Exercises on D-modules

1. Let f be a homogeneous polynomial in $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Consider the Euler operator

$$
E:=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}
$$

Verify that $E(f)=(\operatorname{deg} f) f$.
2. Let R be a commutative ring; recall that D_{R}^{k} denotes the differential operators on R of order up to k. Show that

$$
D_{R}^{k} \circ D_{R}^{l} \subseteq D_{R}^{k+l}
$$

It follows that $D_{R}:=\bigcup_{k \geqslant 0} D_{R}^{k}$ is a ring!
3. Let $R:=\mathbb{C}[x]$. Express the following elements of $D_{R \mid \mathbb{C}}$ in terms of the PBW basis:
(a) $\partial^{2} \circ x$
(b) $\partial \circ f$, where $f \in R$
(c) $\partial^{2} \circ f$, where $f \in R$
4. Let $D_{R \mid \mathbb{C}}$ be the Weyl algebra, where $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that the center of $D_{R \mid \mathbb{C}}$ is \mathbb{C} as follows:
(a) If $P \in D_{R \mid \mathbb{C}}$ is central, then it is an R-linear operator, and hence belongs to $\operatorname{Hom}_{R}(R, R) \cong R$.
(b) For a polynomial $P \in R$, one has $\left[\partial_{i}, P\right]=\partial P / \partial x_{i}$.
(c) Conclude that the center of $D_{R \mid \mathbb{C}}$ is \mathbb{C}.
5. Let $D_{R \mid \mathbb{C}}$ be the Weyl algebra, where $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let P be a nonzero element on $D_{R \mid \mathbb{C}}$.
(a) If ∂_{i} occurs in P when P is expressed in terms of the PBW-basis, prove that $\left[P, x_{i}\right] \neq 0$.
(b) If x_{i} occurs in P when P is expressed in terms of the PBW-basis, prove that $\left[P, \partial_{i}\right] \neq 0$.
(c) Conclude (yes, once again!) that the center of $D_{R \mid \mathbb{C}}$ is \mathbb{C}.
6. Let f be an element of $\mathbb{C}[x]$. Prove that in $D_{R \mid \mathbb{C}}$ one has

$$
\frac{\partial^{k}}{\partial x^{k}} \circ f=\sum_{i+j=k}\binom{k}{i}\left(\frac{\partial^{i} f}{\partial x^{i}}\right) \frac{\partial^{j}}{\partial x^{j}}
$$

7. Let \mathscr{F}_{\bullet} denote the Bernstein filtration on the Weyl algebra $D_{R \mid \mathbb{C}}$. Prove that

$$
\left[\mathscr{F}_{i}, \mathscr{F}_{j}\right] \subseteq \mathscr{F}_{i+j-2} .
$$

8. Let \mathscr{F}. denote the Bernstein filtration on the Weyl algebra $D_{R \mid \mathbb{C}}$. Take M to be $D_{R \mid \mathbb{C}}$ and define \mathscr{G}_{\bullet} on M by $\mathscr{G}_{t}:=M$ for all $t \geqslant 0$. Is gr M finitely generated over $\operatorname{gr} D_{R \mid \mathbb{C}}$?
9. Let $R:=\mathbb{C}[x]$ and let \mathscr{F}. denote the Bernstein filtration on $D_{R \mid \mathbb{C}}$. Consider the induced filtration on $R_{x}=R[1 / x]$; specify a basis for

$$
\mathscr{F}_{t} \cdot \frac{1}{x} \quad \text { for each } t \geqslant 0
$$

Use this to compute the multiplicity of R_{x} as a $D_{R \mid \mathbb{C}}-$ module.
10. Let $R:=\mathbb{C}[x]$. Fix $\lambda \in \mathbb{C}$, and consider the natural action of $D_{R \mid \mathbb{C}}$ on

$$
M:=\bigoplus_{i \in \mathbb{Z}} \mathbb{C} x^{\lambda+i}
$$

(a) Compute $e(M)$, i.e., the multiplicity of M.
(b) Prove that M is a simple $D_{R \mid \mathbb{C}}$-module if and only if $\lambda \notin \mathbb{Z}$.
11. Let $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. For $k \leqslant n$, determine the multiplicity of $R_{x_{1} \cdots x_{k}}$ as a $D_{R \mid \mathbb{C}}$-module.
12. (Nuking a mosquito) Using the above, and the Čech complex $\check{C}^{\bullet}\left(x_{1}, \ldots, x_{n} ; R\right)$, prove that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{k}=(-1)^{n}
$$

