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Abstract

In this dissertation we present new methods for studying real algebraic varieties us-

ing topological data analysis. Topological data analysis (TDA) provides a growing

body of tools for computing geometric and topological information about spaces

from a finite sampling of points. Real algebraic varieties are subspaces of Euclidean

space which consist of points which evaluate to zero on a system of polynomials.

We start by describing a new adaptive algorithm for finding provably dense

samples of points on real algebraic varieties given a set of defining polynomials.

The algorithm utilizes methods from numerical algebraic geometry to give formal

guarantees about the density of the sampling. A tailored variant of the algorithm

is discussed that employs heuristic methods to minimize the number of points in

the sample while still providing provably dense output. This sample minimization

makes applying TDA methods feasible, since TDA methods consume significant

computational resources that scale poorly in the number of sample points. We

also describe how to extend the algorithm to real semialgebraic sets, which can

contain polynomial inequality constraints as well as equalities.

Using an implementation of the algorithm, we then apply TDA to real several

algebraic varieties. Results indicate that the specially tailored version of the algo-

rithm significantly reduces the number of points in a sample. For some examples,

TDA and the provable density of the algorithm’s output combine to give theoret-

ical justification for the existence of topological features. In others, TDA yields

geometric information about the variety. We then detail a strategy for applying

the algorithm and TDA to determine information about the configuration space

of the molecule cylcooctane (C8H16). Source code for the sampling algorithm and

examples is made publicly available.
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Chapter 1

Introduction

Topological data analysis (TDA) comprises a rapidly growing body of theoretical

framework, specialized algorithms, and software packages for studying the shape

and topological features of data sets. The theory gives strong guarantees: if a dense

set of points from a topological space is provided as input, TDA algorithms cap-

ture most of the topological information about the space. TDA has been applied

successfully to fields as diverse as signal processing, natural images, neurology, and

sensor networks [24, 7, 12]. Though TDA methods provide powerful insight when

applied properly, they require substantial computational resources to execute.

Algebraic varieties are the zero sets of polynomials system in several variables.

Varieties, particularly those consisting of real solutions to polynomial equations,

arise in applied settings like chemistry and kinematics. Constrained motion of

atoms in molecules for the former, and of robotic platforms for the latter, produce

models with polynomial constraints. Obtaining topological insights about varieties

can translate to information about a robot’s range of motion, or how a molecule

can bend and change shape.

Leveraging TDA to study real algebraic varieties requires a strategy for com-

puting real solutions to the variety’s defining polynomial equations. In addition,

the points fed into TDA algorithms need to be densely sampled from the variety to

form strong theoretical conclusions. TDA’s computational resource consumption

scales exponentially with the number of input points, however, which encourages

keeping that number low.
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This dissertation introduces and implements a sampling algorithm for real alge-

braic varieties that balances these two objectives. To match the strong theoretical

guarantees of the TDA framework, the algorithm outputs provably dense sam-

plings of points from a variety given the variety’s defining polynomials. In some

cases, this allows results from TDA to serve as full theoretical proof of the existence

of a variety’s topological features. To meet the objective of keeping computational

costs for TDA tractable, the algorithm employs heuristics to judge when a point

should be added to the sample. The implementation of the sampling algorithm

ties together multiple software packages tailored for numerical algebraic geometry,

topological data analysis, and indexing data by its location in space.

The rest of this dissertation is organized as follows. Chapter 2 gives an intro-

duction to the theory of persistent homology, topological data analysis, algebraic

geometry, and numerical algebraic geometry (NAG). Chapter 3 describes the sam-

pling algorithm and implementation details. Chapter 4 presents the output of

TDA computations performed with results from the sampling algorithm as input.

Chapter 4 also discusses a potential application of the algorithm to the problem

of analyzing the configuration space of cyclooctane, an organic molecule.
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Chapter 2

Background

2.1 Numerical algebraic geometry

2.1.1 Algebraic geometry

The central objects of study in classical algebraic geometry are the zero sets of

systems of polynomials. In principle, the polynomials can be defined over any

field, though applications typically concentrate on the familiar fields R and C.

The following definition fixes some notation and terminology going forward.

Definition 2.1. Let k be a field. If S is a subset of k[x1, . . . , xN ], then the (affine)

algebraic variety corresponding to S is the set of x ∈ kN such that f(x) = 0 for

all f ∈ S, denoted V(S). If S = {f1, . . . , fn} is finite we also denote this set

V(f1, . . . , fn). In the case that k = C, the real algebraic variety corresponding to

S is V(S) ∩ R, denoted VR(S). In the case that k = C or R, an isolated solution

of a variety V ⊆ kN is a point in V which is isolated in the Euclidean topology on V .

An algebraic variety is called irreducible if it is not the union of two proper sub-

algebraic varieties. Given an algebraic variety V , the set I(V ) ⊆ k[x1, . . . , xN ] is

the set of polynomials f ∈ k[x1, . . . , xN ] where f(x) = 0 for all x ∈ V .

There is a strong connection between varieties defined by functions in a poly-

nomial ring and ideals in the ring. Recall that for S ⊆ k[x1, . . . , xN ], the set 〈S〉
consists of polynomials of the form f =

∑n
i=1 hisi where each si is an element of S

and each hi is in k[x1, . . . , xN ]. It is straightforward to check that 〈S〉 is an ideal
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and S ⊆ 〈S〉. If an ideal I is equal to 〈S〉 for some subset S ⊆ I, then S is called

a basis for I. The whole polynomial ideal 〈S〉 vanishes on V(S).

Proposition 2.2. Let S ⊆ kN for some field k. Then V(S) = V(〈S〉).

Proof. Suppose x ∈ V(〈S〉) and f ∈ S. Clearly f ∈ 〈S〉, so f(x) = 0. Thus

V(〈S〉) ⊆ V(S). Suppose x ∈ V(S) and f =
∑n

i=1 hisi ∈ 〈S〉. Then f(x) =∑n
i=1 hi(x)si(x) =

∑n
i=1 hi(x) · 0 = 0, so V(S) ⊆ V(〈S〉).

It may appear that replacing S with the potentially larger set 〈S〉 actually

complicates rather than simplifies the description of a variety. Hilbert’s Basis

Theorem shows, however, that every polynomial ideal has a finite basis set. This

theorem and Proposition 2.2 imply that any variety is the set of points x ∈ kN

on which some list of polynomials f1, . . . , fn vanish. Hilbert’s Basis Theorem can

also be used to prove some other basic facts characterizing varieties.

Proposition 2.3. Let k be a field, S, T ⊆ k[x1, . . . , xN ], A = V(S), and B = V(T ).

Then:

1. I(A) is an ideal

2. V(I(A)) = A

3. A∪B and A∩B are also algebraic varieties defined by finitely many equations

4. A is irreducible if and only if I(A) is prime

Proof. By Hilbert’s Basis Theorem and Proposition 2.2 we can assume without

loss of generality that S and T are finite.

1. Let f, g ∈ I(A) and h ∈ k[x1, . . . , xN ]. Then for x ∈ A, clearly (f + g)(x) =

f(x) + g(x) = 0, so f + g ∈ I(A). Also fh(x) = 0 · h(x) = 0, so fh ∈ I(A).

2. Let x ∈ V(I(A)). Then since S ⊆ I(A) follows by definition, it follows that

f(x) = 0. Thus x ∈ V(S) = A. Similarly, if x ∈ A, then f(x) = 0 for every

f ∈ I(A) by definition, so x ∈ V(I(A)). Thus V(I(A)) = A.
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3. For the first equality, note that x ∈ A∩B if and only if f(x) = 0 = g(x) for

any polynomials f and g in A and B respectively if and only if x ∈ V(S∪T ).

We claim A ∪ B = V({fg | f ∈ S, g ∈ T}). If x ∈ A ∪ B and both

f ∈ S and g ∈ T , then either f(x) = 0 or g(x) = 0, so fg(x) = 0. If

x ∈ V({fg | f ∈ S, g ∈ T}) then suppose, to the contrary, x 6∈ A ∪ B. Then

there are f ∈ S and g ∈ T such that f(x), g(x) 6= 0. Since k is a field, this

implies fg(x) 6= 0, a contradiction.

4. (⇒) We prove the contrapositive. Suppose fg ∈ I(A) and both f, g 6∈ I(A).

For any x ∈ A, either f(x) = 0 or g(x) = 0 by definition. Since both f and

g are not in I(A), this implies there are x1, x2 ∈ A where f(x1) = g(x2) = 0

and f(x2), g(x1) 6= 0 That is to say, f−1(0) 6⊆ g−1(0) and g−1(0) 6⊆ f−1(0).

Thus A = (V(f)∩A)∪ (V(g)∩A) presents A as a union of proper algebraic

varieties by item 3.

(⇐) Suppose I(A) is prime and, to the contrary, A = C ∪ D for some

proper algebraic subvarieties of A. Note that I(C) ⊆ I(D) would imply

C ⊆ V(I(C)) ⊆ V(I(D)) = D by item 3. This contradicts that A is the

union of two proper subsets, and so I(C) 6⊆ I(D). A symmetric argument

gives I(D) 6⊆ I(C). It follows, then, that some f ∈ I(C)− I(D) exists, and

similarly some g ∈ I(D) − I(C) exists. Equivalently, both f and g are not

in I(A) = I(C ∪ D), but fg is, which shows I(A) is not prime. This is a

contradiction, so A is irreducible.

The previous propositions establish a close connection between varieties and

ideals, but two different ideals can describe the same variety. The ideals 〈x〉 and

〈x2〉 serve as a good example of this, since V(〈x〉) = {0} = V(〈x2〉) in k[x] if

k is of characteristic 0. Hilbert’s Nullstellensatz broadens this connection into a

characterization. Notice that for an algebraic variety V , a polynomial f is in I(V )

if fk ∈ I(V ), since (f(x))k = 0 implies f(x) = 0. Ideals with this property are

important enough to name.
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Definition 2.4. Given an ideal I in a polynomial ring k[x1, . . . , xN ] over the field

k, I is a radical ideal (or just radical) if fk ∈ I implies that f ∈ I. The set of

functions g such that gk ∈ I for some positive k is denoted
√
I.

It can be checked that
√
I is a radical ideal for any I (Lemma 4.5, [10]). The

previous discussion makes clear that for any variety V = V(I) we have I(V ) ⊆
√
I.

Hilbert’s Nullstellensatz states that the other inclusion,
√
I ⊆ I(V ), is also true

if the field k is algebraically closed. Combining this information with item 2 of

Proposition 2.3 gives an exact correspondence between algebraic objects (radical

ideals), and geometric objects (algebraic varieties).

Theorem 2.5 (Hilbert’s Nullstellensatz). Let I be an ideal in the polynomial ring

k[x1, . . . , xN ] where k is an algebraically closed field. Then I(V(I)) =
√
I.

This correspondence suggests that symbolic methods for manipulating polyno-

mial ideals can be adapted to yield geometric information about complex algebraic

varieties. For real algebraic varieties, however, the situation is not as clean since

R is not algebraically closed, and the Nullstellensatz does not apply. Numerically

oriented methods are thus particularly attractive as an approach for analyzing real

algebraic varieties.

The union and intersection properties from item 3 of Proposition 2.3 allow

the construction of a topology on kN , with (closed) basis elements consisting of

irreducible varieties. This topology is called the Zariski topology on kN . In the

cases where k = C or k = R, for any polynomial f ∈ k[x1, . . . , xN ] the set V(f) =

f−1(0) is closed in the standard topology, so the Zariski topology is coarser than

the standard topology. It is strictly coarser, in fact. A closed interval in R is not

Zariski closed, for instance, since by the Fundamental Theorem of Algebra any

Zariski closed subset of R is finite.

Recall that for any topological space X, a property concerning elements of X

is said to hold generically on X if there is an open dense subset of X where the

property holds for each element in the subset. The likelihood of choosing a point in

CN or RN at random that fails to have a generic property is negligibly small. Most

of the properties explored in numerical algebraic geometry hold generically, but not

at every point in the space under consideration. The probability based argument
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Figure 2.1: The real algebraic variety VR(f)(y2 − x2(x+ 1)).

is of vital importance to the practical computability of NAG methods which rely

on generic properties. Choosing a point at random is computationally inexpensive,

whereas formal theoretical verification that a property holds is potentially difficult.

Real and complex algebraic varieties have greater geometric complexity than

smooth manifolds in general. Consider the real algebraic variety VR(y2−x2(x+1))

pictured in Figure 2.1. The point on the variety at (0, 0) has no open neighborhood

which is homeomorphic to R, though all the other points on the variety do. Points

like (0, 0) in this simple example motivate the following definition. Recall that for

a system of polynomial functions f1, . . . , fn ∈ k[x1, . . . , xN ], the Jacobian of the

system, Jf , is an n×N matrix with entries in k[x1, . . . , xN ]:

Jf =


∂f1
∂x1

. . . ∂f1
∂xN

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xN


Definition 2.6. Let V ⊆ CN be a non-empty irreducible algebraic variety and

f1, . . . , fn ∈ kN be some basis polynomial system where V = V(f1, . . . , fn). The

dimension of V is the length d of the longest chain Vd ) Vd−1 ) · · · ) V0 of

distinct nonempty irreducible subvarieties of V . If Jf is its Jacobian matrix, a

point x0 ∈ V is singular if the rank of Jf when evaluated at x0 is less than N − d.

Otherwise x0 is nonsingular.
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It can be shown that whether points are singular or not does not depend on

the basis of polynomials chosen for the variety, and that the set of singular points

of a variety is a proper subvariety [22]. Geometrically (for k = C,R), singular

points are the points on a variety in CN or RN that have a tangent space with a

dimension larger than the variety’s dimension. In the previous example, the point

(0, 0) has a 2 dimensional tangent space on the variety where every other point

has a 1 dimensional tangent space. Nonsingular points are also called manifold

points, and a result due to Whitney shows that the nonsingular points of a real or

complex irreducible algebraic variety form a smooth manifold of the same (real or

complex, as appropriate) dimension as the variety [28].

