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1 Abstract

Questions concerning the consistency of theories, and of the independence of axioms
and theorems one from another, have been at the heart of logical investigation since
the beginning of logic. It is well known that our own contemporary methods for
proving independence and consistency owe a good deal to developments in geometry
in the middle of the nineteenth century, and especially to the role of models in estab-
lishing the consistency of non-Euclidean geometries. What is less well understood,
and is the topic of this essay, is the extent to which the concepts of consistency
and of independence that we take for granted today, and for which we have clear
techniques of proof, have been shaped in the intervening years by the gradual de-
velopment of those techniques. It is argued here that this technical development
has brought about significant conceptual change, and that the kinds of consistency-
and independence-questions we can decisively answer today are not those that first
motivated metatheoretical work. The purpose of this investigation is to help clarify
what it is, and importantly what it is not, that we can claim to have shown with a
modern demonstration of consistency or independence.1

∗This is the nearly-final version of the paper whose official version appears in Logic, Methodology,
and Philosophy of Science - proceedings of the 15th International Congress, edited by Niiniluoto,
Seppälä, Sober; College Publications 2017, pp 41-61

1Many thanks to the organizers of CLMPS 2015 in Helsinki, and also to audience members for
helpful comments. This essay includes material previously presented at Logica 2015 in Hejnice,
Czech Republic and published in Logica 2015, as well as material presented earlier at the Ohio
State University and at the University of Notre Dame; thanks also to all three audiences and to

1



2 Introduction

In 1939, Ernest Nagel wrote:

The sort of questions considered by meta-mathematics, e.g. the consis-
tency and independence of axioms, have been discussed in antiquity and
have been cultivated ever since by mathematicians in every age; but such
problems have been clearly formulated and systematically explored only
after pure geometry had been freed from its traditional associations with
space, and only after its character as a calculus had been isolated from
its applications. ([Nagel 1939] §74, pp 202-3)

While there is no doubt a good deal of truth to this claim, the purpose of this paper
is to suggest a way in which the characterization it gives us of the role of models in
meta-mathematics is misleading. The aspect of Nagel’s view that I want to question
is the idea that with the increasing formalization of mathematical theories in the
late 19th and early 20th centuries, we achieved at last a method, and tools, for
the rigorous treatment of ancient questions. What I will suggest in what follows is
that the questions we can now answer with our modern rigorous tools are not the
same questions as those that arise for mathematical theories prior to the modern
era. The questions we can now raise and answer, I will argue, have been shaped
significantly by the tools we have developed. One result of this is that the notions
of independence and consistency that we now take for granted are not those that
went by these names prior to about 1900, and the clean methods we now have for
demonstrating independence and consistency do not answer what in e.g. 1700, or
even in 1850, would have been called by these names.2

3 1900

We begin by looking at the state of the art of independence proofs in the penul-
timate year of the nineteenth century. Here our example is David Hilbert’s 1899
Foundations of Geometry, in which we find a clear and systematic application of the
technique that was becoming, at this point, the standard approach to demonstra-

the Logica 2015 organizers.
2On the role of geometry in the early development of modern logic, see [Webb 1985].
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tions of independence.3 As Felix Klein puts it in 1908, describing what he calls the
“modern theory” of geometric axioms:

In it, we determine what parts of geometry can be set up without using
certain axioms ...
As the most important work belonging here, I should mention Hilbert’s
[1899].
([Klein 1908], as quoted in [Birkhoff and Bennett 1988] p 185.)

Hilbert’s work in the Foundations of Geometry monograph involves a clear and care-
ful axiomatization of Euclidean geometry, together with a consistency proof for the
whole, and a series of independence proofs that demonstrate the connections of logi-
cal entailment holding between the various parts of the edifice. Hilbert characterizes
both consistency and independence here in terms of the relation of logical deducibil-
ity: a set of axioms is consistent, he tells us, if “[I]t is impossible to deduce from
them by logical inference a result that contradicts one of them” [§9], and a geometric
axiom or theorem is independent of a collection thereof if it cannot be deduced from
that collection.

