2k−2) coefficients, there exists a sequence φν ∈ C∞n−p,0(Ω) such that φν → φ and

∂φν → 0 in L2(Ω, δ2k−2)-norm. This implies that φν → φ in W−k+1(Ω) norm since φ is
holomorphic.

Let f̃ ∈W k
p,n−1(CPn) be a bounded extension of f . We have

(3.4)

∫
bΩ
f ∧ φν =

∫
Ω
∂(f̃ ∧ φν) =

∫
∂f̃ ∧ φν ±

∫
f̃ ∧ ∂φν →

∫
∂f̃ ∧ φ.

Thus the limit on the left-hand-side of (3.4) exists and is independent of the approximating

sequence {φν} that we choose. It is also independent of the extension function f̃ . Hence
the pairing (3.3) is well-defined. �

Theorem 3.6. Let Ω be a pseudoconvex domain in CPn with Lipschitz boundary and let
Ω+ = CPn \ Ω. For ∂-closed f ∈ W k

p,n−1(Ω+), where k ≥ 1, 0 ≤ p ≤ n and p 6= n− 1, the
following conditions are equivalent:

(1) The restriction of f to bΩ+ satisfies the compatibility condition

(3.5)

∫
bΩ+

f ∧ φ = 0, φ ∈ L2
n−p,0(Ω, δ2k−2) ∩Ker(∂).

(2) There exists F ∈W k−1
p,n−1(CPn) such that F |Ω = f in Ω+ and ∂F = 0 in CPn in the

sense of distribution.
(3) There exists u ∈W k

p,n−2(Ω+) satisfying ∂u = f in Ω+.
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Corollary 3.7. Let Ω+ be the same as in Theorem 3.6. Then ∂ : W k
p,n−2(Ω+)→W k

p,n−1(Ω+)
has closed range, where k ≥ 1 and 0 ≤ p ≤ n.

Proof. Let f be a ∂-closed (p, n− 1)-form in W k
p,n−1(Ω+). Suppose that f is in the closure

of the range of ∂ : W k
p,n−2(Ω+) → W k

p,n−1(Ω+). There exists a sequence uν ∈ W k
p,n−2(Ω+)

such that ∂uν → f in W k
p,n−1(Ω+). It suffices to show that there exists u ∈ W k

p,n−2(Ω+)

such that ∂u = f .
From Theorem 3.6, it suffices to show that the condition (3.5) is satisfied for every

φ ∈ L2
n−p,0(Ω, δ2k−2) ∩Ker(∂). This follows from

(3.6)

∫
bΩ+

f ∧ φ = lim
ν→∞

∫
bΩ+

∂uν ∧ φ = lim
ν→∞

(−1)p+n−2

∫
bΩ+

uν ∧ ∂φ = 0.

Thus f = ∂u for some u ∈W k
p,n−2(Ω+). Thus the range of ∂ is closed in W k

p,n−1(Ω+).
�

Combining the results, we have proved the following theorem.

Theorem 3.8. Let Ω+ be the same as in Theorem 3.6. Then for any k ∈ N,

• Hp,q
Wk(Ω+) = 0, if 0 ≤ q < n− 1 and p 6= q;

• Hp,n−1
Wk (Ω+) is Hausdorff and infinite dimensional, if p 6= n− 1.

Remark. It is still an open question if Theorems 3.4 and 3.6 hold for k = 0 (see Problem
2). The missing ingredient is the lack of W 1-estimates with pseudoconvex domains in CPn.

When the domain Ω is a bounded domain with smooth boundary in Cn, there has
been a lot of results obtained earlier. The space of L2 harmonic forms for the critical
degree q = n − 1 on an annulus between two concentric balls or strongly pseudoconvex
domains in Cn has been computed in [28]. This has been generalized to annulus between
two pseudoconvex domains in Cn in [42, 43]. We also remark that the conditions on the
cohomology groups can be used to characterize domains with holes with Lipschtiz boundary
in Cn (see [15]). All these results depend on the Sobolev estimates for ∂ proved by Kohn
(see Theorem 1.3).