Apart from regions of self-intersection in irreducible varieties, intersections of

proper subvarieties in reducible algebraic varieties also give rise to singular regions.

As an example, the variety V(xy) consists of the lines x = 0 and y = 0 which in-

tersect at a point (0, 0). The point (0, 0) does not have a clearly defined tangent

line, while all other points of the variety do. How many ways can we decompose

a reducible algebraic variety into a union of irreducible subvarieties? Perhaps sur-

prisingly, the answer to this question is “only one, up to containment” as recorded

in the following theorem.

Theorem 2.7 (Theorem 6.4, [10]). Let V ⊂ kN be an algebraic variety. Then V

has a decomposition

V = V1 ∪ · · · ∪ Vm

such that each Vi is irreducible, Vi 6⊆ Vj for i 6= j, and this decomposition is the

unique decomposition with these properties up to reordering of the Vi.

This decomposition is called the irreducible decomposition of a variety V , and

each Vi is an irreducible component of V . It allows us to extend the notions of

singular points and dimension to reducible varieties. The dimension of V is the

largest dimension of one of V ’s irreducible components. If V has dimension greater

than 0 then it is called positive dimensional. A point in V is nonsingular if it is

a nonsingular point of exactly one irreducible component of V . Otherwise it is

singular. If V contains only d-dimensional irreducible components, then V is pure

d-dimensional.
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2.1.2 Homotopy continuation

Methods in numerical algebraic geometry (NAG) look to estimate solutions to

systems of polynomial equations via a numerical rather than symbolic approach.

One of the most effective such methods is homotopy continuation, a process which

efficiently approximates all of the isolated solutions of an algebraic variety given

the variety’s defining polynomials as input. We give an overview of homotopy

continuation here, while the sources [26] and [2] discuss in detail the theory and

technical considerations necessary for implementation. In all cases, the solutions

obtained are only approximations. The underlying theory guarantees, however,

that the approximation methods used will converge to a solution when applied

iteratively to an approximate solution, and the approximation methods can be

carried to any desired degree of precision.

Given a polynomial system with real coefficients f1, . . . , fN , it can be expressed

as f : CN → CN where f(x) = (f1(x), . . . , fN(x))T . We denote V(f1, . . . , fN) as

V(f). Let f, g : CN → CN be polynomial systems whose constituent polynomials

have real coefficients and such that both V(f) and V(g) are 0 dimensional. Though

we have restricted our consideration to “square” systems with the same number

of variables and polynomials, systems with more polynomials than variables can

be converted into square systems whose isolated solutions contain all the isolated

solutions to the original system (see Section 1.1.4, [1]). Some solutions to this

reduced system may not be solutions of the original, but these can be filtered

out. We will call f the “target system” whose isolated solutions we are seeking

to approximate, and g the “start system” which has at least as many already

known isolated solutions as f has isolated solutions. The first step of homotopy

continuation considers f and g as embedded into a family of polynomial systems

parameterized by C. That is there exists H : CN×C→ CN , where f(z) = H(z, 0)

and g(z) = H(z, 1). Furthermore, we assume that H(z, t) is complex analytic in

t, that p(z) = H(z, t) for any fixed t is a polynomial system, that we know a set

S of solutions of g, and that every solution of g in S is trackable.

Definition 2.8. (from [16]) A solution x of g is trackable using H(z, t) from t = 1

to t = 0 if there exists a smooth function x∗ : (0, 1] → CN such that x∗(1) = x

and x∗(t) is a nonsingular isolated solution of H(x, t) = 0 for all t ∈ (0, 1].
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The key idea for homotopy continuation is to track the solution paths numeri-

cally for each solution of g in S as t goes from 1 to 0. To do this we must assume

that none of the solution paths beginning at different solutions in S cross. That

is to say that if p1, p2 : (0, 1] → CN are two different solution paths, there is no

t∗ ∈ (0, 1] such that p1(t
∗) = p2(t

∗). As t→ 0, a solution path p can either diverge

if ‖p(t)‖ → ∞ as t → 0, or otherwise converge to a solution of f as t → 0. Such

a solution might be isolated or not, in principle. Finding f ’s isolated solutions

requires defining start systems and homotopies which fit all of the technical re-

quirements on having good solution paths, and also where the solutions of f at

the end of the solution paths contain all the isolated solutions of f . One of the

simplest appropriate choices for H is a “total degree homotopy”.

Theorem 2.9 (Theorem 8.4.1 [26]). Let f = (f1, . . . , fN)T be a polynomial system,

di be the degree of fi, and g(z) be the polynomial system g = (zd11 −1, . . . , zdNN −1)T

which has d = ΠN
i=1di nonsingular solutions. Then the d solution paths of the

homotopy

H(z, t) := γtg(z) + (1− t)f(z)

starting at the solutions of g(z) = 0 are nonsingular for t ∈ (0, 1] and the end-

points of the solution paths defined by the homotopy include all of the nonsingular

solutions of f(z) for generic γ ∈ C. In particular, there are a finite number of

exceptions when γ is restricted to the unit circle γ = eiθ.

What remains is to give a numerical method for calculating the endpoints of

these solution paths. The most computationally feasible method is called “path

tracking”. If Hz(z, t) and Ht(z, t) are the partial derivatives of H with respect to z

and t, the following differential equation due to Davidenko [11] holds for a solution

path x∗(t):

Hz(x
∗(t), t)

dx∗(t)

dt
+Ht(x

∗(t), t) =
dH(x∗(t), t)

dt
= 0

Since x∗(t) is nonsingular for all t in (0, 1], the matrix Hz(x
∗(t), t) is invertible.

The above equation can thus be rearranged into dx∗(t)
dt

= −(Hz(x
∗(t), t))−1Ht(x

∗(t), t).

Applying Euler’s method gives x∗(t + ∆t) ≈ x∗(t) + ∆tdx
∗(t)
dt

. This yields an es-

timate x that can be sharpened using Newton’s method. One step of Newton’s
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method replaces the current estimate x with x−[Hz(x, t+∆t)]−1H(x, t). Repeated

iterations of Newton’s method usually result in a much more accurate estimate of

x∗(t + ∆t). These two methods suggest a simplified path tracking “estimator-

predictor” procedure for each solution path x∗ starting at t = 1:

1. Select some step size ∆t which produces sufficiently small estimated error

when applying Euler’s method to the solution path

2. Estimate x∗(t+ ∆t) using Euler’s method and set t = t+ ∆t

3. Apply Newton’s method some number of times to improve the estimate for

x∗(t)

4. Repeat 1-3 until t is very small and the estimated error for x∗(t) is also small.

The estimate x∗(t) is an approximation for an isolated solution of f

There are quite a few places where things might go wrong in this procedure.

When there are multiple solution paths, overly large step sizes ∆t and insufficient

sharpening of estimates using Newton’s method could result in following the wrong

path. If f has a multiple root, then Newton’s method will not work very well

around it as t → 0. These issues can be resolved, albeit with significant care

and some modification of the procedure, as detailed in the references mentioned

previously. The core idea remains the same, however.

Total degree homotopies only make use of one parameter variable, but path

tracking can be extended to homotopies which have an arbitrary number of pa-

rameters. The path in parameter space from t = 1 to 0 for total degree homotopies

becomes a continuous path φ : [0, 1]→ Cq, where q is the number of parameters. If

H ′ : CN ×Cq → Cn represents the parameterized family of functions constructed,

the homotopy H(z, t) is then defined as H(z, t) = H ′(z, φ(t)). If a particular appli-

cation does not demand full multiplicity information about the isolated solutions

of the target system f , a total degree homotopy wastes computational time track-

ing paths which potentially lead to the same isolated solution of f . To minimize

this overhead we can use a “parameter homotopy” procedure.
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Theorem 2.10. (Theorem 7.1.1 [26]) Let H ′(z, p) be a system of polynomials in n

variables and q parameters. That is H ′(z, p) = (H ′1(z, p), . . . , H
′
n(z, p))T and each

H ′i is polynomial in both z and p. If N(p) is the number of nonsingular solutions

as a function of p, then:

1. N(p) is finite and is the same, say N , for generic p ∈ Cq

2. For all p ∈ Cq, N(p) ≤ N

3. The property N(p) = N is generic with respect to p ∈ Cq, say with Zariski

closed set P ∗ where N(p∗) < N for p∗ ∈ P ∗

4. The homotopy H(z, t) = H ′(z, φ(t)) with φ(t) : [0, 1] → Cq − P ∗ has N

continuous, nonsingular solution paths

5. As t→ 0, the limits of the solution paths of the homotopy H as t→ 0 include

all the nonsingular roots of H(z, 0) = 0

Using the results of this theorem, the parameter homotopy procedure proceeds

in three steps for the parameterized polynomial system g : CN × Cq → CN with

target system f(z, p0) a member of the parameterized family.

1. Pick a random parameter value p1 ∈ Cq and find the isolated solutions of

f(z, p1) = 0 (a total degree homotopy could be used for instance). With

probability 1, the number of solutions is equal to the maximum number of

solutions of f(z, p) for p ∈ Cq.

2. Let φ : [0, 1] → Cq be the straight line path in Cq starting at φ(1) = p1

and ending at φ(0) = p0. Again, there is 0 probability that φ crosses an

exceptional parameter value in the range (0, 1].

3. Use homotopy continuation to find the nonsingular isolated solutions of

f(z, p0) using the homotopy H(z, t) = g(z, φ(t)).

This procedure has the the major computational advantage of potentially track-

ing fewer paths than a total degree homotopy. Step 1 also only needs to be

performed once for finding solutions for multiple polynomial systems in the pa-

rameterized family.
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2.1.3 Minimum distance problem

It is not immediately clear whether we can use homotopy continuation to find

points on a real algebraic variety of any dimension greater than 0. Recall that for

a polynomial system f : CN → Cn, VR(f) = V(f) ∩ RN . Given f and some fixed

y ∈ RN , consider the problem of finding a point x ∈ VR(f) which minimizes the

(squared) distance ‖y−x‖2. If we solve this problem by obtaining a solution point

x ∈ VR(f), this solution is both a point in the real variety VR(f), and the solution

also gives information about what region of space around y does not contain any

points of VR(f). Namely, the open ball of radius ‖x − y‖ centered at y does not

contain points of VR(f). Formulated as an optimization program the minimum

distance problem becomes:

min
x∈RN

‖y − x‖2

subject to f1(x) = · · · = fn(x) = 0

One way to approach optimization problems of this type is to find all solutions

to the Karush-Kuhn-Tucker (KKT) conditions [19, 20] and select the minimizer

from this list of solutions. A closely related set of conditions are the Fritz John

conditions (FJ conditions).

Theorem 2.11. (Fritz John [18]) For any optimization problem of the form

min
x∈RN

g(x)

subject to f1(x) = · · · = fm(x) = 0

hm+1(x) ≥ 0, . . . , hn(x) ≥ 0

each solution x of the problem satisfies

−λ0∇g(x) +
m∑
i=1

λi∇fi(x) +
n∑

i=m+1

hi(x) = 0

for some non-zero vector of real numbers (λ0, . . . , λn).
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To simplify matters somewhat, let us assume that V ⊆ VC(f) is a pure d-

dimensional variety. As a technical requirement for some of the following results,

we also need that f is a system from CN to CN−d. Similarly to the previous section,

a system arising in an application may not initially have the correct number of

equations. For a system f : CN → Cn with n > N , this can be fixed by replacing

the system f1, . . . , fn with a system with N − d polynomials in N variables where

each polynomial is a linear combination of the form λ1f1 + · · · + λnfn for some

randomly chosen complex numbers λ1, . . . , λn. On a nonempty Zariski open subset

of the set of (N − d)×n matrices (each matrix corresponds to a choice of complex

coefficients in the N−d linear combinations), this new system’s variety will contain

the irreducible components of V(f) as irreducible components, though it might

contain other components as well (Theorem 13.5.1 [26]). Results from these extra

components can be filtered out. We assume going forward that f is a system in

N variables and N − d equations.

Since all of the equality constraints in our problem and all of their gradients

are polynomials, the function g : C2N−d+1 → C2N−d+1 defined by

g(x, λ0, . . . , λN−d) =

 f(x)

λ0(x− y) +
∑N−d

i=1 λi∇fi(x)∑N
i=0 αiλi − 1

 ,

for some non-zero real αi, is a polynomial system. The final equation is a

technical condition which prevents all the λi from being 0. Elements x ∈ V(f)

with solutions (x, λ) ∈ V(g) are called critical points for the minimum distance

problem at y. One additional fact is that for a critical point x, the vector y − x
is normal to the tangent surface of V(f) at x. The system g could still define

a positive dimensional variety, particularly if the subvariety of V(f) consisting of

singular points is positive dimensional. The following theorem relies on the theory

of infinitesimal perturbations to fix this problem.

Theorem 2.12. (Hauenstein [16]) Let π : C2N−d+1 → CN be the projection func-

tion onto the first N coordinates. For a fixed y ∈ RN − VR(f), the solution set S

to the system g above obtained from a parameter homotopy on the parameterized

family (with z ∈ RN−d and γ ∈ C):
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H(x, λ0, . . . , λN−d, t) =

 f(x)− tγz
λ0(x− y) +

∑N−d
i=1 λi∇fi(x)∑N−d

i=0 αiλi − 1


contains in π(S) an estimated solution to the minimum distance problem on V

for generic z, γ, and αi.

Obtaining points in V by solving the distance problem in this way is computa-

tionally inefficient, since some if not most of the computed critical points will be

complex. A simpler homotopy allows the computation of only real critical points,

at the loss of being able to solve the optimization problem.

