Exercises on D-modules

1. Let *f* be a homogeneous polynomial in $R := \mathbb{C}[x_1, \dots, x_n]$. Consider the Euler operator

$$E := x_1 \frac{\partial}{\partial x_1} + \dots + x_n \frac{\partial}{\partial x_n}.$$

Verify that $E(f) = (\deg f)f$.

2. Let R be a commutative ring; recall that D_R^k denotes the differential operators on R of order up to k. Show that

$$D_R^k \circ D_R^l \subseteq D_R^{k+l}.$$

It follows that $D_R := \bigcup_{k \ge 0} D_R^k$ is a ring!

- 3. Let $R := \mathbb{C}[x]$. Express the following elements of $D_{R|\mathbb{C}}$ in terms of the PBW basis:
 - (a) $\partial^2 \circ x$
 - (b) $\partial \circ f$, where $f \in R$
 - (c) $\partial^2 \circ f$, where $f \in R$

4. Let $D_{R|\mathbb{C}}$ be the Weyl algebra, where $R := \mathbb{C}[x_1, \ldots, x_n]$. Show that the center of $D_{R|\mathbb{C}}$ is \mathbb{C} as follows:

- (a) If $P \in D_{R|\mathbb{C}}$ is central, then it is an *R*-linear operator, and hence belongs to $\text{Hom}_R(R,R) \cong R$.
- (b) For a polynomial $P \in R$, one has $[\partial_i, P] = \partial P / \partial x_i$.
- (c) Conclude that the center of $D_{R|\mathbb{C}}$ is \mathbb{C} .
- 5. Let $D_{R|\mathbb{C}}$ be the Weyl algebra, where $R := \mathbb{C}[x_1, \dots, x_n]$. Let *P* be a nonzero element on $D_{R|\mathbb{C}}$.
 - (a) If ∂_i occurs in *P* when *P* is expressed in terms of the PBW-basis, prove that $[P, x_i] \neq 0$.
 - (b) If x_i occurs in P when P is expressed in terms of the PBW-basis, prove that $[P, \partial_i] \neq 0$.
 - (c) Conclude (yes, once again!) that the center of $D_{R|\mathbb{C}}$ is \mathbb{C} .
- 6. Let *f* be an element of $\mathbb{C}[x]$. Prove that in $D_{R|\mathbb{C}}$ one has

$$rac{\partial^k}{\partial x^k} \circ f \; = \; \sum_{i+j=k} inom{k}{i} \left(rac{\partial^i f}{\partial x^i}
ight) rac{\partial^j}{\partial x^j}.$$

7. Let \mathscr{F}_{\bullet} denote the Bernstein filtration on the Weyl algebra $D_{R|\mathbb{C}}$. Prove that

$$[\mathscr{F}_i, \mathscr{F}_j] \subseteq \mathscr{F}_{i+j-2}.$$

- 8. Let \mathscr{F}_{\bullet} denote the Bernstein filtration on the Weyl algebra $D_{R|\mathbb{C}}$. Take *M* to be $D_{R|\mathbb{C}}$ and define \mathscr{G}_{\bullet} on *M* by $\mathscr{G}_t := M$ for all $t \ge 0$. Is gr*M* finitely generated over gr $D_{R|\mathbb{C}}$?
- 9. Let $R := \mathbb{C}[x]$ and let \mathscr{F}_{\bullet} denote the Bernstein filtration on $D_{R|\mathbb{C}}$. Consider the induced filtration on $R_x = R[1/x]$; specify a basis for

$$\mathscr{F}_t \cdot \frac{1}{x}$$
 for each $t \ge 0$

Use this to compute the multiplicity of R_x as a $D_{R|\mathbb{C}}$ -module.

10. Let $R := \mathbb{C}[x]$. Fix $\lambda \in \mathbb{C}$, and consider the natural action of $D_{R|\mathbb{C}}$ on

$$M:=\bigoplus_{i\in\mathbb{Z}}\mathbb{C}\,x^{\lambda+i}$$

- (a) Compute e(M), i.e., the multiplicity of M.
- (b) Prove that *M* is a simple $D_{R|\mathbb{C}}$ -module if and only if $\lambda \notin \mathbb{Z}$.
- 11. Let $R := \mathbb{C}[x_1, \dots, x_n]$. For $k \leq n$, determine the multiplicity of $R_{x_1 \cdots x_k}$ as a $D_{R|\mathbb{C}}$ -module.

