
Exercises on D-modules

1. Let f be a homogeneous polynomial in R := C[x1, . . . ,xn]. Consider the Euler operator

E := x1
∂

∂x1
+ · · ·+ xn

∂

∂xn
.

Verify that E( f ) = (deg f ) f .

2. Let R be a commutative ring; recall that Dk
R denotes the differential operators on R of order up to k. Show that

Dk
R ◦Dl

R ⊆ Dk+l
R .

It follows that DR :=
⋃

k>0 Dk
R is a ring!

3. Let R := C[x]. Express the following elements of DR|C in terms of the PBW basis:

(a) ∂ 2 ◦ x

(b) ∂ ◦ f , where f ∈ R

(c) ∂ 2 ◦ f , where f ∈ R

4. Let DR|C be the Weyl algebra, where R := C[x1, . . . ,xn]. Show that the center of DR|C is C as follows:

(a) If P ∈ DR|C is central, then it is an R-linear operator, and hence belongs to HomR(R,R)∼= R.

(b) For a polynomial P ∈ R, one has [∂i, P] = ∂P/∂xi.

(c) Conclude that the center of DR|C is C.

5. Let DR|C be the Weyl algebra, where R := C[x1, . . . ,xn]. Let P be a nonzero element on DR|C.

(a) If ∂i occurs in P when P is expressed in terms of the PBW-basis, prove that [P, xi] 6= 0.

(b) If xi occurs in P when P is expressed in terms of the PBW-basis, prove that [P, ∂i] 6= 0.

(c) Conclude (yes, once again!) that the center of DR|C is C.

6. Let f be an element of C[x]. Prove that in DR|C one has

∂ k

∂xk ◦ f = ∑
i+ j=k

(
k
i

)(
∂ i f
∂xi

)
∂ j

∂x j .

7. Let F• denote the Bernstein filtration on the Weyl algebra DR|C. Prove that

[Fi, F j]⊆Fi+ j−2.

8. Let F• denote the Bernstein filtration on the Weyl algebra DR|C. Take M to be DR|C and define G• on M
by Gt := M for all t > 0. Is grM finitely generated over grDR|C?

9. Let R :=C[x] and let F• denote the Bernstein filtration on DR|C. Consider the induced filtration on Rx = R[1/x];
specify a basis for

Ft ·
1
x

for each t > 0.

Use this to compute the multiplicity of Rx as a DR|C-module.

10. Let R := C[x]. Fix λ ∈ C, and consider the natural action of DR|C on

M :=
⊕
i∈Z

C xλ+i.

(a) Compute e(M), i.e., the multiplicity of M.

(b) Prove that M is a simple DR|C-module if and only if λ /∈ Z.

11. Let R := C[x1, . . . ,xn]. For k 6 n, determine the multiplicity of Rx1···xk as a DR|C-module.



12. (Nuking a mosquito) Using the above, and the Čech complex Č•(x1, . . . ,xn; R), prove that
n

∑
k=0

(−1)k
(

n
k

)
2k = (−1)n.

With conventional weapons, one could set x := 2 in the binomial expansion of (1− x)n.

13. Prove that every holonomic module M over the Weyl algebra D := DR|C is cyclic as follows:

(a) Recall that `(M) is finite; by induction, reduce to the case M = Du+Dv, where Dv is simple.
(b) Since Du has finite length, there exists a nonzero P in D with Pu = 0.
(c) Since DPD = D, one has DPDv 6= 0, so there exists Q ∈ D with PQv 6= 0.
(d) Show that u+Qv generates M.

14. Let R := C[x] and set D := DR|C. Construct an isomorphism of left D-modules

D/Dx2 ∼=−−−−→ D/Dx⊕D/Dx.

If you are having fun, go for
D/Dx3 ∼=−−−−→ D/Dx⊕D/Dx⊕D/Dx.

15. Consider a 2×n matrix of indeterminates

Z :=
[

x1 x2 · · · xn
y1 y2 · · · yn

]
,

and the C-linear action of G := SL2(C) on the polynomial ring R := C[Z], where M ∈ G acts as

M : Z 7−→MZ.

The goal is to show that the invariant ring RG is S := C[∆i j : 1 6 i < j 6 n], where ∆i j := xiy j− x jyi. Set

Ei j := xi
∂

∂x j
+ yi

∂

∂y j
and Di j := det

[
∂

∂xi
∂

∂x j
∂

∂yi
∂

∂y j

]
.

(a) If n = 1, prove that RG = C.
(b) Show that each Ei j acts on S.
(c) Show that Ei j ◦g = g◦Ei j for each g ∈ G.
(d) Show that each Ei j acts on RG.
(e) Show that each Di j acts on RG.
(f) Prove Capelli’s identity:

det
[

Eii +1 Ei j
E ji E j j

]
= det

[
xi x j
yi y j

]
◦ det

[
∂

∂xi
∂

∂x j
∂

∂yi
∂

∂y j

]
,

for i 6= j, where determinants are read left to right; in other words prove that

(Eii +1)E j j−E jiEi j = ∆i jDi j.

(g) Take the Nn-grading on R with degxi = degyi = ei, the i-th basis vector; show that RG inherits a grading.
(h) Prove that RG = S as follows: if not, choose a homogeneous f in RG \S of degree (d1, . . . ,dn) such that ∑di

is minimal, and that, amongst such f , the entry d1 maximal. Then d j 6= 0 for some j 6= 1 by (a). Consider

(E11 +1)E j j( f ) = E j1E1 j( f )+∆1 jD1 j( f ).