Theorem 2.13. (Griffin, Hauenstein [14]) Let y be a point in RN , and let α0, . . . , αN−d ∈
R be non-zero. If the homotopy H : CN × CN−d+1 × C→ C2N−d+1 given by

H(x, λ0, . . . , λN−d, t) =

 f(x)− tf(y)

λ0(x− y) +
∑N−d

i=1 λi∇fi(x)

λ0 +
∑N−d

i=1 αiλi − α0

 ,

has a solution path starting at (y, α0, 0, . . . , 0) which is trackable on (0, 1] and

converges at t→ 0 with endpoint (x∗, λ∗), x∗ ∈ VR(f).

In some applications, the polynomial constraints which arise not only entail

equalities of the form f(x) = 0, but also involve polynomial inequalities of the

form f(x) ≥ 0.

Definition 2.14. Given two polynomial systems with real coefficients f : RN →
Rn and g : RN → Rm, the set of points {x ∈ RN | f(x) = 0, g1(x), . . . , gm(x) ≥ 0}
is a semialgebraic set.

The homotopy continuation approach to the minimum distance problem can

be extended to finding points on semialgebraic sets by ignoring the inequalities

defining the set when setting up the distance problem. Solutions to the problem

derived this way are clearly a lower bound for the minimum distance problem on the

whole semialgebraic set, since they are solutions to the same optimization problem

but with fewer constraints. A real critical point obtained from the homotopies can

be evaluated on the inequality constraints to determine whether or not it actually

belongs to the semialgebraic set.
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This approach to the minimum distance problem is computationally feasible

on modern hardware. Bertini is a robust package for performing a large number

of NAG tasks, including homotopy continuation. Though it is powerful, it requires

careful configuration to solve the minimum distance problem, as well as user selec-

tion of a large number of technical internal parameters. For larger examples like

some of those presented in Chapter 4, calculating and formatting the polynomial

systems in Theorems 2.12 and 2.13 in a format Bertini can process is a task

requiring its own set of scripts, since the examples are far too large to manipulate

by hand. Bertini’s interface is also entirely through file input and output rather

than internal library calls, which requires additional work to integrate it into a

larger program stack.

2.2 Topological data analysis

The motivating format for the data considered in TDA is a finite set of points in

a metric space, particularly Euclidean space. Data in this form is also sometimes

called a “point cloud”. Given a point cloud as input, the TDA paradigm views the

data as a discrete sampling of points from an underlying compact topological space

containing infinitely many points. Our goal is to estimate topological features of

the underlying space (roughly speaking, the number of holes in the space) from

the sample.

2.2.1 Homology groups

The primary topological invariants we look to extract from point cloud samples

are homology groups with coefficients in a field. Homology serves as one of the

primary tools in the study of algebraic topology, for which [15] is a general in-

troductory reference. In high level category theoretic terms, (singular) homology

in a dimension p ≥ 0 with coefficients in a ring R is a functor Hp(−;R) from

the category of topological spaces with continuous maps (Top) to the category

of R-modules with R-module homomorphisms. Singular homology with arbitrary

ring coefficients is too broad of a context for computation. For TDA we instead

restrict our focus to (finite) simplicial homology with coefficients in the field Z/2,
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which is a variant of homology defined for finite simplicial complexes. Simplicial

complexes are spaces built from simplices (points, lines, triangles, and their higher

dimensional equivalents).

Definition 2.15. An abstract simplicial complex is a finite set S of non-empty

subsets of N such that s ∈ S implies that every subset of s is an element in S. If

S is an abstract simplicial complex the elements of the set V (S) = ∪s∈Ss are the

vertices of S. The dimension of S is one less than the size of the largest set in S.

Since abstract simplicial complexes are the only complexes we will discuss, we

drop the “abstract” going forward. We will also assume that the vertex set of

a complex S with l vertices is {1, . . . , l} for convenience. Connecting simplicial

complexes and topological spaces requires viewing the vertices of a simplicial com-

plex as the vertices of a point, line, triangle, tetrahedron, or higher dimensional

equivalent. Recall that the points X = x0, . . . , xl ⊆ Rm are affinely independent if

the vectors x1 − x0, . . . , xl − x0 are linearly independent, and that the convex hull

of X is the set of elements of the form
∑l

i=0 aixi where the ai are nonnegative real

numbers such that
∑l

i=0 ai = 1.

Definition 2.16. Let S be a simplicial complex with vertices {1, . . . , l} and

x1, . . . , xl ⊆ Rm be an affinely independent set of points in Rm. A geometric

realization of S contains all points which are in the convex hull of xs1 , . . . , xsn for

any set {s1, . . . , sn} ∈ S. A topological space is triangulable if it is homeomorphic

to the geometric realization of some simplicial complex.

It can be shown that any two geometric realizations of the same simplicial

complex are homeomorphic, so we will often refer to the geometric realization of a

complex and denote it |S|. The computational advantage of using simplicial com-

plexes is that they can be expressed by a finite amount of information. Homology

identifies voids using a clever encoding of the simplices.

Definition 2.17. Let S be a simplicial complex. Then if Si has elements the sets

in S with size i+1, the i’th chain group of S, Ci(S), is the set of finite formal sums

of the form
∑n

j=1 bjsj where sj ∈ Si and bj ∈ Z/2 for all j. We set C−1(S) = 0.
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The p’th boundary operator is a map ∂p : Cp(S) → Cp−1(S) which is defined

as follows. We define ∂0 to be the zero map ∂0 : C0(S) → 0. For p > 0 and

any basis element s ∈ Cp(S), define ∂p(s) =
∑
{s′∈Sp−1|s′⊆s} s

′. ∂p can be extended

linearly from this definition on the basis elements of Cp(S) to a homomorphism on

the entirety of Cp(S). Elements in the kernel of ∂p are called cycles and this group

is denoted ker(∂p) = Zp(S). Elements in the image of ∂p+1 are called boundaries

and this group is denoted Im(∂p+1) = Bp(S).

It can be shown that ∂p ◦ ∂p+1 = 0 for all p ≥ 0, so that Bp ⊆ Zp. The p-th

homology group of S, Hp(S), is the quotient group Zp(S)/Bp(S). Hp(S) is a finite

dimensional vector space, and its rank is called the p-th Betti number of S, βp(S).

While the construction of homology groups is quite formal, the elements of the

homology groups informally represent loops and higher dimensional equivalents in

a space. A basis element of the 0’th homology group of a complex S represents a

single connected component of S’s geometric realization, a basis element of H1(S)

represents a set of loops which can all be deformed within the space S into a loop

which encloses a 2D void, and basis elements of H2(S) count 3D voids.

Definition 2.18. Let S and T be simplicial complexes. A map f : V (S)→ V (T )

is a simplicial map if σ ∈ S implies that f(σ) ∈ T . Suppose that |S| and |T |
are geometric realizations of S and T on vertex points x1, . . . , xm and y1, . . . , yn

respectively. Then the geometric realization of f is a function |f | : |S| → |T |
defined by |f |(

∑m
i=1 aixi) =

∑m
i=1 aiyf(i).

Really we are interested in topological spaces, and simplicial complexes are

just useful ways to encode spaces. The last step in cementing this connection is to

show that not only can spaces be represented by complexes, but that continuous

maps can be represented by simplicial maps as well. Recall that two continuous

functions f, g : X → Y are homotopic if there exists a continuous function H :

X × [0, 1] → Y where f(x) = H(x, 0) and g(x) = H(x, 1) for all x ∈ X. This

is written f ' g. If there exist continuous h : X → Y and k : Y → X such

that h ◦ k ' 1Y and k ◦ h ' 1X then X and Y are homotopy equivalent. Up to

homotopy, simplicial approximations to continuous functions suffice, and homology

is homotopy invariant.
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Theorem 2.19 (Simplicial Approximation Theorem). Let X and Y be triangulable

spaces and g : X → Y a continuous map between them. There exist simplicial

complexes S and T and a simplicial map f : V (S) → V (T ) where X and Y are

homeomorphic to |S| and |T | respectively. Furthermore, |f | ' g′, where g′ : |S| →
|T | is the composition of maps |S| → X → Y → |T |, the middle function from X

to Y is g, and the other functions are homeomorphisms.

Theorem 2.20. For any simplicial complexes S and T , simplicial map h : V (S)→
V (T ), and p ≥ 0 there exists a Z/2-linear map Hp(h) : Hp(S) → Hp(T ). Fur-

thermore, if U is also a simplicial complex and both f : V (S) → V (T ) and

g : V (T ) → V (U) are simplicial maps, the map Hp(h ◦ f) is equal to the com-

position Hp(h) ◦Hp(f). If 1S : V (S) → V (S) is the identity map, then Hp(1S) is

the identity map on Hp(S). If j : V (S)→ V (T ) is a simplicial map and |f | ' |j|,
then Hp(j) = Hp(f).

These theorems establish a few points. A direct corollary is that the homology

groups of two homotopy equivalent triangulable spaces are isomorphic, and that

different simplicial complexes with homeomorphic geometric realizations have iso-

morphic fundamental groups. For triangulable spaces, then, the homology groups

are independent of the triangulation. We will assume all the spaces discussed are

triangulable and for a triangulable space X, Hp(X) is the homology group for some

underlying complex of X. The second theorem shows that Hp is a functor from

the category of finite simplicial complexes with simplicial maps to the category of

finite dimensional Z/2-vector spaces with linear maps. Combining the two theo-

rems, it follows that any continuous function between triangulable spaces induces

a unique homomorphism (up to isomorphism) between their homology groups.

2.2.2 Building simplicial complexes from data

The first step in applying homology to point cloud data is transforming the data

into an interesting topological space. Let X be a finite subset of Rn. The topology

X directly inherits from the standard topology on Rn is the discrete topology,

which contains no additional information. A simple way to give X more structure

is to “thicken” the point cloud by choosing a parameter ε > 0 and replacing X
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with the space ∪x∈XB̄ε(x) consisting of closed balls with radius ε centered at the

points of X. This space admits a rather simple triangulation.

Definition 2.21. Let U = {Ui}li=1 be a finite collection of open sets. The nerve or

Čech complex of the collection U is the simplicial complex C(U) on vertices 1, . . . , l

which contains a subset {s1, . . . , sr} ⊆ {1, . . . , l} if the intersection Us1 ∩ · · · ∩ Usr
is nonempty. If X is a finite set of points, then Cε(X) denotes the nerve of the

space ∪x∈XB̄ε/2(x).

If Y is a subspace of Rn and U is a finite cover of Y where the nonempty

intersection of any finite set of elements in U is contractible, the Nerve Theorem

(4G.3 [15]) shows that |C(U)| is homotopy equivalent to Y . The thickening of X by

balls of radius ε
2

is thus always equivalent to Cε(X) for the purpose of computing

homology. It might seem tempting to apply this to our example X by trying

to ascertain what parameter ε best recovers the underlying space X is sampled

from. TDA methods instead consider how the homology of Cε(X) changes as the

parameter ε varies.

Although the nerve built from thickening X is useful in a theoretical context,

actually constructing and storing the complex Cε(X) can be computationally im-

practical as it depends very precisely on the various distances between points. A

more computationally tractable construction is the Rips complex.

Definition 2.22. Let X be a finite subset of Rn containing l points and ε > 0.

The Rips complex of X corresponding to ε is a simplicial complex Rε(X) with

vertices {1, . . . , l} such that a set {s1, . . . , su} ⊆ X is an element of Rε(X) if the

points {xs1 , . . . , xsu} are pairwise less than distance ε apart.

Constructing Rips complexes only requires computing and storing information

about the distances between pairs of points in X. The drawback is that no re-

sult like the Nerve Theorem exists for Rips complexes, so it is unclear whether

Rε(X) can faithfully extract information from X about the space from which we

are viewing X to be sampled. The two constructions are not entirely unrelated,

however.

20



Theorem 2.23 (De Silva and Ghrist [12]). If X is a finite set of points in Rd and

ε > 0 there is a chain of inclusions

Rε′(X) ⊆ Cε(X) ⊆ Rε(X)

whenever ε
ε′
≥
√

2d
d+1

.

Composing the above inclusions with the homology functor Hp yields inclusions

from Hp(Rε′(X)) → Hp(Cε(X)) → Hp(Rε(X)). This shows that if an element of

Hp(Rε′(X)) has a non-zero inclusion into Hp(Rε(X)) (the void corresponding to

that element was not filled in after expanding ε′ to ε), that feature must also be

an element of Cε(X).

2.2.3 Persistent homology

As mentioned in the previous section, the key maneuver in TDA is to consider all

of the homology groups Hp(Cε(X)) simultaneously, rather than try to construct

a faithful representation of the underlying space from a single parameter value.

Persistent homology is an algebraic theory describing how to track homology ele-

ments as the parameter value changes. This theory is presented in [7] and [13] for

instance, and expanded into a more general categorical framework in [6]. If ε′ ≥ ε

then there is an inclusion function i : Cε(X) → Cε′(X). Correspondingly, we can

consider the homology group Hp(i(Cε(X)) to begin extracting information about

how the homology has changed with changes to the parameter.

Definition 2.24. Given a sequence of spaces with continuous maps between them

X0 → X1 → · · · → Xm → Xm+1 → . . . , there is a corresponding sequence

of homology groups and homomorphisms fi : Hp(Xi) → Hp(Xi+1), Hp(X0) →
Hp(X1)→ . . . Hp(Xm)→ Hp(Xm+1)→ . . . . If the function f ji : Hp(Xi)→ Hp(Xj)

is the composition fj−1 ◦ fj−2 ◦ · · · ◦ fi+1 ◦ fi, the (i, j)-persistent homology group

is the image of the map f ji .