4. Properties of holomorphic functions and forms on the Hartogs triangles

We denote the homogeneous coordinates in CP2 by [Z0, Z1, Z2]. Let H+ and H− be the
Hartogs triangles defined by

H+ = {[Z0 : Z1 : Z2] ∈ CP2 | |Z1| < |Z2|}
H− = {[Z0 : Z1 : Z2] ∈ CP2 | |Z1| > |Z2|}

then H+ ∩H− = ∅ and H+ ∪H− = CP2.
Let Uj = {[Z0, Z1, Z2] | Zj 6= 0}, j = 0, 1, 2. Then H+ ⊂ U2. In local coordinates,

H+ = {(z, w) ∈ C2 | |w| < 1}.
Thus H+ is the product C×D, where D is the unit disk. Hence H+ is pseudoconvex.

In this section, we first recall some known results on the Hartogs triangles. The Hartogs
triangles are not Lipschitz. However, some function properties for the Hartogs triangles
still hold. Recall that a domain Ω ⊂ CPn is called a Sobolev extension domain if for any
f ∈W s(Ω), there exists f̃ ∈W s(CPn) such that f̃ = f on Ω.

Lemma 4.1. The Hartogs triangles H+ and H− are Sobolev extension domains.
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Proof. The Hartogs triangle H+ is smooth except at the point [1, 0, 0]. If we set z = z1/z0

and w = z2/z0, then the domain H+ is defined by the inhomolgeneous coordinates (z, w)
by

H+ = {z, w) ∈ C2 | |z| < |w|}.
The Hartogs triangle H+ and H− are not Lipschitz at (0, 0). At (0,0), the singularity of
H+ and H− are the same as the Hartogs triangle

T = {(z, w) ∈ C2 | |z| < |w| < 1}.
It is proved in [2] that T is an extension domain. Thus the lemma follows from the same
proof. �

It is also proved in Theorem 3.13 in [2] that the weak and strong extensions of ∂ are the
same. Define the L2 Dolbeault cohomolgy group with respect to ∂c as follows:

Hp,q

∂c,L2
(H−) =

Ker(∂c)

Range(∂c)
.

The following lemma is proved in Proposition 6 in [8].

Lemma 4.2. Let H+ ⊂ CP2 be the Hartogs’ triangle. Then we have the following:

(1) The Bergman space of L2 holomorphic functions L2(H+) ∩ O(H+) on the domain
H+ separates points in H+.

(2) There exist non-constant functions in the space W 1(H+) ∩ O(H+). However, this
space does not separate points in H+ and is not dense in the Bergman space L2(H+)∩
O(H+).

(3) Let f ∈W 2(H+)∩O(H+) be a holomorphic function on H+ which is in the Sobolev
space W 2(H+). Then f is a constant.

Lemma 4.3. The following results hold:

(1) H2,0
L2 (H+) = 0;

(2) H0,1
L2 (H+) = 0;

(3) H2,1
L2 (H±) is infinite dimensional.

Proof. Let z = z0/z2 and w = z1/z2. Then H− is biholomorphic to C×D. Let φ = fdz∧dw,
where f is holomorphic in C×D. Since φ is a (2, 0)-form, its L2-norm is metric independent.
We can just use the Euclidean metric on C×D. If f ∈ L2(C×D), then f is L2 on the leaf
(·, w) a.e., where w ∈ D. Since f is holomorphic, this implies that f = 0 on C×D. Thus
φ = 0 on H+. This proves (1).

(2) is already proved in Corollary 2.5. The proof of (3) uses Lemma 4.2. It follows from
[36] combining with the results in [2] (see also [44]). �

5. Non-closed range property for ∂ on Hartogs triangles CP2

We now state and prove the main result in this paper.

Theorem 5.1. ∂ : L2
2,0(H+)→ L2

2,1(H+) does not have closed range.

Corollary 5.2. H2,1
L2 (H+) is non-Hausdorff.

Proof. We will show that the corollary follows easily from the theorem. It is well-known
that ∂ : L2

2,0(H+) → L2
2,1(H+) has closed range if and only if H2,1

L2 (H+) is Hausdorff (see

e.g., Treves [49]). �
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It remains to prove Theorem 5.1. To prove the theorems, we need two lemmas.

Lemma 5.3. The following are equivalent:

(1) ∂ : L2
2,0(H+)→ L2

2,1(H+) has closed range.

(2) ∂c : L2
0,1(H+)→ L2

0,2(H+) has closed range and the range is L2
0,2(H+).

(3) H0,1
W 1(H−) = 0.