With conventional weapons, one could set $x:=2$ in the binomial expansion of $(1-x)^{n}$.
13. Prove that every holonomic module M over the Weyl algebra $D:=D_{R \mid \mathbb{C}}$ is cyclic as follows:
(a) Recall that $\ell(M)$ is finite; by induction, reduce to the case $M=D u+D v$, where $D v$ is simple.
(b) Since $D u$ has finite length, there exists a nonzero P in D with $P u=0$.
(c) Since $D P D=D$, one has $D P D v \neq 0$, so there exists $Q \in D$ with $P Q v \neq 0$.
(d) Show that $u+Q v$ generates M.
14. Let $R:=\mathbb{C}[x]$ and set $D:=D_{R \mid \mathbb{C}}$. Construct an isomorphism of left D-modules

$$
D / D x^{2} \xrightarrow{\cong} D / D x \oplus D / D x .
$$

If you are having fun, go for

$$
D / D x^{3} \xrightarrow{\cong} D / D x \oplus D / D x \oplus D / D x
$$

15. Consider a $2 \times n$ matrix of indeterminates

$$
Z:=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

and the \mathbb{C}-linear action of $G:=\mathrm{SL}_{2}(\mathbb{C})$ on the polynomial ring $R:=\mathbb{C}[Z]$, where $M \in G$ acts as

$$
M: Z \longmapsto M Z
$$

The goal is to show that the invariant ring R^{G} is $S:=\mathbb{C}\left[\Delta_{i j}: 1 \leqslant i<j \leqslant n\right]$, where $\Delta_{i j}:=x_{i} y_{j}-x_{j} y_{i}$. Set

$$
E_{i j}:=x_{i} \frac{\partial}{\partial x_{j}}+y_{i} \frac{\partial}{\partial y_{j}} \quad \text { and } \quad D_{i j}:=\operatorname{det}\left[\begin{array}{cc}
\frac{\partial}{\partial x_{i}} & \frac{\partial}{\partial x_{j}} \\
\frac{\partial}{\partial y_{i}} & \frac{\partial}{\partial y_{j}}
\end{array}\right] .
$$

(a) If $n=1$, prove that $R^{G}=\mathbb{C}$.
(b) Show that each $E_{i j}$ acts on S.
(c) Show that $E_{i j} \circ g=g \circ E_{i j}$ for each $g \in G$.
(d) Show that each $E_{i j}$ acts on R^{G}.
(e) Show that each $D_{i j}$ acts on R^{G}.
(f) Prove Capelli's identity:

$$
\operatorname{det}\left[\begin{array}{cc}
E_{i i}+1 & E_{i j} \\
E_{j i} & E_{j j}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right] \circ \operatorname{det}\left[\begin{array}{cc}
\frac{\partial}{\partial x_{i}} & \frac{\partial}{\partial x_{j}} \\
\frac{\partial}{\partial y_{i}} & \frac{\partial}{\partial y_{j}}
\end{array}\right],
$$

for $i \neq j$, where determinants are read left to right; in other words prove that

$$
\left(E_{i i}+1\right) E_{j j}-E_{j i} E_{i j}=\Delta_{i j} D_{i j}
$$

(g) Take the \mathbb{N}^{n}-grading on R with $\operatorname{deg} x_{i}=\operatorname{deg} y_{i}=e_{i}$, the i-th basis vector; show that R^{G} inherits a grading.
(h) Prove that $R^{G}=S$ as follows: if not, choose a homogeneous f in $R^{G} \backslash S$ of degree $\left(d_{1}, \ldots, d_{n}\right)$ such that $\sum d_{i}$ is minimal, and that, amongst such f, the entry d_{1} maximal. Then $d_{j} \neq 0$ for some $j \neq 1$ by (a). Consider

$$
\left(E_{11}+1\right) E_{j j}(f)=E_{j 1} E_{1 j}(f)+\Delta_{1 j} D_{1 j}(f)
$$

16. Let $D_{R \mid \mathbb{C}}$ be the Weyl algebra, where $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Suppose M is a $D_{R \mid \mathbb{C}}$-module with a filtration \mathscr{G}_{\bullet} for which there exist c, m such that

$$
\operatorname{rank}_{\mathbb{C}} \mathscr{G}_{t} \leqslant c t^{m} \quad \text { for all } t \gg 0
$$

Does M need to be finitely generated? (We saw that this is true if $m=n$.)
Hint: Take $n=1$ and consider the $D_{R \mid \mathbb{C}}$-module

$$
M:=R \oplus R \oplus R \oplus \cdots
$$

with the filtration

$$
\mathscr{G}_{t}:=[R]_{\leqslant t-1} \oplus[R]_{\leqslant t-2} \oplus[R]_{\leqslant t-3} \oplus \cdots
$$