To unify different ways of producing sequences of nested spaces into a single

framework, we can consider filter functions on a space Y . A filter function is a

function f : Y → R, and for a real value a ∈ R the sublevel set associated with a

is f−1(−∞, a]. If b > a, notice that f−1(−∞, a] ⊆ f−1(∞, b], and that this subset
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relation implies the existence of an inclusion function. For the finite point sample

X ⊆ Rn the function dX : Rn → R≥0 defined by dX(y) = infx∈X ‖x − y‖ is a

continuous filter function. The sublevel set d−1X (−∞, ε
2
] is precisely the thickening

of X by ε
2

balls. By the Nerve Theorem, the simplicial homology groups of the

form Hp(d
−1
X (−∞, ε]) are the homoloy groups Hp(Cε(X)). We will assume that for

all the spaces and filter functions considered that the sublevel sets are triangulable.

The definition of persistent homology groups makes sense when we have an

at most countable sequence of spaces and maps, but the motivating sequence of

spaces Cε(X) for all ε ≥ 0 do not necessarily fit this criterion. We require the

following restriction. Recall that the partially ordered set (R,≤) can be viewed as

a category with objects the elements of R and a single arrow x→ y if x ≤ y. The

arrow for x ≤ x is the identity arrow.

Definition 2.25 ([9]). Let J be a functor from (R,≤) to the category of finite di-

mensional vector spaces over Z/2 (FDVec). A point a ∈ R is a homological critical

value of J if, for all sufficiently small ε > 0, the arrow J(a−ε ≤ a+ε) is not an iso-

morphism. The functor J is tame if it has finitely many homological critical values.

Given a topological space Y and filter function g : Y → R, there is a corresponding

functor G from (R,≤) to the category of triangulable spaces with continuous maps

given by a 7→ g−1(−∞, a] and a ≤ b 7→ i : G(a) → G(b), the inclusion map. The

function g is tame if Hp ◦G is tame for all p ≥ 0.

Suppose F is a tame functor from (R,≤) to FDVec, and F ’s homological

critical values are a0 < a1 < · · · < an. We can identify F with a finite sequence of

vector spaces with maps between them (a functor from the poset (N,≤) to FDVec)

by using an interleaving sequence of real numbers b0 < a0 < b1 < a1 < b2 < · · · <
an < bn+1. The corresponding sequence is F (b0) → F (a0) → F (b1) → F (a1) →
· · · → F (an) → F (bn+1) where the maps from two elements F (q) and F (r) for

q < r in this sequence are defined by F (q ≤ r). The (c, d)-persistent homology

group for F can then be defined as the image of F (bi ≤ bj) where ai−1 ≤ c, bi < ai

and similarly aj−1 < bj, d ≤ aj.

Let X0 → X1 → . . . be a sequence of spaces with continuous maps between

them. From an intuitive perspective, there are three types of “events” which
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Figure 2.2: Different events in the life of a homology feature. In the top row a
feature is born, in the middle two features merge, and in the bottom a feature
dies.

can change the status of a particular homology feature throughout a sequence of

inclusions. A feature [σd] ∈ Hp(Xd) can be “born” at a point d when it is not

a member of the (c, d)-persistent homology group for any c < d. It can “merge”

with a different homology feature at a point d if fdc ([σc]) = fdc′([τc′ ]) for some

[τc′ ] ∈ Hp(Xc′) and fd−1c ([σc]) 6= fd−1c′ ([τc′ ]). Finally, the feature [σc] can “die”

at a point d if fdc ([σc]) = 0 and fd−1c ([σc]) 6= 0. This is shown geometrically in

Figure 2.2. These notions can be formalized in an algebraic structure known as a

persistence module.

Definition 2.26. Let F be a functor from (N,≤) to FDVec. The persistence

module associated with this sequence is a Z
2
[x] module. Its elements are members

of the direct sum group
⊕

i∈N F (i). The element x ∈ Z
2
[x] acts via a shift map,

that is x · [σi] = F (i ≤ i + 1)([σi]) ∈ F (i + 1) for [σi] ∈ F (i), an element b in

Z/2 acts by via its vector space action, and this action extends linearly to general

elements of Z
2
[x] and

⊕
i∈N F (i).

Persistence modules are graded Z
2
[x] modules because, if Rn = Z

2
/〈xn+1〉 is the

ring of polynomials up to degree n, Rn ·F (i) is contained in F (i+n). Since Z/2 is

a field, the structure theorem for modules over a principal ideal domains applies.

It combines with the graded structure on a persistence module for the following

23



result. We note here that our restriction to finite simplicial complexes causes the

F (i) to be finite dimensional vector spaces, which is a technical requirement for

the following theorem.

Theorem 2.27 (Fundamental Theorem of Persistent Homology [29]). Let M be

a persistence module over Z
2
[x] built from a tame functor F : (N,≤) → FDVec.

Then:

M∼=
⊕
i∈I

xti · Z
2

[x]⊕

(⊕
j∈J

xrj · (Z
2

[x]/(xsj · Z
2

[x]))

)
for some index sets I and J and naturals ti, rj, and sj.

Theorem 2.27 tells us that the persistence module M is exactly defined by

features (generators of the summands in the theorem) that are born at sequence

index ti and do not die, and features that are born at sequence index rj and die at

sequence index rj + sj. In the case of a sequence constructed from a tame functor

on R, these sequence indices can be translated back into the real numbers corre-

sponding to an interleaving sequence and so give information about the persistent

homology groups of the entire functor. There are two standard ways to encode

the information contained in a tame functor, which are mathematically equivalent.

The proof of the following theorem relies on Theorem 2.27.

Theorem 2.28 ([6]). Let F be a tame functor from (R,≤) to FDVec. There

exists a barcode B associated with F , which is a multiset of intervals of the form

[a,∞) and [a, b). For real numbers c < d, the rank of the (c, d)-persistent homology

group of F is the number of intervals in B which intersect the interval [c, d]. The

persistence diagram D of F is a multiset of points in R̄ × R̄ where R̄ = R ∪
{−∞,∞}. Elements of D are pairs (a, b) where [a, b) is an element of B, along

with points (x, x) counted with infinite multiplicity for all x ∈ R. Viewing D as a

subset of the extended plane R̄× R̄, the rank of the (c, d)-persistent homology group

for F is the number of points of D (counted with multiplicity) in the upper-left box

with lower-right corner (c, d) in R̄2.

These encodings are quite similar, but admit somewhat different visualizations.

We display a barcode as a collection of horizontal lines plotted against a horizontal

parameter axis, while a persistence diagram can be visualized as a collection of
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Figure 2.3: The persistence diagram and barcode of a filtered complex. The top
figure is the complex as it changes with parameter values. The bottom two figures
are the corresponding functor’s persistence diagram and barcode. Blue bars and
points represent 0 dimensional homology, whereas yellow bars and points represent
1 dimensional homology. An arrow on a bar indicates that the homology feature
corresponding to the bar lives forever.

points in the extended plane. As always, the motivating example is a tame functor

Hp(Cε(X)). Qualitatively, we regard long bars in the barcode for Hp(Cε(X)) as

relevant features which exist in the underlying space from which X is sampled.

Shorter bars are features which are born and then die quickly, and can be taken

as noise. The next section makes this more precise.

2.2.4 Persistence diagram metrics and the stability theo-
rem

Suppose that we start with a finite point sample X ⊆ Rn as in the previous

sections, and then form a perturbed sample X ′ by moving some of the points away

from their original positions by a small distance. What we would like to show is
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that in situations like this the persistence diagrams corresponding to the functors

Hp(Cε(X)) and Hp(Cε(X
′)) are not very different. The first step in making this

precise is defining a measure of distance between diagrams.

Definition 2.29. For any two points (a1, b1), (a2, b2) ∈ R̄×R̄, the `∞ norm between

the points is `∞((a1, b1), (a2, b2)) = max(|a2 − a1|, |b2 − b1|). The value ∞−∞ is

taken to be 0 and ∞− a =∞, for any a 6=∞.

Definition 2.30. For any two bounded subsets C and D of a metric space M with

metric d, the Hausdorff distance between A and B, dH(A,B), is the maximum of

supa∈A infb∈B d(a, b) and supb∈B infa∈A d(a, b).

Let D1 and D2 be two persistence diagrams, and let B be the set of bijections

between D1 and D2. The bottleneck distance dB(D1, D2) between D1 and D2 is

infb∈B supp∈D1
`∞(p, b(p)).

One way to motivate this definition is to consider the points in D1 as workers,

the points in D2 as jobs to which a single worker can be assigned, and `∞(p, b(p))

as the amount of time it takes for worker p to do job b(p). The bottleneck distance

is the amount of time it takes to complete all the jobs for the most efficient match-

ing of workers to jobs. There is always some bijection in B since each persistence

diagram includes the set of diagonal points (x, x) counted with infinite multiplic-

ity. It can additionally be checked that dB is an extended metric on the set of

persistence diagrams with finitely many off-diagonal points (the distance between

two diagrams is potentially infinite).

Theorem 2.31 (The Stability Theorem, [9, 8]). Suppose that f, g : Y → R are

tame filter functions on the topological space Y with corresponding sublevel functors

F and G. If ‖f − g‖∞ = supy∈Y |f(x) − g(x)| is the L∞ norm and Df and

Dg are persistence diagrams corresponding to HpF and HpG respectively, then

dB(Df , Dg) ≤ ‖f − g‖∞.

This theorem covers our motivating example. If we perturb points in a sample

X by at most δ, then ‖dX−dX′‖∞ ≤ δ. By the Stability Theorem, if D1 and D2 are

diagrams corresponding to Hp(Cε(X)) and Hp(Cε(X
′)) then dB(D1, D2) ≤ δ. The

stability theorem covers more than this, however. Given two finite point samples
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X and X ′ with dH(X,X ′) ≤ δ, ‖dX − dX′‖∞ still holds and dB(D1, D2) ≤ δ. We

can even use the Stability Theorem to show that the theory of persistent homology

recovers homology information about an underlying space from a finite point cloud

sample.

Definition 2.32. Let X ⊆ Rn be a bounded subspace of Rn. A finite set of points

X0 ⊆ Rn is an ε-sample of X if dH(X0, X) ≤ ε. If dX : Rn → R is the distance

function for X, the homological feature size of X, hfs(X), is the smallest non-zero

homological critical value of dX .

Theorem 2.33 (Homology Inference Theorem, [9]). Suppose X ⊆ Rn is a bounded

subspace of Rn with tame distance function dX , and that hfs(X) > 4δ for some

δ > 0. Then if X0 is a δ-sampling of X, the number of points (counted with

multiplicity) which are above and to the left of the point (δ, 3δ) in the persistence

diagram corresponding to Hp(Cε(X0)) is the Betti number βk(X).

Corollary 2.34. Suppose X ⊆ Rn is a bounded subspace of Rn with tame distance

function dX , and that hfs(X) > 4δ for some δ > 0. If X0 is a δ-sampling of X,

then the Betti number βk(X) is at least as large as the number of points (counted

with multiplicity) which are above and to the left of the point (δ
√

n+1
2n
, 3δ) in the

persistence diagram corresponding to HpRε(X0).

Proof. Let δ′ = δ
√

n+1
2n

. By Theorem 2.28 we know that the number of points

above and to the left of (δ′, 3δ) in the persistence diagram for Hp(Rε(X0)) is

the rank of the (δ′, 3δ)-persistent homology group for this functor, call it GR.

By the Homology Inference Theorem it suffices to show that the rank of the

(δ, 3δ)-persistent homology group of the functor Hp(Cε(X0)) is at least the rank

of GR. From Theorem 2.23 there exist inclusion maps from Rδ′(X0)→ Cδ(X0)→
C3δ(X0) → R3δ(X0). Applying the homology functor Hp we get the sequence of

finite dimensional vector spaces with linear maps Hp(Rδ′(X0)) → Hp(Cδ(X0)) →
Hp(C3δ(X0))→ Hp(R3δ(X0)). Since the induced inclusion function fromHp(Rδ′(X0))

to Hp(R3δ(X0)) is equal to the composition of all the functions in this diagram, we

see that the rank of the image of the inclusion Hp(Cδ(X0)) → Hp(C3δ(X0)) is an

upper bound on the rank of the image of the inclusion Hp(Rδ′(X0))→ Hp(R3δ(X0))

as desired.
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2.2.5 Software implementations

Software for calculating the persistent homology of a point cloud must perform

two steps corresponding to the previous two sections. It must be able to represent,

store, and build simplicial complexes from the input points at different parameter

values. Ultimately this requires storage of information for each simplex in the

complex for the largest parameter value analyzed.

Even when limiting the dimension of the simplices to 3 so that 3D voids can

be identified, the total number of simplices is in the worst case more than
(
n
4

)
where n is the number of points in the point cloud. For even 510 input points this

is approximately 2.8 billion simplices to track, and the memory requirements can

quickly skyrocket into hundreds of gigabytes even when utilizing specialized data

structures for sparse matrices.

Calculating a persistence diagram from a filtration is made possible by use

of an algorithm for this purpose is called the “standard algorithm”, which was

first presented for calculating persistent homology over arbitrary fields in [29].

The computational complexity is cubic in the number of simplices. Correspond-

ingly, keeping down the number of points in a point cloud which still represents a

sampling from a space of interest is a practical necessity for persistent homology

computations.

The article [23] provides detailed benchmarking results for the current software

implementations of persistent homology. Based on its recommendations, the pack-

age DIPHA [3] is used for computations in Chapter 3. DIPHA operates through its

own specialized file input and output formats, so it is not particularly user friendly.

Additionally, it provides no feedback as to the state of a persistent homology com-

putation while it is running. Integrating DIPHA into a data analysis stack with

NAG necessitates tying together many scripts provided by DIPHA as well as code

tailored to the various stack components.
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Chapter 3

Results I: Sampling Algorithm

Bounded portions of real algebraic varieties/real semialgebraic sets fulfill the TDA

paradigm, since a real algebraic variety X is a closed subspace of some high di-

mensional Euclidean space RN . Given an ε-sampling X0 of the compact space

X ∩ B̄M(0), we could use this sampling as input to a persistent homology com-

putation and attempt to identify some of the homological features of X ∩ B̄M(0).

