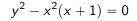
Sampling real algebraic varieties for topological data analysis

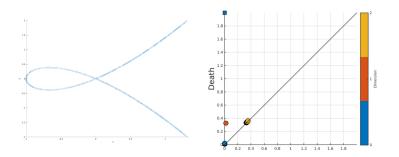
PARKER EDWARDS

Joint with: Emilie Dufresne (U. York) Heather Harrington (U. Oxford) Jonathan Hauenstein (U. Notre Dame)

AG19, July 2019

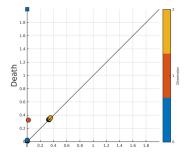
Sampling real varieties





Topological data analysis

Persistent homology overview



Topological data analysis

Dense samples

Parker Edwards

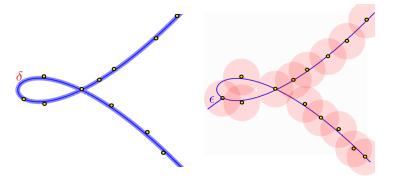
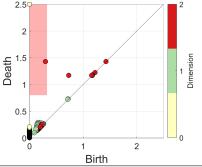


Figure: A (δ, ϵ) sample of an algebraic curve.

Let $X \subseteq \mathbb{R}^N$ be compact with $\operatorname{reach}(X) > 2(\epsilon + \delta)$. β_p is the number of points in above and to the left of $(\epsilon, 2\epsilon + \delta)$ in the Čech diagram for a (δ, ϵ) sample of X.



Algorithm overview

Parker Edwards

Input

- ► A system of polynomial equations $f : \mathbb{C}^N \to \mathbb{C}^{N-d}$, $f = (f_1, \dots, f_{N-d})$
- A density goal e > 0
- A rectangular region $R = [a_1, b_1] \times \cdots \times [a_N, b_N]$ to search
- A homotopy continuation error bound $0 \leq \delta < \epsilon$.

Output

A (δ,ϵ) -sample of $V_{\mathbb{R}}(f)\cap R$ that has as few points in the sample as possible.

A subset of related work

Parker Edwards

Sampling algebraic sets from equations

Reduction methods: Sherbrooke and Patrikalakis, 1993.
Produces (ε, ε)-sample.

Sampling from a distribution

 Sampling from the uniform distribution on real algebraic manifolds: Breiding and Marigliano, 2018.

Computing homology for semialgebraic sets

 Computation in weak exponential time: Bürgisser, Cucker, Tonelli-Cueto, 2019.

Tools from numerical algebraic geometry

Minimum distance problem

Figure: The minimum distance problem for a curve and point in $\mathbb{R}^2.$

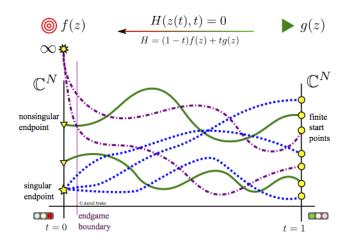
Parker Edwards

IJF

UF Department of Mathematics

Tools from numerical algebraic geometry

Homotopy continuation



Tools from numerical algebraic topology

Solving the minimum distance problem

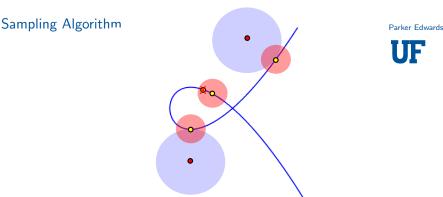
Theorem (J. Hauenstein, 2012)

For $y \in \mathbb{R}^N$ the minimum distance problem can be solved with homotopy continuation. The homotopy is as follows.

$$H(x,\lambda_0,\ldots,\lambda_{N-d},t) = \begin{pmatrix} f(x) - t\gamma \\ \lambda_0(x-y) + \sum_{i=1}^{N-d} \lambda_i \nabla f_i(x) \\ \sum_{i=0}^{N-d} \alpha_i \lambda_i - 1 \end{pmatrix}$$

Sampling Algorithm

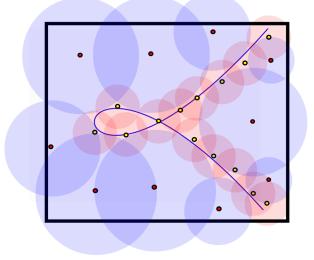
- Pick a point and find the critical points of the minimal distance equations with the variety.
- Record sample points, plus exclusion zone around these new sample points and the test point.



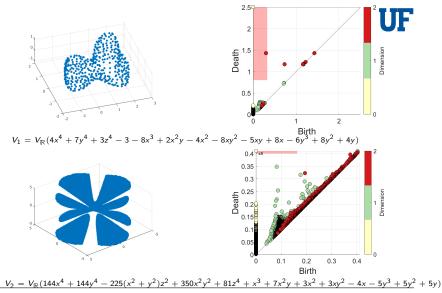
- Pick a point and find the critical points of the minimal distance equations with the variety.
- Record sample points, plus exclusion zone around these new sample points and the test point.
- Pick another test point do the same. Repeat until sample and exclusion balls cover the space.

Sampling algorithm

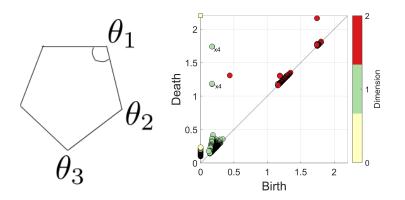
Termination



Example: quartic surfaces in \mathbb{R}^3



Example Deformable pentagonal linkage



Parker Edwards

Preprint

Sampling real algebraic varieties for topological data analysis https://arxiv.org/abs/1802.07716

Software https://github.com/P-Edwards/tdasampling

