Month: July 2018

Chemical bonds simulated with quantum computers!

“Quantum chemistry is the science of understanding the complicated bonds and reactions of molecules using quantum mechanics. The ‘moving parts’ of anything but the most-simple chemical processes are beyond the capacity of the biggest and fastest supercomputers. By modelling and understanding these processes using quantum computers, scientists expect to unlock lower-energy pathways for chemical reactions, allowing the design of new catalysts. This will have huge implications for industries, such as the production of fertilizers.”

Continue reading “Chemical bonds simulated with quantum computers!”

Stabilizing fusion plasmas

“Sawtooth swings—up-and-down ripples found in everything from stock prices on Wall Street to ocean waves—occur periodically in the temperature and density of the plasma that fuels fusion reactions in doughnut-shaped facilities called tokamaks. These swings can sometimes combine with other instabilities in the plasma to produce a perfect storm that halts the reactions. However, some plasmas are free of sawtooth gyrations thanks to a mechanism that has long puzzled physicists.”

Continue reading “Stabilizing fusion plasmas”

Review: UNIQUE SOLUTIONS TO BOUNDARY VALUE PROBLEMS IN THE COLD PLASMA MODEL

In this article, Otway provides a solution to the closed Dirichlet problem which is a mixed eliptic-hyperbolic equation. This type of equations are encountered in electromagnetic wave propagation in cold plasmas.

Continue reading “Review: UNIQUE SOLUTIONS TO BOUNDARY VALUE PROBLEMS IN THE COLD PLASMA MODEL”

Experimental Study of the Effects of the Cathode Position and the Electrical Circuit Configuration on the Operation of HK40 Hall Thruster and BUSTLab Hollow Cathode

HK40 Hall thruster, designed and developed at the Bogazici University Space Technologies Laboratory (BUSTLab), is an SPT type Hall thruster with a 40 mm discharge channel. HK40 was initially designed to operate with SmCo permanent magnets. To optimize the magnetic field topology, the permanent magnets were replaced with iron-core electromagnets. The thruster is operated with different magnetic coil currents to observe the changes in discharge characteristics. Magnetic field topology of the thruster is examined to determine the proper location of a LaB6 hollow cathode, which is also designed and built at BUSTLab. External magnetic field topology of a Hall thruster has an important characteristic called magnetic field separatrix defining the boundary between closed magnetic surfaces and open magnetic field lines. To investigate the effects of the separatrix surfaces, the location of the cathode is changed in-situ with respect to the Hall thruster with a 2-D translational stage in two different grounding configurations, one connecting the vacuum chamber to the same ground with the power supplies, and the other with the power supplies connected to a common floating ground. We show that the influence of the external magnetic field strength on the thruster efficiency can be predicted from the electron current coming from the cathode emitter surface. We also show that the cathode to ground voltage provides a way to estimate the efficiency with respect to the cathode placement. The mechanisms and the efficiency values of two setups are compared to explain the ground and the space operations.

Continue reading “Experimental Study of the Effects of the Cathode Position and the Electrical Circuit Configuration on the Operation of HK40 Hall Thruster and BUSTLab Hollow Cathode”

Experimental Investigation of the Effects of Cathode Current on HK40 Hall Thruster Operation

Hall effect thrusters utilize electric and magnetic fields to extract ions from a plasma discharge. The cathode is responsible for the ionization of the propellant and the neutralization of the ion beam by emitting an equal number of electrons to prevent spacecraft charging. Hollow cathode electrons are extracted from LaB6 insert surface by thermionic emission. The electrons leaving the surface generate a negative cathode voltage around LaB6 emitter. As the emitter surface expels electrons, the same amount of electrons are attracted from the ground. Those electrons are measured as the ground current. For Hall effect thrusters, the electron movements are determined by the external magnetic lines of the thruster. If electrons could not pass the magnetic field lines, they could not reach the anode and the magnitude of cathode to ground voltage increases. As a result, plume plasma potential increases. This study shows that by measuring the electron current coming from the emitter surface, influence of the external magnetic field strength on the efficiency of the thruster could be predicted.

Continue reading “Experimental Investigation of the Effects of Cathode Current on HK40 Hall Thruster Operation”

Investigation of the Effect of Hollow Cathode Neutralizer Location on Hall Effect Thruster Efficiency

Neutralization of ions is important for all electric thruster types when considering thruster efficiency and life. Hollow cathode is responsible for both creating plasma discharge and neutralization of the beam ions for Hall Effect Thruster (HET). In this study, appropriate placement of the cathode is investigated by taking into account that the decrease in cathode coupling voltage increases thruster efficiency. Regarding this, the effects of mass flow rate of the cathode and keeper current on the coupling voltage are investigated, according to available experimental results from the literature.

Continue reading “Investigation of the Effect of Hollow Cathode Neutralizer Location on Hall Effect Thruster Efficiency”