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Background

Consider applying the 1-dimensional simplicial homology functor H1(•;F) to the following
sequence X2 ⊆ X4 ⊆ · · · ⊆ X12 of simplicial complexes. F is a field.

X2 X4 X6

X8 X10 X12

The theory of persistent homology tracks the algebraic features which appear and disappear
as homology changes through the sequence. The tracked information can be summarized
via the rank function.

The rank function

If [12]2< is the set of pairs (i, j) where 1 ≤ i < j ≤ 12, the rank function rank : [12]2<→
Z is defined by rank(i, j) = rank(H1(Xi;F)→ H1(Xj;F)).
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Figure: Visualization of the rank function for a persistence module. Circles indicate points that evaluate
to 0, squares indicate points that evaluate to 1, pentagons indicate points that evaluate to 2, and stars
indicate points that evaluate to 3.

Persistent homology summaries can serve as useful input to statistical machinery. In partic-
ular, the following persistence landscape encoding based on the rank function has desirable
statistical properties for this purpose [1].

Persistence landscapes

The persistence landscape is a sequence of functions λk : R → R for k ≥ 1 derived
from the rank function.
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Figure: Graph of the persistence landscape for the rank function above. Each λk corresponds to the
boundary of the region in [12]2< with at least rank k.

Graded rank and graded persistence diagrams

Idea: We can grade the rank function by splitting it into simple component functions that
track, for k ≥ 1, points in [12]2< where the rank is greater than or less than k.

The graded rank function

For k ≥ 1, the k’th graded rank function rankk : [12]2<→ Z is given by

rankk(i, j) =

{
1 rank(i, j) ≥ k

0 else
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Figure: The 1st graded rank function of our example.

The graded rank function (rankk)k≥1 : [12]2< →
⊕

k≥1 Z is given by (i, j) 7→
(rank1(i, j), rank2(i, j), . . . ).

Graded persistence diagrams

For k ≥ 1, the k’th graded persistence diagram PDk : [12]2<→ Z is given by
PDk(i, j) = rankk(i, j)− rankk(i− 1, j)

− rankk(i, j + 1) + rankk(i− 1, j + 1)
The graded persistence diagram (PDk)k≥1 : [12]2< →

⊕
k≥1 Z is given by the same

Möbius inversion formula above with (rankk)k≥1 replacing rankk.

(5, 6)
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Figure: The 1st graded rank persistence diagram for our example. Blue points have Λ1 value equal to 1,
green points have value equal to -1, and all others have value 0. The rank1 value of (5, 6) is the sum of
PD1 values in the shaded region.

Results

Theorem: Consistency of grading

Let the persistence diagram function PD : [12]2< → Z be defined analogously to PDk

replacing rankk with rank, let “summation” denote summing all values of a func-
tion above and left of a point in [12]2<, and let Σ :

⊕
k≥1 Z → Z be the function

(a1, a2, . . . ) 7→ a1 + a2 + . . . .
The following diagram of function transformations commutes.

rank PD

(rankk)k≥1 (PDk)k≥1

Möbius inversion

Grading

Summation

Σ

Möbius inversion

Σ

Summation

Remark: Persistence landscapes are piecewise linear functions, so are determined by their
critical points.

Theorem: Graded diagrams and landscapes are equivalent

The k’th graded persistence diagram PDk is equivalent to the k’th persistence landscape
λk.
More precisely: There is a bijection ρ between points (i, j) ∈ [12]2< and points in R2

such that
PDk(i, j) = 1 ⇔ ρ(i, j) is a local maximum of λk

PDk(i, j) = −1 ⇔ ρ(i, j) is a local minimum of λk
PDk(i, j) = 0 ⇔ ρ(i, j) is not a critical point of λk
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