Proof. It follows from Lemma 2.11 that ∂c : L2
0,1(H+) → L2

0,2(H+) has closed range if and

only if ∂ : L2
2,0(H+) → L2

2,1(H+) has closed range. Using (1) in Lemma 4.3 and L2 Serre
duality, we have and

(5.1) H0,2

∂c,L2
(H+) ∼= H2,0

L2 (H+) = 0.

This proves that the range of ∂c is L2
0,2(H+). We have proved that (1) implies (2). Thus

(1) and (2) are equivalent.
Next we prove that (2) implies (3). Since H− is an extension domain by Lemma 4.1, let

f̃ be an extension of f to W 1
0,1(CP2). Let fc = ∂f̃ . Then fc ∈ L2

0,2(H+). Using (2), there

exists uc ∈ L2
0,1(H+) such that ∂cuc = fc in CP2. Letting F = f̃ −uc. Then F ∈ L2

0,1(CP2),

∂F = 0 in CP2 and F = f in Ω+. Any ∂-closed f ∈W 1
0,1(Ω+) extends to be an L2 ∂-closed

form F in CP2. So F = ∂U with U in W 1(CP2). Letting u = U |Ω− , then u ∈ W 1(H−)
and ∂u = f . We have proved (3).

Finally, we prove that (3) implies (2). Let f ∈ L2
0,2(H+). Then there exists V ∈

W 1
0,1(CP2) such that ∂V = f in CP2. We set v = V |H− . Using (3), we there exists

u ∈W 1(H−) such that ∂u = v on H−. Let ũ ∈W 1(CP2) be an extension of u.
We define

uc = V − ∂ũ.
Then ∂uc = f in CP2 and uc = 0 on H−. This proves (2). The lemma is proved. �

Lemma 5.4. Suppose H0,1
W 1(H+) = 0. Then functions in W 1(H+)∩O(H+) separate points

in H+.

Proof. The proof is similar to the proof of Proposition 4.3 in [25]. Let a and b be two
distinct points in H+ and let c ∈ H−. There exists a Riemann surface S of degree 2 passing
through a, b, c. The Riemann surface is given by S = {[Z] = [Z1, Z2, Z3] | P (Z) = 0},
where P (Z) is a homogeneous polynomial of degree 2 in [Z]. We can choose c such that

dP 6= 0 on S. Let H̃+ be an open neighborhood of H+
and c /∈ H̃+. Then Riemann surface

S ∩ H̃+ is Stein and there exists a Stein neighborhood U of S ∩ H̃+ such that U is Stein
(see [21]). Let h be a holomorphic function in U such that h(a) 6= h(b).

Let χ be a function in C∞0 (U) such that χ = 1 in a neighborhood of S ∩ H̃+. Consider
the (0, 1)-form

α =
(∂χ)h

P
.

Then α ∈ C∞0,1(H+
). Using the assumption that H0,1

W 1(H+) = 0, there exists u ∈ W 1(H+)

such that ∂u = α in H+. Let

F = χh− Pu.
Then F ∈ W 1(H+) ∩ O(H+). Furthermore, F (a) = h(a) 6= h(b) = F (b). The lemma is
proved. �
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5.1. Proof of Theorem 5.1. Suppose that ∂ : L2
2,0(H+) → L2

2,1(H+) has closed range.
Using Lemma 5.3,

H0,1
W 1(H+) = 0.

It follows from Lemma 5.4 that holomorphic functions in W 1(H+) separate points. This is
a contradiction to (2) in Lemma 4.2. Theorem 5.1 is proved. �

We have also proved the following corollary.

Corollary 5.5. H0,1
W 1(H+) 6= 0.

6. Open problems

There are numerous open problems concerning ∂ on domains in Cn and CPn. In this
section we list only a few open problems which are related to this article.

Problem 1 (Sobolev Estimates for ∂ on Pseudoconvex domains CPn). Let Ω be a
bounded pseudoconvex domain in CPn with smooth boundary. Can one solve ∂ with W s

estimates for all s > 0? In other words, prove (or disprove)

(6.1) Hp,q
W s(Ω) = 0.

We remark that by Corollary 5.5, some smoothness of Ω must be assumed. When Ω
is a bounded pseudoconvex domain in Cn with smooth boundary, this is exactly Kohn’s
therorem (Theorem 1.3).