17. (Symmetry of the Weyl algebra) Recall that for A a ring, the opposite ring A^{op} consists of A as an abelian group, with multiplication in "reverse order." More precisely,

$$
A^{\mathrm{op}}:=\left\{a^{\mathrm{op}} \mid a \in A\right\}
$$

with $a^{\mathrm{op}}+b^{\mathrm{op}}=(a+b)^{\mathrm{op}}$, and $a^{\mathrm{op}} b^{\mathrm{op}}=(b a)^{\mathrm{op}}$. Let $D_{R \mid \mathbb{C}}$ be the Weyl algebra, where $R:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(a) Show that the \mathbb{C}-algebra map with $x_{i} \longmapsto x_{i}^{\mathrm{op}}$ and $\partial_{i} \longmapsto-\partial_{i}^{\mathrm{op}}$ gives an isomorphism $D_{R \mid \mathbb{C}} \longrightarrow D_{R \mid \mathbb{C}}^{\mathrm{op}}$.
(b) Note that right $D_{R \mid \mathbb{C}}$-modules correspond to left modules over $D_{R \mid \mathbb{C}}^{\mathrm{op}}$. Using the fact that $D_{R \mid \mathbb{C}}$ is left noetherian, conclude that the ring $D_{R \mid \mathbb{C}}$ is also right Noetherian.
18. Set $R:=\mathbb{F}_{p}[w, x, y, z]$ and $f:=w x-y z$. Construct a differential operator $P \in D_{R \mid \mathbb{F}_{p}}$ such that

$$
P(1 / f)=1 / f^{p}
$$

19. Let $R:=\mathbb{F}_{p}[x]$. Recall that $D_{t}:=\frac{1}{t!} \frac{\partial^{t}}{\partial x^{t}}$ for $t \geqslant 1$.
(a) Prove that $D_{1}^{p}=0$.
(b) Prove that $\left[D_{q}, x^{q}\right]=1$ for each integer $q=p^{e}$.

Hint: For q as above, and $m \in \mathbb{N}$, a theorem of Lucas implies that

$$
\binom{m+q}{q}-\binom{m}{q} \equiv 1 \quad \bmod p
$$

20. For R and D_{t} as above. Prove that D_{1} belongs to the \mathbb{F}_{p}-algebra generated by x and D_{p-1}.
21. (An application of differential operators to computing F-thresholds) Let f be a homogeneous cubic polynomial in $\mathbb{F}_{p}[x, y, z]$ for which the Jacobian ideal $J:=(\partial f / \partial x, \partial f / \partial y, \partial f / \partial z)$ is primary to the homogeneous maximal ideal $\mathfrak{m}:=(x, y, z)$. The goal is to show that

$$
f^{p-2} \notin \mathfrak{m}^{[p]}:=\left(x^{p}, y^{p}, z^{p}\right) .
$$

(a) Let k be least such that $f^{k} \in \mathfrak{m}^{[p]}$. If $k<p$, show that $f^{k-1} J \subseteq \mathfrak{m}^{[p]}$.
(b) Prove that $\mathfrak{m}^{4} \subseteq J$.
(c) Prove that $\left(\mathfrak{m}^{[p]}: \mathfrak{m}^{4}\right)=\left(\mathfrak{m}^{[p]}+\mathfrak{m}^{3 p-6}\right)$.
(d) Conclude that $f^{k-1} \in\left(\mathfrak{m}^{[p]}+\mathfrak{m}^{3 p-6}\right)$, and hence that $\operatorname{deg} f^{k-1} \geqslant 3 p-6$.
(e) Conclude that $k \geqslant p-1$.
22. For p a prime integer, set W to be $\mathbb{F}_{p}\langle x, y\rangle /\langle[x, y]-1\rangle$.
(a) Prove that x^{p} is in the center of W.
(b) Prove that R is not a simple ring, i.e., find a two-sided proper ideal.
23. The goal is to compute the center of the Weyl algebra in positive characteristic; let $R:=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ and consider the Weyl algebra

$$
W:=\mathbb{F}_{p}\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle /\left\langle\left[x_{i}, x_{j}\right], \quad\left[\partial_{i}, \partial_{j}\right], \quad\left[\partial_{i}, x_{j}\right]-\delta_{i j}\right\rangle
$$

(a) Show that there is an \mathbb{F}_{p}-algebra homomorphism $W \longrightarrow D_{R \mid \mathbb{F}_{p}}$. Show that it fails to be injective, and also fails to be surjective. Characterize the image in terms of the level filtration $D^{(e)}:=\operatorname{Hom}_{R p^{p}}(R, R)$.
(b) Show that each x_{i}^{p} and ∂_{i}^{p} is in $Z(W)$, i.e., the center of W.
(c) If $A \longrightarrow B$ is a ring homomorphism, show that $Z(A)$ need not map to $Z(B)$. However, show that $Z(A)$ must map to $Z(B)$ when $A \longrightarrow B$ is surjective. Using this, and your answer to (a), show that

$$
Z(W)=k\left[x_{1}^{p}, \ldots, x_{n}^{p}, \partial_{1}^{p}, \ldots, \partial_{n}^{p}\right] .
$$