12. (Nuking a mosquito) Using the above, and the Čech complex $\check{C}^{\bullet}(x_1, \ldots, x_n; R)$, prove that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^k = (-1)^n$$

With conventional weapons, one could set x := 2 in the binomial expansion of $(1 - x)^n$.

- 13. Prove that every holonomic module *M* over the Weyl algebra $D := D_{R|\mathbb{C}}$ is cyclic as follows:
 - (a) Recall that $\ell(M)$ is finite; by induction, reduce to the case M = Du + Dv, where Dv is simple.
 - (b) Since Du has finite length, there exists a nonzero P in D with Pu = 0.
 - (c) Since DPD = D, one has $DPDv \neq 0$, so there exists $Q \in D$ with $PQv \neq 0$.
 - (d) Show that u + Qv generates M.
- 14. Let $R := \mathbb{C}[x]$ and set $D := D_{R|\mathbb{C}}$. Construct an isomorphism of left *D*-modules

$$D/Dx^2 \xrightarrow{\cong} D/Dx \oplus D/Dx$$
.

If you are having fun, go for

$$D/Dx^3 \xrightarrow{\cong} D/Dx \oplus D/Dx \oplus D/Dx$$

15. Consider a $2 \times n$ matrix of indeterminates

$$Z := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix}$$

and the \mathbb{C} -linear action of $G := SL_2(\mathbb{C})$ on the polynomial ring $R := \mathbb{C}[Z]$, where $M \in G$ acts as

$$M\colon Z\longmapsto MZ$$

The goal is to show that the invariant ring R^G is $S := \mathbb{C}[\Delta_{ij} : 1 \le i < j \le n]$, where $\Delta_{ij} := x_i y_j - x_j y_i$. Set

$$E_{ij} := x_i \frac{\partial}{\partial x_j} + y_i \frac{\partial}{\partial y_j} \qquad \text{and} \qquad D_{ij} := \det \begin{bmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial x_j} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_j} \end{bmatrix}$$

- (a) If n = 1, prove that $R^G = \mathbb{C}$.
- (b) Show that each E_{ij} acts on S.
- (c) Show that $E_{ij} \circ g = g \circ E_{ij}$ for each $g \in G$.
- (d) Show that each E_{ii} acts on \mathbb{R}^G .
- (e) Show that each D_{ij} acts on R^G .
- (f) Prove Capelli's identity:

$$\det \begin{bmatrix} E_{ii} + 1 & E_{ij} \\ E_{ji} & E_{jj} \end{bmatrix} = \det \begin{bmatrix} x_i & x_j \\ y_i & y_j \end{bmatrix} \circ \det \begin{bmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial x_j} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_j} \end{bmatrix},$$

for $i \neq j$, where determinants are read left to right; in other words prove that

$$(E_{ii}+1)E_{jj}-E_{ji}E_{ij} = \Delta_{ij}D_{ij}.$$

- (g) Take the \mathbb{N}^n -grading on *R* with deg $x_i = \deg y_i = e_i$, the *i*-th basis vector; show that R^G inherits a grading.
- (h) Prove that $R^G = S$ as follows: if not, choose a homogeneous f in $R^G \setminus S$ of degree (d_1, \ldots, d_n) such that $\sum d_i$ is minimal, and that, amongst such f, the entry d_1 maximal. Then $d_j \neq 0$ for some $j \neq 1$ by (a). Consider

$$(E_{11}+1)E_{jj}(f) = E_{j1}E_{1j}(f) + \Delta_{1j}D_{1j}(f)$$

16. Let $D_{R|\mathbb{C}}$ be the Weyl algebra, where $R := \mathbb{C}[x_1, \ldots, x_n]$. Suppose *M* is a $D_{R|\mathbb{C}}$ -module with a filtration \mathscr{G}_{\bullet} for which there exist c, m such that

$$\operatorname{rank}_{\mathbb{C}} \mathscr{G}_t \leqslant ct^m \quad \text{for all } t \gg 0$$

Does *M* need to be finitely generated? (We saw that this is true if m = n.)