Problem 2 (L2 Existence for ∂ on Pseudoconcave domains CPn). Let Ω be a
bounded pseudoconvex domain in CPn with smooth (or Lipschitz) boundary and let Ω+ =
CPn \ Ω. Prove (or disprove) that

Hp,q
L2 (Ω+) = 0

if p 6= q and q < n− 1.

Problem 3. Let Ω be a bounded pseudoconvex domain in Cn with Lipschitz boundary.
Determine if

H0,1
W 1(Ω) = 0.

In other words, can one extend Kohn’s results for s = 1 (Theorem 1.3) to Lipschitz
pseudoconvex domains? This.question has been raised many years ago. It has been shown
that W 1 estimates hold for pseudoconvex domains with C2 boundary (see [23]). But it
remains unsolved for general Lipschitz domains. When the domain is the bidisk D × D,
this is proved rather recently (see [10]). One can also ask similar questions for the Hartogs
triangle in C2 (see Problem 6 and Problem 7).

Let Ω be a bounded domain in CPn with smooth boundary. Let 0 ≤ p ≤ n and 1 ≤
q ≤ n − 1. Consider the induced operator ∂b : L2

p,q−1(bΩ) → L2
p,q(bΩ), the tangential

Cauchy-Riemann operator on bΩ.
Let ϑb : L2

p,q(bΩ)→ L2
p,q−1(bΩ) be the adjoint operatorr of ∂b with respect to the Fubini-

Study metric. Let

�b = ∂bϑb + ϑb∂b : L2
p,q(bΩ)→ L2

p,q(bΩ)

be the ∂b-Laplacian (or Kohn-Rossi operator).
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Problem 4 (Kohn-Rossi Cohomology). Let Ω be a bounded pseudoconvex domain in
CPn with smooth boundary. Does ∂b : L2

p,q−1(bΩ) → L2
p,q(bΩ) have closed range where

0 ≤ p ≤ n and 1 ≤ q ≤ n− 1?
If ∂b has closed range for all degrees, show that for 1 ≤ q < n−1, show that the dimension

of the Kohn-Rossi cohomology vanishes, i.e.,

dimCH
p,q

∂b,L2
(bΩ) = dimC Ker(�p,qb ) = 0.

If not, what is the dimension of the Kohn-Rossi cohomology dimCH
p,q

∂b,L2
(bΩ)?

We remark the following results are known: If Ω is strongly pseudoconvex, then we have
that ∂b has closed range following the results of Kohn-Rossi [33].

If Ω is a bounded pseudoconvex domain with smooth boundary in Cn, the closed range
property and L2 existence for ∂b is proved in [40] for q < n− 1 and in [4, 32] for q = n− 1.
In this case, we have that the Kohn-Rossi cohomology vanishes for q < n− 1.

.

Problem 5. Determine if the L2 Dolbeault cohomology on the Hartogs triangles for (1,1)-

form H1,1
L2 (H±) satisfies

(1) H1,1
L2 (H±) is Hausdorff,

(2) H1,1
L2 (H±) = 0.

We have proved that H2,1
L2 (H±) is non-Hausdorff in Theorem 5.1. We also know that

H0,1
L2 (H±) = 0.. It remains to investigate the closed range property for (1, 1)-form.

Problem 6. Let T be the Hartogs triangle in C2.

(1) Let B be a ball of radius 2 centered at 0. Determine if H0,1(B \ T ) is Hausdorff.
(2) Determine the spectrum of the ∂-Neumann operatoor on T ,
(3) Determine the spectrum of the d-Neumann operator,

This problem is raised in [2]. Since T is pseudoconvex and bounded, Hörmander’s L2

existence theorem holds for T . We have

Hp,1
L2 (T ) = 0 for all 0 ≤ p ≤ 2.

Notice that H0,1(B \ T ) is Hausdorff is equivalent to H2,1(B \ T ) is Hausdorff. This
question is equivalent to the following question (see [2] and also [34]).

Problem 7. Determine if

H0,1
W 1(T ) = 0.

It is proved in a recent paper [39] that

H0,1
Wk,p(T ) = 0, k ∈ N, p > 4.

However, it is still not known if this holds for W 1,2(T ) = W 1(T ). By Corollary 5.5, we have

H0,1
W 1(H+) 6= 0.

There are numerous other interesting problems on ∂ which are yet to be understood. We
list only these few problems to highlight the importance of understanding the L2-Sobolev
theory for ∂ on domains in complex manifolds.
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