HIlbert’s method of demonstrating non-deducibility is as follows: Given a set AX
of axioms, and a statement (perhaps another axiom) A, we begin by uniformly re-
interpreting the geometric terms (“point,” “line,” “lies-on,” etc.) in AX and in A,
in terms of objects and relations given by a different theory, in this case a theory R
of real numbers and collections thereof. We then note that, as re-interpreted, each
of the sentences AX, together with any sentence deducible from them, expresses a
theorem of R. Finally, the negation ¬A of the target sentence A also expresses a
theorem of R, which, assuming the consistency of R, guarantees that A itself does
not express a theorem of R. Still assuming the consistency of R, then, we have a
guarantee that A is not deducible from AX.

The consistency of AX, in the sense of the non-deducibility of a contradiction from it,
is demonstrable similarly, again assuming the consistency of the background theory
R. As Hilbert says,

From these considerations, it follows that every contradiction resulting
from our system of axioms must also appear in the arithmetic related to
the domain [of the background theory].([Hilbert 1899] §9)

3See [Hilbert 1899]. Hilbert was not alone in using the technique to significant effect at this
time. Its application can be seen as well in the work of the Italian school (see e.g. [Peano 1894],
[Padoa 1901], [Pieri 1898]; for discussion of Pieri’s work see [Marchisotto and Smith 2007]) and in
closely-related work by e.g. Veblen [Veblen 1904] and Dedekind [Dedekind 1888].
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An important point to note about the interpretation-theoretic technique used by
Hilbert here is that it presupposes that the relation of deducibility in question is
“formal” in the sense that it is unaffected by the reinterpretation of geometric terms.
It is this that guarantees that the sentences deducible from AX will express theorems
of R under the reinterpretation, given only that the members of AX do. But the
deducibility relation is not, for Hilbert in 1899, “formal” in the sense of “syntactically
specified;” there is no formal language at this point, and no explicit specification of
logical principles. We will use the term “semi-formal” for such a relation. The first
thing, then, that Hilbert’s interpretations (or models) shows is that a given sentence
is not semi-formally deducible from a collection of sentences.

Hilbert’s models also show, importantly, the satisfiability of the conditions implicitly
defined by the collections of sentences in question. Given a collection AX ∪ ¬A of
sentences whose geometric terms appear schematically, a Hilbert-style reinterpreta-
tion on which each member of that collection expresses a truth about constructions
on the real numbers demonstrates the satisfiability of the condition defined by the
collection. Equivalently, it demonstrates that the condition defined by AX can be
satisfied without satisfying the condition defined by A.4

Hilbert’s technique, then, demonstrates the independence of a given sentence from
a collection of sentences in two different senses. Taking as an example the question
of the independence of Euclid’s parallel postulate (PP) from the remainder of the
Euclidean axioms (EU) for the plane, the two senses, with our labels introduced,
are:

• IndependenceD: (PP) is not (semi-formally) deducible from (EU);

• IndependenceS: The condition defined by (EU) ∪ ¬(PP ) is satisfiable.

IndependenceS is the stronger of the two notions, though they are extensionally
equivalent in the setting of an ordinary first-order language.5

4This understanding of consistency in terms of satisfiability was the more central concern for
e.g. Dedekind and Veblen

5The equivalence is given by the completeness of first-order logic. Hilbert’s setting is that of
natural language without strictly-defined relations of deducibility or satisfiability, so the question
of the extensional relationship between the two independence relations is imprecise. The expressive
richness of that language, however, is well beyond that of (what was to become) first-order logic,
giving the second relation, in that setting, a narrower extension than the first.
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4 Frege

Gottlob Frege’s work, in the same period, focuses on a notion of independence that’s
distinct from both of the relations demonstrable via Hilbert’s technique. For Frege,
independence is a relation not between sentences but between thoughts, i.e. be-
tween the kinds of things expressible by fully-interpreted sentences. Each thought,
as Frege understands it, has a determinate subject-matter: thoughts about geomet-
ric objects and relations are entirely distinct from thoughts about collections of real
numbers. Hence the re-interpretation of sentences along Hilbert’s lines will result in
the assignment to those sentences of different thoughts. Finally, logical connections
between thoughts, connections like dependence and independence, provability and
consistency, are sensitive as Frege sees it to the contents of the simple terms in the
sentences used to express those thoughts. Hence Hilbert’s re-interpretation strat-
egy amounts, from Frege’s point of view, to shifting attention from the geometric
thoughts in which one was originally interested to an entirely different collection of
thoughts, a collection whose logical properties are no guide to those of the original
target thoughts. As a result, Frege takes it that Hilbert’s technique is unsuccessful
in demonstrating consistency and independence. In Frege’s words,