Hint: Take n = 1 and consider the $D_{R|\mathbb{C}}$ -module

$$M := R \oplus R \oplus R \oplus \cdots$$

with the filtration

$$\mathscr{G}_t := [R]_{\leqslant t-1} \oplus [R]_{\leqslant t-2} \oplus [R]_{\leqslant t-3} \oplus \cdots$$

17. (Symmetry of the Weyl algebra) Recall that for *A* a ring, the *opposite ring A*^{op} consists of *A* as an abelian group, with multiplication in "reverse order." More precisely,

$$A^{\operatorname{op}} := \{ a^{\operatorname{op}} \mid a \in A \},\$$

with $a^{\text{op}} + b^{\text{op}} = (a+b)^{\text{op}}$, and $a^{\text{op}}b^{\text{op}} = (ba)^{\text{op}}$. Let $D_{R|\mathbb{C}}$ be the Weyl algebra, where $R := \mathbb{C}[x_1, \dots, x_n]$.

- (a) Show that the \mathbb{C} -algebra map with $x_i \mapsto x_i^{\text{op}}$ and $\partial_i \mapsto -\partial_i^{\text{op}}$ gives an isomorphism $D_{R|\mathbb{C}} \longrightarrow D_{R|\mathbb{C}}^{\text{op}}$.
- (b) Note that right $D_{R|\mathbb{C}}$ -modules correspond to left modules over $D_{R|\mathbb{C}}^{\text{op}}$. Using the fact that $D_{R|\mathbb{C}}$ is left noetherian, conclude that the ring $D_{R|\mathbb{C}}$ is also right Noetherian.
- 18. Set $R := \mathbb{F}_p[w, x, y, z]$ and f := wx yz. Construct a differential operator $P \in D_{R|\mathbb{F}_p}$ such that

$$P(1/f) = 1/f^p.$$

19. Let $R := \mathbb{F}_p[x]$. Recall that $D_t := \frac{1}{t!} \frac{\partial^t}{\partial x^t}$ for $t \ge 1$.

- (a) Prove that $D_1^p = 0$.
- (b) Prove that [D_q, x^q] = 1 for each integer q = p^e.
 Hint: For q as above, and m ∈ N, a theorem of Lucas implies that

$$\binom{m+q}{q} - \binom{m}{q} \equiv 1 \mod p.$$

- 20. For R and D_t as above. Prove that D_1 belongs to the \mathbb{F}_p -algebra generated by x and D_{p-1} .
- 21. (An application of differential operators to computing *F*-thresholds) Let *f* be a homogeneous cubic polynomial in $\mathbb{F}_p[x, y, z]$ for which the Jacobian ideal $J := (\partial f/\partial x, \partial f/\partial y, \partial f/\partial z)$ is primary to the homogeneous maximal ideal $\mathfrak{m} := (x, y, z)$. The goal is to show that

$$f^{p-2} \notin \mathfrak{m}^{[p]} := (x^p, y^p, z^p).$$

- (a) Let k be least such that $f^k \in \mathfrak{m}^{[p]}$. If k < p, show that $f^{k-1}J \subseteq \mathfrak{m}^{[p]}$.
- (b) Prove that $\mathfrak{m}^4 \subseteq J$.
- (c) Prove that $(\mathfrak{m}^{[p]}:\mathfrak{m}^4) = (\mathfrak{m}^{[p]}+\mathfrak{m}^{3p-6}).$
- (d) Conclude that $f^{k-1} \in (\mathfrak{m}^{[p]} + \mathfrak{m}^{3p-6})$, and hence that deg $f^{k-1} \ge 3p-6$.
- (e) Conclude that $k \ge p 1$.
- 22. For *p* a prime integer, set *W* to be $\mathbb{F}_p\langle x, y \rangle / \langle [x, y] 1 \rangle$.
 - (a) Prove that x^p is in the center of W.
 - (b) Prove that *R* is not a simple ring, i.e., find a two-sided proper ideal.
- 23. The goal is to compute the center of the Weyl algebra in positive characteristic; let $R := \mathbb{F}_p[x_1, \dots, x_n]$ and consider the Weyl algebra

$$W := \mathbb{F}_p\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \rangle / \langle [x_i, x_j], [\partial_i, \partial_j], [\partial_i, x_j] - \delta_{ij} \rangle.$$