16. Let DR|C be the Weyl algebra, where R := C[x1, . . . ,xn]. Suppose M is a DR|C-module with a filtration G• for
which there exist c,m such that

rankCGt 6 ctm for all t� 0.

Does M need to be finitely generated? (We saw that this is true if m = n.)

Hint: Take n = 1 and consider the DR|C-module

M := R⊕R⊕R⊕·· ·

with the filtration
Gt := [R]6t−1⊕ [R]6t−2⊕ [R]6t−3⊕·· · .



17. (Symmetry of the Weyl algebra) Recall that for A a ring, the opposite ring Aop consists of A as an abelian group,
with multiplication in “reverse order.” More precisely,

Aop := {aop | a ∈ A},

with aop +bop = (a+b)op, and aopbop = (ba)op. Let DR|C be the Weyl algebra, where R := C[x1, . . . ,xn].

(a) Show that the C-algebra map with xi 7−→ xop
i and ∂i 7−→ −∂

op
i gives an isomorphism DR|C −→ Dop

R|C.

(b) Note that right DR|C-modules correspond to left modules over Dop
R|C. Using the fact that DR|C is left

noetherian, conclude that the ring DR|C is also right Noetherian.

18. Set R := Fp[w,x,y,z] and f := wx− yz. Construct a differential operator P ∈ DR|Fp such that

P(1/ f ) = 1/ f p.

19. Let R := Fp[x]. Recall that Dt :=
1
t!

∂ t

∂xt for t > 1.

(a) Prove that Dp
1 = 0.

(b) Prove that [Dq, xq] = 1 for each integer q = pe.
Hint: For q as above, and m ∈ N, a theorem of Lucas implies that(

m+q
q

)
−
(

m
q

)
≡ 1 mod p.

20. For R and Dt as above. Prove that D1 belongs to the Fp-algebra generated by x and Dp−1.

21. (An application of differential operators to computing F-thresholds) Let f be a homogeneous cubic polynomial
in Fp[x,y,z] for which the Jacobian ideal J := (∂ f/∂x, ∂ f/∂y, ∂ f/∂ z) is primary to the homogeneous maximal
ideal m := (x,y,z). The goal is to show that

f p−2 /∈ m[p] := (xp, yp, zp).

(a) Let k be least such that f k ∈m[p]. If k < p, show that f k−1J ⊆m[p].

(b) Prove that m4 ⊆ J.

(c) Prove that (m[p] : m4) = (m[p]+m3p−6).

(d) Conclude that f k−1 ∈ (m[p]+m3p−6), and hence that deg f k−1 > 3p−6.

(e) Conclude that k > p−1.

22. For p a prime integer, set W to be Fp〈x,y〉/〈[x, y]−1〉.

(a) Prove that xp is in the center of W .

(b) Prove that R is not a simple ring, i.e., find a two-sided proper ideal.

23. The goal is to compute the center of the Weyl algebra in positive characteristic; let R := Fp[x1, . . . ,xn] and
consider the Weyl algebra

W := Fp〈x1, . . . ,xn, ∂1, . . . ,∂n〉/
〈
[xi,x j], [∂i,∂ j], [∂i,x j]−δi j

〉
.

(a) Show that there is an Fp-algebra homomorphism W −→ DR|Fp . Show that it fails to be injective, and also
fails to be surjective. Characterize the image in terms of the level filtration D(e) := HomRpe (R,R).

(b) Show that each xp
i and ∂

p
i is in Z(W ), i.e., the center of W .

(c) If A−→ B is a ring homomorphism, show that Z(A) need not map to Z(B). However, show that Z(A) must
map to Z(B) when A−→ B is surjective. Using this, and your answer to (a), show that

Z(W ) = k[xp
1 , . . . ,x

p
n , ∂

p
1 , . . . ,∂

p
n ].



24. Set R := Z[x1,x2,x3, y1,y2,y3]/(x1y1 + x2y2 + x3y3) and a := (x1,x2,x3)R. The goal is to show that H3
a(R) has

infinitely many associated primes. Let p be an arbitrary prime integer; consider the cohomology class

ηp :=
[
(x1y1)

p +(x2y2)
p +(x3y3)

p

p(x1x2x3)p

]
in H3

a(R) =
Rx1x2x3

Rx1x2 +Rx1x3 +Rx2x3

.

(a) Check that the fraction
(
(x1y1)

p +(x2y2)
p +(x3y3)

p
)
/p is indeed an element of R.

(b) Verify that pηp = 0.

Prove that ηp is nonzero as follows: if ηp = 0, then there exists an integer k and elements ci in R with

(x1y1)
p +(x2y2)

p +(x3y3)
p

p
(x1x2x3)

k = c1xp+k
1 + c2xp+k

2 + c3xp+k
3 . (1)

Consider the N3-grading on R with degxi = ei and degyi =−ei, where ei is the i-th basis vector.

(c) Without loss of generality, the ci are homogeneous; determine the degree of each ci.

(d) Conclude that c1 is a scalar multiple of yp
1xk

2xk
3, and draw similar conclusions for c2 and c3.

(e) Rewrite equation (1) using these observations; divide through by (x1x2x3)
k, then specialize each yi −→ 1,

and x3 7−→ −(x1 + x2), to obtain

xp
1 + xp

2 +(−x1− x2)
p

p
∈
(

p, xp
1 , xp

2

)
Z[x1,x2].

(f) Prove that the above is false, so as to obtain a contradiction.
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