A sampling algorithm which returns a provably ε-dense sample accomplishes two

main goals. The algorithm must both compute sample points, and it must be able

to verify that the set of points it has computed is ε-dense. On the one hand, apply-

ing the Homology Inference Theorem and its corollaries to identify features in the

underlying space gets easier as ε shrinks. On the other, it is not enough to obtain

any arbitrary ε-sampling. Since TDA methods require significant computational

resources that scale up rapidly with increasing numbers of points in the sample,

it is necessary to find provably ε-dense samplings which take care to minimize the

number of points in the sample.

Techniques for determining ε-samplings of real semialgebraic sets have been

developed. The methods in [25], for instance, determine a representation of poly-

nomial systems in the Bernstein basis, and combine properties of that representa-

tion with nonlinear programs to obtain a sampling. This strategy returns points

that are in the worst case distance ε away from the variety. The method also does

not minimize the size of the sample returned.

This Chapter presents a new sampling algorithm (SA) based on using numeri-

cal algebraic geometry to solve the minimum distance problem for a real algebraic
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variety. The algorithm is more flexible than previous methods in how it can pro-

duce a provably ε-dense sampling. Furthermore, every point in the sample is very

close to some point on the variety. A version of the algorithm has been imple-

mented as well as heuristic techniques for reducing the number of points in the

sample. The chapter also provides relevant implementation details.

3.1 Assumptions, input, and output

We first consider a variant of the SA which applies to pure dimensional real alge-

braic varieties, and then detail a modification which extends it to semialgebraic

sets with components of mixed dimension. Throughout this chapter we will use

the terms “box” and “rectangle” to refer to a subset of Euclidean space which

has the form ΠN
i=1[ci, di]. Unless otherwise noted, boxes and rectangles are not

necessarily hypercubes. That is to say they they can have a different length in

each dimension. The measure of a box ΠN
i=1[ci, di] refers to the value ΠN

i=1(di− ci).
Recall from Chapter 2 that a polynomial system must meet some conditions

to employ homotopy continuation to solve the minimum distance problem on the

polynomial system’s variety. The condition are that a variety of dimension d in RN

must be defined by a polynomial system having N unknowns, N−d equations, and

real coefficients. Chapter 2 details how an arbitrary system can be transformed

into a system with the desired number of equations, so we will assume that this

transformation has been done. Some extra steps are necessary if the system has

been reduced in this way, which we will discuss briefly along with the algorithm’s

extension.

• Input: A polynomial system f : CN → CN−d of polynomials f1, . . . , fN−d

with real coefficients such that V(f) is a pure d-dimensional variety, the

overall bounds R = ΠN
i=1[ai, bi] ⊆ RN to search, a density parameter ε > 0,

and a precision parameter 0 < δ ≤ ε.

• Output: A finite ε-sampling of VR(f) ∩ R such that the distance from any

point in the sample to a point on VR(f) is at most δ.
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We will say that the function MinPoint(y) returns (a very close estimate of)

a point x ∈ VR(f) that minimizes the distance from y to VR(f) for generic y ∈ RN

by applying homotopy continuation with the homotopy from Theorem 2.12, and

also returns any other real critical values calculated during the homotopy con-

tinuation. Similarly, the function CritPoint(y) returns some real critical point

x ∈ VR(f) such that y − x is perpendicular to the tangent space of VR(f) at x.

The homotopy continuation for these functions can be configured to return points

which have distance at most δ from VR(f). For complete theoretical correctness,

the rounding parameter δ should be subtracted from the minimum distance ob-

tained from MinPoint(y) since all values relying on homotopy continuation are

estimates with precision δ. In practice, δ is no larger than 10−7. The implemented

version of the algorithm supports this adjustment.

3.2 Maintaining and checking the search space

The key data structure underpinning the algorithm is called the search space. The

search space maintains information about sample points on VR(f) that have been

identified and about regions of space that do not contain any points on VR(f).

For the sake of computability, these regions are rectangular. Furthermore, the

search space provides a mechanism by which any rectangular region R′ ⊆ RN

can be checked against the currently stored information to see if the sample points

already obtained are a provably ε-dense covering of VR(f)∩R′. The overall bounds

R are the main argument to check this way, but checking other regions also proves

useful. Finally, the search space can produce on demand a point y ∈ R which,

according to the information about sample points and regions of exclusion the

search space is storing, is most likely to be as far away from VR(f) as possible

while also belonging to a region of R which is not accounted for either by sample

points or exclusion regions.

3.2.1 Search space interface and spatial databases

To store and access information about sampling points and regions of exclusion

efficiently, the search space makes use of a “spatial database” data structure.
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Spatial databases such as R∗ trees [4] and k-d trees [5] allow for the storage and

retrieval of data points which are individually indexed by a point or rectangular

region in RN . Spatial databases support querying the data via an intersection

query. Upon indicating a rectangular query region in RN , the database efficiently

identifies and returns all those data points which have an index rectangle that

intersects with the query region. These types of data structures find frequent use

in clustering applications and geographic information systems. There is nontrivial

computational overhead associated with inserting data points as well as performing

an intersection query, but the overhead is small relative to other steps in the

algorithm.

The search space data structure should implement the following five functions

as an interface in any way that is computationally feasible. Note that it is not

necessary for index boxes to be subboxes of the overall bounds, R. We will dis-

cuss implementing the interface assuming access to a spatial database DB which

allows for intersection queries. If R′ ⊆ RN is a rectangular region, the function

insert(DB, data, R′) denotes inserting data into the database DB with index

region R′. Similarly, the function query(DB,R′) returns a set consisting of all

pairs (d,R′′) of data points paired with their index R′′ in DB where R′∩R′′ is not

empty.

1. InsertSamplePoint(z). This function saves the point z ∈ R as a sample

point. When using the spatial database DB, this entails building the hyper-

cube A ⊆ Bε(z) ⊆ RN with center z and diagonal length 2ε, then performing

insert(DB, (z, sample), A). We call A a “sample box”. If the input point z

is not in R then it is not added.

2. InsertExclusionRegion(z, δ). This function builds the hypercube A ⊆
Bγ(z) ⊆ RN with center z and diagonal length 2γ, then saves A as a region

which contains no points in VR(f) ∩ R. We call A an “exclusion region” or

“exclusion box”. UsingDB, this function performs insert(DB, exclusion, A).

3. CheckRegion(R′). This function checks whether the previously saved sam-

ple points and exclusion regions prove that the currently obtained sample is
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an ε-sample of VR(f) ∩ R′ for the rectangular region R′ ⊆ RN . CheckRe-

gion returns False if this is not the case, and True otherwise. The imple-

mentation of this function using DB is involved, and we reserve it for the

next section.

4. ReturnTestPoint(). This function returns a point z ∈ R which is not

contained in any previously saved exclusion region, is not within ε of any

previously saved sample point, and is far away from VR(f) ∩ R subject to

these restrictions. The implementation of this function is closely related to

CheckRegion, and will also be discussed in the next section.

5. OutputSample(). This function returns the set of sample points which

have previously been saved. Using DB, this returns the list query(DB,R)

with the data points corresponding to exclusion boxes filtered out.

The function ReturnTestPoint is used to reduce the number of calls to

MinPoint the overall algorithm has to make. MinPoint is computationally

expensive relative to the information it returns, particularly considering that many

of the critical values found by the homotopy continuation are not real. If a test

point y ∈ R is as far away as possible from VR(f), the call MinPoint(y) allows

us to save a relatively large exclusion region to the search space.

3.2.2 Checking regions

Given some sample points and exclusion regions have been stored in the spatial

database DB, checking that the sample is an ε-sample of VR(f) ∩ R′ for some

R′ ⊆ RN is equivalent to checking that R′ is completely covered by the index boxes

for the stored sample and exclusion regions. We record this as a Proposition.

Proposition 3.1. Let B = R1 ∪ R2 be a collection of boxes in RN such that

R′ ⊂ ∪B∈BB. Suppose the elements of R1 are boxes with center points less than

distance δ away from VR(f) and with diagonals of length less than 2(ε− δ). Also

suppose that VR(f) ∩ B = ∅ for all B ∈ R2. Then the collection of center points

of boxes in R1 is an ε-sampling of VR(f) ∩R′.
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Proof. Suppose to the contrary that there is a point x ∈ VR(f) ∩ R′ that is not

within ε of the center point of any box in R1. Then x 6∈ B for any B ∈ R1.

Since x ∈ R′ it follows that x ∈ B′ for some B′ ∈ R2, but this contradicts that

VR(f) ∩B′ = ∅.

If R′ is entirely contained in one of the exclusion or sample boxes, Proposition

3.1 suggests a straightforward procedure for identifying that the current sampling

saved in DB is an ε-sampling. The function query(DB,R′) returns a list of the

data points and index rectangles in DB that intersect R′, and so we loop through

the list of index boxes until we find the one that contains R′. In most cases,

however, R′ will not be contained in a single index box. Faced with this situation,

we can split R′ into smaller boxes and repeat the procedure. For a box B ⊆ RN , let

the function SplitBox(B) return a list of boxes which are properly contained in

B and whose union is B. As a technical point, we must also require that repeated

applications of SplitBox eventually produce a cover of B by smaller boxes where

the length of every side of each smaller box is smaller than the smallest side length

of B.

Algorithm 3.2 CheckRegion

function CheckRegion(R′)
BoxList ← R′

while BoxList 6= ∅ do
B ← last element of BoxList
if query(DB,B) = ∅ then . The box B not covered.

return False
else if A box in query(DB,B) contains B then

BoxList ← BoxList− {B}
else . Split B and continue checking.

BoxList ← BoxList− {B}
BoxList ← SplitBox(B) ∪ BoxList

end if
end while
return True. If we have reached this point, R′ was split into smaller boxes

that were found to be contained in index boxes.
end function

Since SplitBox eventually outputs boxes that are smaller than the input
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box R′, this procedure must terminate. In the worst case, this happens when

BoxList contains boxes with side length at most the smallest side length of an

exclusion or sample rectangle. If CheckRegion returns False, it does so while

considering a box that does not intersect any sample or exclusion box contained in

the search space. When the region being checked is R, the midpoint of this box is

a candidate to serve as the return value of ReturnTestPoint. This candidate

point is not within ε of any currently saved sample point, nor is it in a previously

saved exclusion zone.

Note that the main while loop takes boxes from the end of BoxList, while

smaller boxes returned by SplitBox are appended to the beginning of BoxList.

This is an important point in the efficiency of this procedure, as it results per-

forming a breadth-first search of the BoxList, rather than a depth-first search. In

a depth-first search where BoxList has more than one element, the procedure does

not start checking and splitting additional boxes until it confirms whether the very

first box is covered by index rectangles or not. If this first box is covered, it could

take several iterations of splitting to confirm this fact. Meanwhile, another one

of the boxes in the original list might require very few iterations of splitting to

confirm that it is not covered. The extra splitting and checking of the first box is

wasted computation.

SplitBox’s implementation can significantly affect the overall efficiency of

CheckRegion. Let B = ΠN
i=1[ci, di] be the input provided to SplitBox. A

straightforward method is to split B into much smaller boxes without using any

external information. As an example of such a method, for a fixed dimension m

in {1, . . . , N} we can split B into the two halves B1 = Πm−1
i=1 [ci, di]× [cm,

cm+dm
2

]×
ΠN
i=m+1[ci, di] and B2 = Πm−1

i=1 [ci, di] × [ cm+dm
2

, dm] × ΠN
i=m+1[ci, di]. We must take

care that the dimension m rotates through 1, . . . , N cyclically when repeatedly

splitting boxes to fulfill the technical condition, but otherwise this procedure could

serve as SplitBox in principle.

Although a single iteration of splitting has negligible computational expense

with this approach, even the simple situation depicted in Figure 3.1 takes many

splitting iterations to verify that the input box is not covered by index boxes. The

uncovered rectangular region has also been divided into smaller boxes that would

require nontrivial computational investment to identify and reunite into a single
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Figure 3.1: The state of BoxList as CheckRegion checks a simple example using
a box halving variant of SplitBox. Each step represents the BoxList at the end
of an iteration of the main while loop in CheckRegion. Green boxes are index
boxes and are not in BoxList. Black boxes are boxes that have been removed from
BoxList, and all other boxes are elements of BoxList.

box. Dividing the uncovered region makes it more difficult to select an optimal

return value for ReturnTestPoint.

An adaptive procedure for SplitBox handles both these issues at the cost of

some increase in computational time for splitting. Instead of splitting the box B

into two halves arbitrarily, the procedure identifies the index box which has the

largest intersection C with B according to the measure of C. In an edge case,

the measure of C is 0 so that we can conclude that B is not covered by index

boxes without needing any splitting. Otherwise, C is a box properly contained in

B. The SplitBox procedure splits B into a list of smaller boxes that includes C

while trying to keep the number of boxes low. Intuitively, this splitting procedure

first cuts B into “strips” along each dimension, one of which contains C. It then

repeats this process on the strip that contains C in the next dimension up. At the

final iteration one of the strips obtained is C. See Figure 3.2.

Figure 3.2: Splitting a box B into a collection of smaller boxes B =
{B1, B2, . . . , Bl} such that a fixed subbox B′ of B is contained in B. The large
box is B and the green box is B′. In the middle image, B has been cut into strips
along the x dimension so that one of the strips contains B′. In the far right image,
the strip containing B′ has been further cut into strips along the y dimension, so
that one of the strips is B′.
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Using this variant of SplitBox in CheckRegion, the box C is added to the

BoxList and subsequently removed since it is by definition covered by an index box.

B is split into fewer, larger boxes, and so the boxes in BoxList and their midpoints

are kept as good candidates to serve as the output for ReturnTestPoint. One

last adjustment is made to CheckRegion to improve the output of Return-

TestPoint. We sort the boxes in BoxList by measure every time the while loop

repeats, so that the largest boxes in BoxList are considered first. Combined with

the breadth-first nature of the search, this ensures that ReturnTestPoint re-

turns the midpoint of the largest box possible that does not intersect any index

box, provided such a box exists.