- (a) Show that there is an \mathbb{F}_p -algebra homomorphism $W \longrightarrow D_{R|\mathbb{F}_p}$. Show that it fails to be injective, and also fails to be surjective. Characterize the image in terms of the level filtration $D^{(e)} := \operatorname{Hom}_{R^{p^e}}(R, R)$.
- (b) Show that each x_i^p and ∂_i^p is in Z(W), i.e., the center of W.
- (c) If $A \longrightarrow B$ is a ring homomorphism, show that Z(A) need not map to Z(B). However, show that Z(A) must map to Z(B) when $A \longrightarrow B$ is surjective. Using this, and your answer to (a), show that

$$Z(W) = k[x_1^p, \dots, x_n^p, \partial_1^p, \dots, \partial_n^p].$$

24. Set $R := \mathbb{Z}[x_1, x_2, x_3, y_1, y_2, y_3]/(x_1y_1 + x_2y_2 + x_3y_3)$ and $\mathfrak{a} := (x_1, x_2, x_3)R$. The goal is to show that $H^3_{\mathfrak{a}}(R)$ has infinitely many associated primes. Let *p* be an arbitrary prime integer; consider the cohomology class

$$\eta_p := \left[\frac{(x_1 y_1)^p + (x_2 y_2)^p + (x_3 y_3)^p}{p(x_1 x_2 x_3)^p} \right] \quad \text{in} \quad H^3_{\mathfrak{a}}(R) = \frac{R_{x_1 x_2}}{R_{x_1 x_2} + R_{x_1 x_3} + R_{x_2 x_3}}.$$

- (a) Check that the fraction $((x_1y_1)^p + (x_2y_2)^p + (x_3y_3)^p)/p$ is indeed an element of *R*.
- (b) Verify that $p\eta_p = 0$.

Prove that η_p is nonzero as follows: if $\eta_p = 0$, then there exists an integer k and elements c_i in R with

$$\frac{(x_1y_1)^p + (x_2y_2)^p + (x_3y_3)^p}{p} (x_1x_2x_3)^k = c_1x_1^{p+k} + c_2x_2^{p+k} + c_3x_3^{p+k}.$$
(1)

Consider the \mathbb{N}^3 -grading on *R* with deg $x_i = e_i$ and deg $y_i = -e_i$, where e_i is the *i*-th basis vector.

- (c) Without loss of generality, the c_i are homogeneous; determine the degree of each c_i .
- (d) Conclude that c_1 is a scalar multiple of $y_1^p x_2^k x_3^k$, and draw similar conclusions for c_2 and c_3 .
- (e) Rewrite equation (1) using these observations; divide through by $(x_1x_2x_3)^k$, then specialize each $y_i \longrightarrow 1$, and $x_3 \longmapsto -(x_1+x_2)$, to obtain

$$\frac{x_1^p + x_2^p + (-x_1 - x_2)^p}{p} \in (p, x_1^p, x_2^p) \mathbb{Z}[x_1, x_2].$$

(f) Prove that the above is false, so as to obtain a contradiction.

References: expository

S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts 33, Cambridge University Press, Cambridge, 1995.

- D. Miličić, Lectures on algebraic theory of D-modules, https://www.math.utah.edu/~milicic/Eprints/dmodules.pdf
- M. Varbaro, An introduction to D-modules with application to local cohomology, https://www.dima.unige.it/~varbaro/D-MODULES.pdf

References: papers

J. Álvarez Montaner, M. Blickle, and G. Lyubeznik, *Generators of D-modules in characteristic* p > 0, Math. Res. Lett. **12** (2005), 459–473.

B. Bhatt, M. Blickle, G. Lyubeznik, A. K. Singh, and W. Zhang, *Local cohomology modules of a smooth* Z*-algebra have finitely many associated primes*, Invent. Math. **197** (2014), 509–519.

C. Huneke and R. Sharp, *Bass numbers of local cohomology modules*, Trans. Amer. Math. Soc. **339** (1993), 765–779.

G. Lyubeznik, *Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra)*, Invent. Math. **113** (1993), 41–55.

G. Lyubeznik, *F*-modules: applications to local cohomology and *D*-modules in characteristic p > 0, J. Reine Angew. Math. **491** (1997), 65–130.

G. Lyubeznik, *Finiteness properties of local cohomology modules for regular local rings of mixed characteristic: the unramified case*, Special issue in honor of Robin Hartshorne, Comm. Alg. **28** (2000), 5867–5882.

G. Lyubeznik, A characteristic-free proof of a basic result on D-modules, J. Pure Appl. Algebra 215 (2011), 2019–2023.

A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), 165–176.