24. Set $R:=\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right] /\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)$ and $\mathfrak{a}:=\left(x_{1}, x_{2}, x_{3}\right) R$. The goal is to show that $H_{\mathfrak{a}}^{3}(R)$ has infinitely many associated primes. Let p be an arbitrary prime integer; consider the cohomology class

$$
\eta_{p}:=\left[\frac{\left(x_{1} y_{1}\right)^{p}+\left(x_{2} y_{2}\right)^{p}+\left(x_{3} y_{3}\right)^{p}}{p\left(x_{1} x_{2} x_{3}\right)^{p}}\right] \quad \text { in } \quad H_{\mathfrak{a}}^{3}(R)=\frac{R_{x_{1} x_{2} x_{3}}}{R_{x_{1} x_{2}}+R_{x_{1} x_{3}}+R_{x_{2} x_{3}}} .
$$

(a) Check that the fraction $\left(\left(x_{1} y_{1}\right)^{p}+\left(x_{2} y_{2}\right)^{p}+\left(x_{3} y_{3}\right)^{p}\right) / p$ is indeed an element of R.
(b) Verify that $p \eta_{p}=0$.

Prove that η_{p} is nonzero as follows: if $\eta_{p}=0$, then there exists an integer k and elements c_{i} in R with

$$
\begin{equation*}
\frac{\left(x_{1} y_{1}\right)^{p}+\left(x_{2} y_{2}\right)^{p}+\left(x_{3} y_{3}\right)^{p}}{p}\left(x_{1} x_{2} x_{3}\right)^{k}=c_{1} x_{1}^{p+k}+c_{2} x_{2}^{p+k}+c_{3} x_{3}^{p+k} \tag{1}
\end{equation*}
$$

Consider the \mathbb{N}^{3}-grading on R with $\operatorname{deg} x_{i}=e_{i}$ and $\operatorname{deg} y_{i}=-e_{i}$, where e_{i} is the i-th basis vector.
(c) Without loss of generality, the c_{i} are homogeneous; determine the degree of each c_{i}.
(d) Conclude that c_{1} is a scalar multiple of $y_{1}^{p} x_{2}^{k} x_{3}^{k}$, and draw similar conclusions for c_{2} and c_{3}.
(e) Rewrite equation (1) using these observations; divide through by $\left(x_{1} x_{2} x_{3}\right)^{k}$, then specialize each $y_{i} \longrightarrow 1$, and $x_{3} \longmapsto-\left(x_{1}+x_{2}\right)$, to obtain

$$
\frac{x_{1}^{p}+x_{2}^{p}+\left(-x_{1}-x_{2}\right)^{p}}{p} \in\left(p, x_{1}^{p}, x_{2}^{p}\right) \mathbb{Z}\left[x_{1}, x_{2}\right]
$$

(f) Prove that the above is false, so as to obtain a contradiction.

References: expository

S. C. Coutinho, A primer of algebraic D-modules, London Mathematical Society Student Texts 33, Cambridge University Press, Cambridge, 1995.
D. Miličić, Lectures on algebraic theory of D-modules, https://www.math.utah.edu/~milicic/Eprints/dmodules.pdf
M. Varbaro, An introduction to D-modules with application to local cohomology, https://www.dima.unige.it/~varbaro/D-MODULES.pdf

References: papers

J. Àlvarez Montaner, M. Blickle, and G. Lyubeznik, Generators of D-modules in characteristic $p>0$, Math. Res. Lett. 12 (2005), 459-473.
B. Bhatt, M. Blickle, G. Lyubeznik, A. K. Singh, and W. Zhang, Local cohomology modules of a smooth \mathbb{Z}-algebra have finitely many associated primes, Invent. Math. 197 (2014), 509-519.
C. Huneke and R. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), 765-779.
G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math. 113 (1993), 41-55.
G. Lyubeznik, F-modules: applications to local cohomology and D-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65-130.
G. Lyubeznik, Finiteness properties of local cohomology modules for regular local rings of mixed characteristic: the unramified case, Special issue in honor of Robin Hartshorne, Comm. Alg. 28 (2000), 5867-5882.
G. Lyubeznik, A characteristic-free proof of a basic result on D-modules, J. Pure Appl. Algebra 215 (2011), 2019-2023.
A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), 165-176.