3.3 Core procedure design

The main strategy for the SA utilizes the previously discussed components to

obtain a set of index boxes which cover the overall bounds R as in Proposition

3.1. The following procedure makes repeated calls of the form MinPoint(y) while

varying the test point y ∈ R, then adds the returned sample points and exclusion

regions to the search space.

Algorithm 3.3 Core procedure

y ← random point in R
while CheckRegion(R) is False do

for each real critical point p from MinPoint(y) do
InsertSamplePoint(p)

end for
δ′ ← minimum distance from MinPoint(y)
InsertExclusionRegion(y, δ′)
y ← ReturnTestPoint()

end while
OutputSample()

This procedure will eventually terminate and output a sample fulfilling the

density requirements, provided that ReturnTestPoint has been implemented

as described in the previous section. A major practical issue is that MinPoint

is computationally expensive relative to the number of times it needs to be called
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Figure 3.3: The state of an ongoing ε-sampling procedure for a variety VR(f) and
overall bounds R. The blue line segment pictured is VR(f) ∩ R. Gray boxes are
exclusion boxes, boxes with green outlines are sample boxes, and red points are
sample points. The box with a black outline is R. Since the sample boxes cover
VR(f) ∩ R, the sample points form an ε-sampling of VR(f) ∩ R. The sample and
exclusion boxes together do not cover R, however.

in this version of the algorithm, particularly in higher dimensions. Another issue

is that the algorithm could add far more sample points than necessary. Consider

the situation in Figure 3.3. Though the sample points depicted in the Figure form

an ε-sampling, the algorithm cannot confirm this fact because R is not covered by

sample boxes and exclusion boxes. Given the algorithm is in the state pictured in

Figure 3.3, the while loop in the procedure above will execute several more times

before outputting a sample. Each iteration will add unnecessary sample points.

To address the computational waste of using MinPoint to calculate sample

points, another step can be interjected before executing Algorithm 3.3 above. The

step parallels Algorithm 3.3, but uses CritPoint instead of MinPoint to find

sample points. Recall that if y ∈ R is a test point and CritPoint(y) returns a

critical point x ∈ VR(f), y−x is orthogonal to the tangent hyperplane of VR(f) at

x, provided that x is nonsingular. The vector y − x can be used to project other

vectors onto the hyperplane.

The above procedure chooses new test points by a type of local linear approx-

imation to the underlying variety. Both the number of points to compute and the

rescaling factor, s, are parameters for the procedure. In the implemented version
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Algorithm 3.4 CritPoint sampling

y ← random point in R
while Number of sample points computed is less than some threshold do

x← CritPoint(y)
InsertSamplePoint(x)
u← random unit vector starting at x with u 6⊥ y − x
y ← projection of u onto hyperplane at x defined by normal y − x
y ← sy where s is a scaling factor

end while

s = 1.5ε is used. Some guidance on an upper bound to use for the number of

sample points is given by the following theorem.

Theorem 3.5. Let R = ΠN
i=1[ai, bi]. There is an ε-sampling X0 ⊆ RN of R which

consists of at most ΠN
i=1gi points where gi = d

√
N(bi−ai)

2ε
e.

Proof. Let c = 2ε√
N

. For each i ∈ {1, . . . , N} we define a set of points Gi ⊆ R.

If c ≥ bi − ai, then Gi = {ai+bi
2
}. Otherwise, Gi = {ai + c

2
, ai + c(1 + 1

2
), ai +

c(2 + 1
2
), . . . , ai + c(b bi−ai

c
− 1

2
c + 1

2
), bi − c

2
}. Since b bi−ai

c
− 1

2
c ≤ b bi−ai

c
c each set

Gi contains at most gi points. Now if p ∈ [ai, bi] there is a point with distance

at most c
2

from p in Gi. This implies that any point in R is at most distance√
Nc2

4
=
√
N c

2
= ε from some point in G = ΠN

i=1Gi. Therefore G is an ε-sample of

R with the desired number of points.

Let M = ΠN
i=1gi as given in Theorem 3.5. Since an ε-sampling of VR(f) ∩ R

can be obtained from an ε-sampling of R by removing any points in the sampling

of R that are more than ε away from VR(f), M is an upper bound on the size of a

minimal ε-sampling. We can choose some proportion of M as the number of sample

points to collect using CritPoint sampling. In practice, we select this proportion

as 1 − 9% of M . The sampling in Theorem 3.5 corresponds to splitting R into a

grid with pixels that fit into balls of at most radius ε, and selecting a proportion

of M corresponds to making a guess for how many of those pixels intersect with

VR(f). Performing CritPoint sampling followed by the core procedure both

saves time on computing sample points, and potentially cuts down on the number

of calls to MinPoint necessary to cover R with exclusion boxes. Without further
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modification to the SA, adding this step only exacerbates the problem of adding

extraneous sample points.

3.4 Heuristics for minimizing the sample

In the core procedure, MinPoint is used to fulfill two separate objectives si-

multaneously: computing sample points, and determining exclusion regions. The

heuristics we introduce serve to decouple these two objectives from one another,

while still taking some advantage of the fact that MinPoint produces both sam-

ple points and exclusion regions. Efficient splitting of boxes and selection of test

points in the implementation of the search space already take a step towards this

effort by being selective about which exclusion regions are calculated. Instead of

concentrating on exclusion regions, this section’s heuristics approach the problem

by focusing on how sample points are added into the search space.

3.4.1 Skipping the addition of sample points

Suppose that a sample point x ∈ VR(f)∩R with sample box R′ is provided to the

InsertSamplePoint function. If R′ is covered by other sample and exclusion

boxes already saved in the search space, then adding x to the search space with

index box R′ contributes nothing towards producing an ε-dense sampling. We

adjust InsertSamplePoint so that it skips adding x and R′ to the search space

if CheckRegion(R′) returns True.

The second heuristic is much less straightforward and relies on an assumption

that in a minimal ε-sample the sample points are relatively far away from each

other. Equivalently, the sample boxes corresponding to sample points do not

overlap much. Based on this assumption, let C be the largest intersection of R′

with a sample box already in the search space according to its measure. If the

measure of C is greater than some threshold value T > 0, InsertSamplePoint

refuses to save x as a sample point. The most optimistic choice for this threshold

value is 0, as this corresponds to none of the sample boxes overlapping in the final

sampling. There are counterexamples where the minimal ε-sampling of VR(f) ∩
R must contain overlapping sample boxes, however. For instance, suppose that
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VR(f) ∩ R is a line segment of length α + β with 0 < β < α. Any α sample of

this line segment contains at least two points and the two points’ sample boxes

overlap. This problem persists when choosing any T less than the measure of a

sample box. If β in the line segment example is taken small enough, the measure

shared by the overlapping sample boxes can be taken as close to the measure of a

sample box as desired.

If R′ is the sample box which InsertSamplePoint has constructed before

adding a sample point to the search space, let MC be the measure of C, where

C is the largest intersection by measure of R′ with a sample box already in the

search space. Also let Mε be the measure of a sample box. Given the threshold T is

chosen to be Mε or greater, no sample points will be skipped over. Choosing such

a value for T therefore does not change the SA’s behavior, which is undesirable.

To consult these issues of setting T too large or too small, we make T a dynamic

variable rather than a static one. We initialize T at a value less than Mε. If too

many of sample points which the algorithm attempts to add to the search space

fail the condition MC ≤ T , then T is increased by some small amount. Eventually,

either the SA outputs a sample, or T reaches the value Mε.

To determine whether too many sample points are skipped, we can choose

integer parameters P and S with 0 < P ≤ S. If P of the last S sample points

provided to InsertSamplePoint were skipped, then T is increased. Selecting

the value of P is a trade off. A higher value potentially wastes more computation

by skipping many useful sample points before adjusting T , and a lower value could

result in inserting too many sample points. Choosing higher values for S reduces

the chance that a small number of calls to MinPoint at test points which are close

to one another causes an adjustment to T , but it might very well be necessary to

increase T to add a required sample point. In the implemented version of the

algorithm S = 50, 40 ≤ P ≤ 50, T starts at value Mε

2.5N
, and T increments by

subtracting 0.2 from the denominator at each step.

3.4.2 Adjusting the core procedure

As a variant on the skipping strategy of the previous section, we can also add

another step to the SA between CritPoint sampling and the core procedure.
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The new step executes the same way as the core procedure, but does not attempt

to add most of the sample points returned by MinPoint to the search space.

Instead, it only inserts an exclusion region in each repetition of its main while

loop. Only if the computed exclusion region has measure smaller than a sample

box’s does the new step also attempt to insert the sample point x returned by

MinPoint(y) which minimizes the distance ‖y−x‖ from the test point to VR(f).

Running the algorithm in this mode skips adding points as with the heuristic

detailed in the previous section. The intent is to decrease the amount of space

in R that needs to be covered by exclusion regions before the algorithm starts

inserting sample points. Deciding how long to run the algorithm in this mode

generates another parameter to select. We run the SA using this new step until

the maximum measure of a box in BoxList is less than T ′ > 0 for a second threshold

value T ′. When all the boxes in BoxList are below this size they should be more

readily covered by sample boxes. In practice, we choose values for T ′ ranging from
Mε

25×104 to Mε.

3.5 Extension to real semialgebraic sets

A few modifications are necessary to extend the SA to real semialgebraic sets.

In the first case, we need to extend the current version of the SA from requiring

pure d-dimensional varieties as input to accepting arbitrary varieties. Theorem

2.12 proves that the homotopy utilized by MinPoint provides solutions to the

minimum distance problem on any pure d-dimensional subvariety V ⊆ VR(f),

provided that f is a polynomial system with real coefficients from CN to CN−d.

For a variety that is defined by a system of polynomials with real coefficients

g : CN → Cn with n ≥ N that is not pure dimensional, we can obtain a new

system g′ : CN → CN−d using the randomization procedure described in Section

2.1.3. The variety obtained used this randomization procedure will have V as an

irreducible component of V(g′) for generic randomization parameters, though V(g′)

may also contain irreducible components which are not irreducible components of

V(g). Assuming that V(g) has a d-dimensional component, the system g′ can

be provided to the algorithm to obtain an ε-sampling of the pure d-dimensional

component of VR(g). Repeating this for every dimension d such that V(g) has a
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d-dimensional component and combining the samples gives an ε-sample of VR(g).

We must perform additional computations to filter out points returned by the SA

that are elements of VR(g′), but not elements of VR(g).

Suppose we have polynomials with real coefficients h1, . . . , hn, p1, . . . , pm : CN →
C that define the real semialgebraic set S of points x ∈ RN where all the hi have

hi(x) = 0 and all the pi have pi(x) ≥ 0. Then if h : CN → Cn is the system

corresponding to the hi, we can apply the SA to VR(h) ∩ R, but only add points

to the sample which fulfill the inequality constraints. Since for any y ∈ R we have

min
x∈VR(h)

‖x− y‖2 ≤ min
x∈S
‖x− y‖2,

it follows that exclusion regions for VR(h) are also exclusion regions for S.

Although there may be extra computation involved to account for the inequalities,

the algorithm still outputs a valid ε-sample of S ∩R.

3.6 Implementation and parallelization

3.6.1 Implementation

The SA described in the previous sections has been implemented as a Python mod-

ule utilizing C and C++ bindings for major computational components. Source

code for the algorithm and examples is available at http://github.com/P-Edwards/

sampling_varieties. It employs an R∗ tree spatial database for the search space.

One of the major practical challenges in implementing the SA is integrating

external software packages with other program components, and particularly with

using the package Bertini. The library used to provide the R∗ tree has very

specific set up requirements. We use Bertini to perform homotopy continuation

computations. It provides robust and parallelizable methods for doing this, but

is controlled exclusively through terminal commands and reading and writing to

text files rather than a programmatic interface. As noted in Chapter 2, Bertini

has several internal parameters which rely on detailed knowledge of the homotopy

continuation process to choose properly. Every call to MinPoint or CritPoint

requires the construction of an input file specific to that call’s test point. Bertini

does not expose any internal variables to external program components as a result
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of the input and output design, which presents some unique challenges. The

configuration files for CritPoint require a specially tailored input template for

each example because of this. This is also the case for MinPoint, but its template

is not as complicated as CritPoint’s.

As with many computational problems having Euclidean space as a setting,

sampling real algebraic varieties suffers from the so-called “curse of dimensional-

ity”. With every additional dimension, required computational resources increase

exponentially. As an example of this, a single box in N dimensional Euclidean

space takes 128 · N bits to store. For N = 12, this means that approximately

5× 106 boxes require one gigabyte of RAM to store. To put this in perspective, if

the region [0, 20]12 is split into equally sized hypercubes with diagonal length 4.8,

the number of boxes is around 5× 106.

The specific strategies provided in Section 3.2.2 for the SplitBox and Check-

Region functions demand a very careful design which allows samplings to be

computed despite these resource constraints. Both functions avoid splitting larger

boxes into many small boxes when at all possible. This has the added advantage

of producing good values for ReturnTestPoint which help avoid unnecessary

calls to MinPoint. An unrefined procedure for ReturnTestPoint can easily

result both in wasting computation time calling MinPoint, and also in adding

many very small exclusion boxes to the search space which slow down subsequent

computation. Earlier versions of the implementation lacking careful strategies

produced exactly these results, and could not compute samples at all.

Dimensionality considerations also affect the tuning of parameters for the vari-

ous heuristics. In higher dimensions the measure of different sized boxes relative to

one another varies more as a function of side length than in lower dimensions. In

dimension 12, a hypercube with sides of length .95 has measure .54, even though

its side length only varies .05 from 1. In contrast, a square in dimension 2 with

side length of .95 has measure .90. Heuristics parameters can be tuned on an

example-by-example basis by first computing a very coarse sampling, then using

it to inform the tuning. Using the maximum length of a side of a box as its mea-

sure rather than Lebesgue measure is also supported by the implementation. In

practice, the Lebesgue measure performs better.
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Several other optimizations serve to reduce computation times. The BoxList in

CheckRegion is saved between calls to CheckRegion when the original bounds

R are being checked, which saves on the computational costs of splitting R repeat-

edly. Sorting the BoxList in CheckRegion quickly becomes computationally

expensive for longer lists, so the implemented version only does this sorting once

every 30 times an exclusion or sample box is added to the search space. Instead

of calculating the measure of each box in BoxList every time the list is sorted, the

measure of each box is paired with the box and stored in the BoxList.

3.6.2 Parallelization

Computational speedups on modern hardware rely on executing independent sec-

tions of a computationally expensive problem in parallel on multiple processing

elements. As noted previously, the most expensive segment of the algorithm con-

sists of calls to MinPoint for determining exclusion regions and sample points.

Homotopy continuation can be parallelized, with the different paths in the path

tracking roughly corresponding to independent problems into which the contin-

uation can be split. Running MinPoint in parallel using Bertini realizes sig-

nificant speed gains. There are diminishing returns on the number of processing

elements provided to a single instance of homotopy continuation, however. Homo-

topy continuation parallelization is the primary parallelization used by the current

implementation.

The algorithm can be further parallelized by running multiple calls to MinPoint

simultaneously, allocating some number of processors to each. A master process

maintains the search space and calculates new test points. Homotopy continuation

for CritPoint suffers more quickly from diminishing speed returns on the num-

ber of processors allocated to an individual instance of continuation since there

is only one path to track in this case. We can split the number of sample points

we wish to calculate with CritPoint sampling evenly between several parallel

executions of the sampling process.

It is possible to split the region R into smaller subregions and execute com-

pletely parallel instances of the entire sampling algorithm on the subregions. Com-

bining the samples output by the SA on the subregions gives an ε-sampling of
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VR(f) ∩ R. This strategy suffers drawbacks, however, in that separate instances

of the algorithm maintain their own versions of the search space and point skip-

ping heuristics. Parallelizing in this way primarily saves on computation time

devoted to making calls to a somewhat larger spatial database underlying the

search space unless diminishing returns from allocating additional processors to

homotopy continuation are high. The current implementation does support sub-

region level parallelization. In practice, the gains usually do not outweigh the

drawbacks, particularly the potential to increase the size of the sampling.
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Chapter 4

Results II: Examples

This chapter presents the results of applying the sampling algorithm described

in Chapter 3 to several polynomial systems. After obtaining as dense a sam-

ple as possible with a sufficiently small number of points, TDA computations

were performed to determine persistence diagrams. Where possible, we inter-

pret the persistence diagrams using Corollary 2.34 to infer the existence of ho-

mology features in the underlying varieties from the persistence diagrams. We

assume that the condition on the homological feature size of the underlying va-

riety given in that corollary is true for all examples. Source code for the exam-

ples is available along with the source code for the algorithm implementation at

github.com/P-Edwards/sampling_varieties.

The software package DIPHA is employed for persistent homology calculations.

Persistent homology is calculated only up to dimension 3 due to computational

constraints. This means that only 3 dimensional holes and lower can be identi-

fied. All computations performed for timing were executed on a shared memory

system. The machine runs Ubuntu version 16.04.1 as the operating system. It uti-

lizes 32 computing threads at 3.30GHz split evenly among 16 processing elements

contained in 2 physical CPU’s, along with 252GB of RAM.

4.1 Example: Alpha curve

We start with a simple example to test the algorithm in a situation where the

variety and sample points are as easily visualized as possible. Let f ∈ R[x1, x2] be
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Figure 4.1: Two .02-samplings for VR(f). The sampling on the left was collected
with heuristics, the sampling on the right without.

the polynomial x22− x21(x1 + 1), which is the “alpha curve” pictured in Figure 2.1.

Note that V(f) is a pure 1-dimensional variety, since f is irreducible over C2. The

parameter homotopy from Theorem 2.12 is given by (where (y1, y2)
T = y ∈ R2 is

a generic test point, (a1, a2)
T is any point in C2, z is a generic point in R, γ, α1, α2

are generic points in C):

H(a1, a2, λ0, λ1, t) =


f(a1, a2)− tγz

λ0(a1 − y1) + λ1(3a
2
1 + 2a1)

λ0(a2 − y2) + λ1(2a2)
α0λ0 + α1λ1 − 1

 .

The SA was used to find a .02 sampling of VR(f) ∩ R where R = [−2, 2] ×
[−2, 2]. It returned a sample consisting of 387 points in [−2, 2] × [−2, 2]. The

theoretical maximum sample size given by Theorem 3.5 for density .02 is 20164,

and running the sampling algorithm without heuristics returned a sampling of size

3962. 3962 points is too large a number to use for computing TDA due to resource

constraints, even when limiting calculations to 2 dimensional homology. Sampling

without heuristics took 2 minutes and 55 seconds of real time, while sampling

with heuristics took 5 minutes and 52 seconds. Figure 4.1 displays the two sets of

sample points, and Figure 4.2 displays the persistence diagram derived from the

smaller sampling.
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Figure 4.2: Persistence diagram derived from a .02 sampling of VR(f) ∩R.

The number of points in the persistence diagram that are above and to the

left of (.017, .06) in a given dimension k ≥ 0 is a lower bound on the rank of the

homology group Hk(VR(f) ∩ R) in that dimension. As expected, we find that

H0(VR(f)∩R) and H1(VR(f)∩R) have at least rank 1. The feature in dimension

1 corresponds to the loop in the alpha curve, and the feature in dimension 0

corresponds to the single connected component of VR(f) ∩R.

4.2 Example: Quartic varieties

Our next set of examples moves up a dimension and applies the combined sam-

pling/TDA process to 16 different quartic equations in 3 variables. It can be

checked using NAG methods that each of the following polynomial equations de-

fines a pure 2-dimensional algebraic variety. Letting N = 3 and d = 2, we see that

each polynomial is a polynomial system from CN to CN−d. The algorithm’s as-

sumptions on the number of equations therefore hold without further modification

of the polynomials.

Persistence diagrams for these examples are available in Appendix A. We con-

sider a few of the varieties in more detail. Let V4 = VR(7x4 + 4y4 + 8z4 − 5x3 +

8x2y+5x2−7xy2−5xy+4x+4y3−y2−3y)∩ [−2, 2]× [−2, 2]× [−2, 2], which cor-

responds to the fourth row in the table. It is the only example which definitely has
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Variety Defining equation
V1 5x4 + 6y4 + 6z4 − 7 + 2x3 + 2x2y + x2 + 3xy2 − 5xy − 8x− 8y3 − y2 − 3y
V2 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 + 6− 7x3 + 3x2y − 4x2 − 6xy2 − xy + 6x+ 7y3 − 3y2 − 8y
V3 7x4 + 10y4 + 6z4 + 2− 7x3 + 3x2y − 5x2 − 3xy2 − 4xy + 8x− y3 − 4y2 − 7y
V4 7x4 + 4y4 + 8z4 − 5x3 + 8x2y + 5x2 − 7xy2 − 5xy + 4x+ 4y3 − y2 − 3y
V5 4x4 + 4y4 + 3z4 + 2− 5x3 + 6x2y − 7x2 + 4xy2 − 3x− 8y2 − 4y
V6 x4 + 8y4 + 8z4 − 6 + 8x3 − 8x2 − 7xy2 − 4xy − 2x− 3y3 + 5y
V7 10x4 + y4 + 8z4 − 5− 8x3 + x2y − 8x2 + 5xy2 − 2xy − 2x− 6y3 + 4y2 − 3y
V8 2x4 + 9y4 + 10z4 + 4 + 4x3 + 3x2y − 4x2 − 6xy + 7x+ 7y3 + 7y2 − 7y
V9 4x4 + 7y4 + 3z4 − 3− 8x3 + 2x2y − 4x2 − 8xy2 − 5xy + 8x− 6y3 + 8y2 + 4y
V10 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 + x3 + 7x2y + 3x2 + 3xy2 − 4x− 5y3 + 5y2 + 5y
V11 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 + 3− 4x3 − 8x2y + 2x2 − 2xy2 − 2xy − 5x+ 5y3 + 5y2 + y
V12 3x+ 7y − z2(225x2 + 225y2) + 350x2y2 + 5xy + xy2 + 6x2y − x2 + 5x3 + 144x4 + 4y2 + 144y4 + 81z4 − 8
V13 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 − 1 + x3 − x2y − 5x2 + 8xy2 − 7xy + 5x− y3 − 6y2 + 6y
V14 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 + 7− x3 + 6x2y + 2x2 + 6xy2 − 4xy − 7x+ y3 − 5y2 + y
V15 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 + 7x3 − 3x2y + 4x2 + 6xy2 − 3xy − 2x+ y3 − 2y2 − 2y
V16 144x4 + 144y4 − 225(x2 + y2)z2 + 350x2y2 + 81z4 − 7− 4x3 + 4x2y − 2x2 + 2xy2 − 6xy + 3x+ 8y3 − 4y2 + y

Variety Region Density # of points C` Cu β0 β1 β2
V1 [−10, 10]3 0.38 416 0.310 1.14 1 0 0
V2 [−5, 5]3 0.98 422 0.800 2.94 1 0 0
V3 [−10, 10]3 0.3 276 0.244 0.9 1 0 0
V4 [−2, 2]3 0.15 472 0.122 0.45 2 0 0
V5 [−10, 10]3 0.5 426 0.408 1.5 1 0 0
V6 [−10, 10]3 0.9 409 0.734 2.7 1 0 0
V7 [−10, 10]3 0.6 437 0.489 1.8 1 0 0
V8 [−10, 10]3 0.3 467 0.244 0.9 1 1 0
V9 [−3, 3]3 0.36 409 0.293 1.08 1 0 0
V10 [−5, 5]3 1 503 0.8164 3 1 0 0
V10 [−5, 5]3 1 516 0.816 3 1 0 0
V11 [−5, 5]3 1 449 0.816 3 1 0 0
V12 [−5, 5]3 1 571 0.816 3 1 0 0
V13 [−5, 5]3 1 538 0.816 3 1 0 0
V14 [−5, 5]3 1 518 0.816 3 1 0 0
V15 [−5, 5]3 0.97 510 0.97 2.91 1 0 0

Table 4.1: Sampling and TDA results for 16 varieties defined by quartic equations in the variables x, y, and z. The
C` and Cu columns record the point (C`, Cu) ∈ R̄2 such that underlying homology features of the variety appear
above and to the left of (C`, Cu) in the persistence diagram for the sampling. The numbers β0,β1, and β2 record the
number of points above and to the left of (a, b) in the persistence diagram for dimensions 0, 1, and 2 respectively.
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at least 2 connected components (β0 = 2 in the table). Its .14-sampling is pictured

in Figure 4.3. Notice that no sample point is within distance .14 of the boundary

of the region. Combining this with the fact that no sample points were found to

be outside of [−2, 2]× [−2, 2]× [−2, 2] during the sampling, we can conclude that

Figure 4.3 displays a sampling of all of V4.

Figure 4.3: A .14-sampling of VR(7x4 + 4y4 + 8z4 − 5x3 + 8x2y + 5x2 − 7xy2 −
5xy + 4x+ 4y3 − y2 − 3y).

The points visually appear to be sampled from a space that is (up to homotopy

equivalence) the union of two spheres. No 3D voids appear as confirmed homology

features in the persistence diagram for V4, however. To investigate this situation

further, we apply sampling and TDA to S1 = V4 ∩ [0.5, 2] × [−2,−1] × [−0.7, 1]

and S2 = V4 ∩ [−1, 0.5] × [−0.8, 1] × [−0.7, 1] independently. The restrictions

allow us to obtain samplings at smaller densities for the individual pieces while

still calculating point samples with few enough points to do TDA. The persistence

diagrams derived from samplings of S1 and S2 are depicted in Figure 4.4.
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Persistence diagram for S1 Persistence diagram for S2

Figure 4.4: Persistence diagrams for S1 and S2.

As expected, the persistence diagrams for both S1 and S2 contain a point in

dimension 2, where the point is relatively far away from the diagonal. The different

scales for S1 and S2 correspond to a higher sampling density for S1, which was

sampled at density .06 compared to density .1 for S2. These points potentially

correspond to 3D voids in the underlying spaces S1 and S2. The points do not

meet the criterion from Corollary 2.34, and so we cannot be sure with theoretical

certainty that H2(S1) and H2(S2) both have at least rank 1. Despite this, we have

good evidence that V4 is topologically the union of two spheres since we also know

for certain that V4 has two connected components.

From Table 4.1 we see that TDA results provide theoretical verification of

homology features for very few of the varieties. Despite this, several of the per-

sistence diagrams in Appendix A have one or two points which are significantly

farther from the diagonal than the others in their persistence diagrams. This sit-

uation displays the difficulty of obtaining dense enough samples to verify features

formally, and also that TDA can provide useful information even when we cannot

prove the Homology Inference Theorem applies.

We can contrast V4 with V9 = VR(2x4 + 9y4 + 10z4 + 4 + 4x3 + 3x2y − 4x2 −
6xy+ 7x+ 7y3 + 7y2− 7y)∩ [−3, 3]3, which corresponds to row 9 in Table 4.1. Its
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persistence diagram and .32 sampling are pictured in Figure 4.5. Similarly to V4,

the entire variety VR(2x4+9y4+10z4+4+4x3+3x2y−4x2−6xy+7x+7y3+7y2−7y)

is seen to be contained in [−3, 3]3. We might initially guess from the persistence

diagram for V9 that the variety consists of two spheres up to homotopy. Unlike V4,

the persistence diagram does not indicate that V9 contains more than one connected

component. Upon visual inspection of the sampling in Figure 4.5, V9 appears to

be a sphere up to homotopy equivalence, though two voids are recognizable. V9’s

persistence diagram captures some of this geometric information, even though the

homology features in the persistence diagram probably do not correspond with

homology features in the space V9.

Figure 4.5: Persistence diagram and .36 sampling for V9.

The process we applied to V4 can be generalized to higher dimensions. For a

variety in more than 3 dimensions for which we have confirmed the existence of

a number of connected components, we can apply clustering methods to isolate

points in each of the connected components. Clustering methods receive as input

a set of points in Euclidean space, and output a partition of the set of points

into different clusters based on the points’ proximity. This is an alternative to

determining connected components visually, as we did with V4.

A clear pattern in Table 4.1 is that samples for the polynomials containing

(x2 + y2) terms have a higher number of points in a smaller sample region and at

higher densities than the other polynomials. Figure 4.6 shows a sampling of one
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of the varieties in this class. The variety does not appear to be bounded, whereas

the varieties without (x2 + y2) terms are bounded.

Figure 4.6: A .88 sampling of V2 = VR(144x4 +144y4−225(x2 +y2)z2 +350x2y2 +
81z4 + 6− 7x3 + 3x2y − 4x2 − 6xy2 − xy + 6x+ 7y3 − 3y2 − 8y) ∩ [−5, 5]3.

The larger sample sizes of these varieties at much higher density values empha-

sizes the difficulty of obtaining provably dense samplings containing a reasonable

number of points. They also help illustrate the advantage of tuning the various

heuristic parameters. The parameters for V16 = VR(144x4+144y4−225(x2+y2)z2+

350x2y2+81z4−7−4x3+4x2y−2x2+2xy2−6xy+3x+8y3−4y2+y)∩[−5, 5]3 were set

to skip points more aggressively than the other unbounded varieties. With these

more aggressive parameters the sample sizes were decreased significantly. Without

heuristics at all, the sampling algorithm returned a .97-sampling containing 13155

points for V16.

4.3 Example: Configuration space of cyclooc-

tane

Cyclooctane is an organic molecule with molecular formula C8H16. The 8 carbons

in the molecule are bonded together into a ring, with 2 hydrogens bonded to

each carbon atom. The C8H16 molecule can take on different configurations which

describe the positions of the individual atoms in relation to one another. Each

configuration has an associated potential energy. Given a configuration of the

carbon atoms, a full configuration for the molecule can be obtained by placing

each carbon’s two hydrogen atoms in a position minimizing potential energy. We
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Figure 4.7: The molecular diagram of cyclooctane.

take a configuration to be represented by a set of squared distances between the 8

carbon atoms.

Assume that the following two constraints hold for the carbon atoms in cyclooc-

tane. Firstly, the bond length between any two carbon atoms which are adjacent

on the ring is the same for all the atoms. Secondly, the bond angle formed by any

three consecutive atoms on the ring is the same. Since the bond length between

adjacent carbons is fixed, fixing the bond angle is equivalent to fixing the distance

between any two carbon atoms which have a single carbon atom between them

on the ring. The assumption that these constraints lead to reasonable models of

the molecule is called the “rigid geometry hypothesis”, and it is justified by phys-

ical considerations as explained in [21]. Subject to these constraints, there are(
8
2

)
− 8 · 2 = 12 free inter-atom distances between carbon atoms in cyclooctane.

Let the carbon atoms in a molecule of cyclooctane be labelled cyclically by

{1, . . . 8} and dij be the (squared) distance between atoms i and j in the molecule.

A configuration of cyclooctane can be represented by a vector(
d14, d15, d16, d25, d26, d27, d36, d37, d38, d47, d48, d58

)T
in R12 designating the 12 unknown squared distances in the molecule. The con-

figuration space S of cyclooctane is the set of vectors in R12 which designate a

configuration of C8H16 that is consistent with the rigid geometry hypothesis.

Understanding the topology and geometry of cyclooctane’s configuration space

can yield valuable information about the molecule. Paths in the configuration

space correspond to a sequence of transitions from one configuration to another.

Viewing potential energy as a function P : S → R, local minima of P potentially
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correspond to more stable configurations of the molecule. The graph of P is the

potential energy landscape of cyclooctane. Paths in the potential energy landscape

which do not cross high energy regions represent configuration transitions that are

energetically possible or more likely to occur. Topological information can lend

insight leading to reducing the dimensionality S, which entails finding a description

of S which uses fewer than 12 free variables. Reducing the dimensionality of S

can then allow significant speed ups to calculations involving potential energy

computations.

In [21] the authors perform an analysis of cyclooctane’s configuration space

using the local dimensionality reduction technique ISOMAP [27] and other tools.

They determine that the configuration space requires 5 dimensions to represent,

and that the space geometrically consists of a Klein bottle and a sphere which

intersect along two circles. A significant step in their analysis consists of perform-

ing point set triangulation on a set of sample points from the configuration space,

which shares similarities with the Čech complex and Rips complex constructions

in Definition 2.21. Point set triangulation takes in a set of points as input and

attempts to output a simplicial complex directly that closely matches the under-

lying space. This is in contrast to persistent homology, which obtains homology

information from a sequence of complexes.

The configuration space of cyclooctane can be expressed as a semialgebraic set.

We summarize a model of the cyclooctane molecule which yields a formulation of

this semialgebraic set from [25]. We then detail attempts to perform sampling and

TDA on the configuration space.

4.3.1 Distance model

For convenience, let the bond length between adjacent carbon atoms in cyclooctane

be 1, and let the bond angle between any 3 consecutive carbon atoms be 115◦.

Rescaling the bond length this way does not affect the topology of the configuration

space. Suppose we have a point c ∈ R12, and that ckl is the squared distance

between atoms k and l in the configuration of C8H16 derived from c for any k, l ∈
{1, . . . , 8}. The configuration c is contained in S if and only there exists a set of
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8 points in R3 where the 8 points have the same squared distances between them

derived from c.

If {a1, . . . , ak} is a subset of {1, . . . , 8}, let δij = caiaj for any i, j ∈ {1, . . . , k}.
The Cayley-Menger determinant of {a1, . . . , ak} is:

CM(a1, . . . , ak) =

∣∣∣∣∣∣∣∣∣∣
0 δ12 δ13 . . . δ1k 1
δ21 0 δ23 . . . δ2k 1
. . . . . . . . . . . . . . . . . .
δk1 δk2 δk3 . . . 0 1
1 1 1 . . . 1 0

∣∣∣∣∣∣∣∣∣∣
Notice that a Cayley-Menger determinant produces a polynomial in the squared

distances between carbon molecules. Evaluating this determinant essentially re-

turns a multiple of the signed Lebesgue measure of a k − 1 simplex in some finite

dimensional Euclidean space. The simplex has as vertices points with squared

distance between them given by c. We have that c is a member of S if and only if

there exist 4 elements {p1, . . . , p4} {1, . . . , 8} where:

CM(p1, . . . , p4) > 0

CM(p1, . . . , p4, i) = 0

CM(p1, . . . , p4, j) = 0

CM(p1, . . . , p4, i, j) = 0

for all i < j elements of {1, . . . , 8} − {p1, . . . , p4}.
If there was a set of 4 carbon atoms in cyclooctane that fulfilled the first

inequality no matter the configuration in question, we could use that set to derive

a description of S as a semialgebraic set. No 4 carbon atoms exist with this

property in cyclooctane. Instead, it is shown in [25] that, if m is the label of any

carbon atom in the molecule, at least one of the three sets of 4 atoms {m,m +

1,m+ 2,m+ 3}, {m+ 1,m+ 2,m+ 3,m+ 4}, and {m+ 2,m+ 3,m+ 4,m+ 5}
(labels greater than 8 wrap around cyclically) will satisfy the first inequality for

any configuration. This happens even though all three sets of atoms fail to satisfy

the first condition for every configuration. Using this fact, we can find polynomial

conditions which exactly describe every valid configuration of C8H16. This is
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done by putting together the above listed conditions for {1, 2, 3, 4}, {2, 3, 4, 5},
{3, 4, 5, 6}. We obtain a semialgebraic set with 3 inequalities and 22 equalities in

12 variables.

4.3.2 Model calculation and sampling configuration

Sampling and performing TDA for the set S requires significantly more effort than

the previous examples. The polynomial system considered is larger, it is semi-

algebraic rather than algebraic, and the equations themselves are unmanageable

by hand. It is also computationally expensive independent of the sampling al-

gorithm’s heuristics. In [25] the authors report using 72 hours of real time on

a supercomputing platform while employing a sampling method which does not

minimize sample points. Let f : C12 → C22 be the polynomial system consisting

of the equalities for the cyclooctane distance model.

Recall from Chapter 3 that in order to apply the sampling algorithm we need to

know the dimensions of the irreducible components of V(f). To obtain this infor-

mation we can compute the irreducible numerical decomposition, which Bertini

supports. Calculating the irreducible numerical decomposition is a feature of

Bertini which requires independent setup from homotopy continuation. The re-

sults of this computation show that V(f) is a pure 2-dimensional variety.

To apply the homotopies from Theorems 2.12 and 2.13 we need to convert f

into a system g : C12 → C10 since V(f) is pure 2-dimensional. As noted in Chapter

2, this requires choosing 22 · 10 = 220 random real numbers, and then using them

to obtain the randomized system g which contains 10 polynomials consisting of

linear combinations of the original 22 functions. As a technical note, the coef-

ficients of the linear combinations must be real so that the reduced polynomial

system obtained still has real coefficients. Randomization also introduces addi-

tional computational overhead while sampling, as we need to check whether the

sample points we obtain are members of VR(f). The most straightforward way

to do this is to evaluate every sample point using the original system. We must

also evaluate potential sample points using the 3 inequality polynomials, and filter

out those points which do not satisfy at least one of the inequalities. Bertini
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makes available a fast polynomial evaluator as another feature independent of ho-

motopy continuation and the numerical irreducible decomposition. Components

for handling polynomial evaluation and filtering points have been added to the

SA’s implementation to fulfill these requirements.

We have emphasized the need to control the number of equations in our poly-

nomial system throughout the previous discussion. Note, however, that the homo-

topies in Theorems 2.12 and 2.13 solve systems which have 2N − d + 1 variables

and 2N − d+ 1 equations no matter what nonnegative d is chosen. The numerical

algebraic geometry literature emphasizes the need for randomization in the case

of non-square systems. Randomization of the MinPoint and CritPoint homo-

topies receives much less attention in [14, 16], which introduce them. Several initial

attempts at configuring the SA did not use randomization, and correspondingly

produced undesirable positive dimensional solutions sets for MinPoint. There

is an error in the paper [25] which complicates identifying the correct number of

equations for randomization. The paper reports that the polynomial system for

cyclooctane contains 20 polynomials rather than 25. Several weeks of work on this

example were spent consulting difficulties related to this discrepancy. The authors

have confirmed that 25 is the intended number of equations.

One of the chief practical difficulties which arises in this example is that deriving

expanded versions of the Cayley-Menger determinant equations requires extensive

work with a computer algebra system. The resulting MinPoint and CritPoint

homotopy configurations consist of 23 equations in 23 variables. Specialized scripts

for generating the initial polynomial system, randomizing to the correct number

of equations, and formatting the equations for use in the SA have been written.

They are available with the other example code.

Apart from configuring the SA itself, supercomputing facilities demand their

own specialized configurations to run jobs. Subsequent waiting times and interrup-

tions in service at available supercomputing facilities have delayed the computation

of results. Due to the difficulties in configuring this example and the supercom-

puting delays, sampling and TDA results are unfortunately not available for this

report.
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Chapter 5

Conclusion and Future Directions

In this dissertation we develop and implement theoretically sound and computa-

tionally tractable methods for analyzing real algebraic varieties using topological

data analysis. Perhaps surprisingly, the combination of NAG and TDA theory

in Chapter 2 shows that these methods can lead in some cases to computational

proofs exhibiting the existence of homology features. While the primary motiva-

tion for creating the dense sampling algorithm in Chapter 3 is producing input

for TDA methods, well-distributed and minimal samplings of varieties can serve

as good input to most data analysis methods. The results in Chapter 4 show

that combining sampling and TDA can effectively produce information about a

variety’s topology and geometry, even when theoretical certainty is not available.

They also show the computational cost of taking an adaptive approach to sam-

pling. Even in the very first simple example, the SA took nearly six minutes to

derive a minimized sampling for use with TDA. There are several potential avenues

for subsequent work in this area, both by improving the algorithm from Chapter

3, and by using the algorithm to apply TDA to varieties.

The heuristics in Chapter 3 for minimizing samples have proven effective, but

there are other potential routes for accomplishing the task of sample minimization.

Instead of taking care “up front” to avoid adding unnecessary sample points, the

SA could instead first collect a larger sampling with less aggressive or no skipping.

Manifold learning tools like ISOMAP [27] could be combined with MinPoint to

estimate new, more efficiently distributed, sample points. A minor adjustment

allows the sampling algorithm to find an ε-sampling of VR(f) ∩ X where X is
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the union of a finite number of boxes, rather than a single overall bounding box.

The SA could potentially speed up finding samples for complicated spaces by first

running a faster sampling strategy that does not minimize the sample, followed by

executing Chapter 3’s stricter strategy with heuristics to minimize the sampling.

This initial input can come from Chapter 3’s algorithm, or from another source.

Finally, the initial TDA approach presented in this dissertation can be refined

with additional methods from NAG to provide richer information about the ge-

ometry of real varieties. Recall that for a variety V the set of singular points is

a proper subvariety of V . That subvariety might itself contain points which are

singular points relative to the subvariety, and so on. In [17], the authors define

isosingular sets to be sets of points in V which share a singularity structure, and

provide methods for efficiently deriving equations that define these sets. Combin-

ing these methods with sampling, TDA, and other data analysis methods would

provide rich geometric information about the variety V .
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Appendix A: Persistence diagrams for quartics

V1 V2

V3 V4

V5 V6

V7 V8
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V9 V10

V11 V12

V13 V14

V15 V16
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