Mr. Hilbert appears to transfer the independence putatively proved of his
pseudo-axioms to the axioms proper . . . This would seem to constitute a
considerable fallacy. And all mathematicians who think that Mr. Hilbert
has proved the independence of the real axioms from one another have
surely fallen into the same error.6

Or, as we might more calmly put it, the relation that Frege calls “independence”
is neither of the relations, also reasonably known by that name, demonstrable via
Hilbert’s technique. For Frege, the parallels postulate is independent of the other
axioms of Euclid iff it isn’t provable from those axioms (and in this he agrees with
Hilbert), but the notion of proof that Frege works with is a very rich one: the
question of whether a given thought is provable from others can turn on non-trivial
conceptual analyses of the components of those thoughts.7 Hence a sentence A can

6Frege [1906] p. 402. The “pseudo-axioms” as Frege calls them are Hilbert’s partially-interpreted
sentences; the “real axioms” are thoughts about points, lines, and planes.

7Rigorous deduction, for Frege as for Hilbert, cannot make reference to the meanings of non-
logical terms. But the demonstration that a given thought τ is provable from a collection Σ of
thoughts can (and, in the logicist project, regularly does) involve non-trivial analysis of τ and/or
of Σ en route to the expression of those thoughts in the sentences that will appear in the rigorous
deduction. See [Blanchette 1996], [Blanchette 2012].
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be IndependentD and even IndependentS of a set AX of sentences while the thought
τ(A) expressed by A fails to be independent in Frege’s sense of the set τ(AX) of
thoughts expressed by the members of AX. We introduce a term for this third kind
of independence:

• Frege− independent: The thought τ(A) is not provable, in Frege’s rich sense,
from the set τ(AX) of thoughts.

To fix ideas with a vivid example: consider the sentences

(BETA) Point B lies on a line between points A and C.

(BETC) Point B lies on a line between points C and A.

For Hilbert, a model can immediately show that (BETC) is independent of (BETA),
in both of the relevant senses: (BETC) is not semi-formally deducible from (BETA),
and the condition defined by (BETA)∪¬(BETC) is satisfiable.8 For Frege on the
other hand, a model can show no such thing. Though Frege does not discuss this
example, it is compatible with his views that the thoughts expressed by sentences
(BETA) and (BETC) are the same thought, and hence provable immediately from
one another. For an alternative example close to Frege’s heart: each of the Dedekind-
Peano axioms for number theory is IndependentD and IndependentS from the others,
but this straightforwardly-demonstrable fact is in no tension with Frege’s logicist
thesis, according to which the thoughts expressed by those axiom-sentences are not
Frege-independent of one another.

5 The Parallels Postulate

The paradigm independence question prior to the twentieth century was the ques-
tion of the provability of Euclid’s parallels postulate from the remainder of Euclid’s
axioms. The firm conviction, by the end of the nineteenth century, that the par-
allels postulate is not provable from the rest of Euclid rested in large part on the
construction of - as we now put it - “models of non-Euclidean geometry.” But the
canonical early models, and the lessons drawn from them, were in interesting ways
different both from the later Hilbert-style models, and from their descendants, the
models that we take for granted today. We begin with a sketch of some aspects of

8This is a simplification of Hilbert’s more-interesting result that the biconditional [(BETA) iff
(BETC)] is independent of the other axioms of order. See [Hilbert 1899] §10.
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the well-known history, in order to make some observations about the early use of
models.

In the middle of the 18th century, J. H. Lambert famously examined the indepen-
dence question by working out some of the fundamental implications of (¬PP ), the
negation of the parallels postulate.9 Working in the paradigm set by Saccheri, who
divided the alternatives to the parallels postulate (itself called the “first hypothesis”)
into the second hypothesis, in accordance with which the internal angles of a triangle
would sum to more than two right angles, and the third hypothesis, according to
which the angle-sum would be less than that of two right angles, Lambert notes that
the second hypothesis holds of the triangles drawn on the surface of an ordinary
sphere.10 He also, intriguingly, suggests that the third hypothesis would hold of tri-
angles drawn on the surface of a sphere with imaginary radius (i.e. a radius whose
length is a multiple of i), if such a figure were possible. Lambert does not, however,
treat the possibility of such instances as a reason to suspect that the parallels postu-
late is independent, but continues to search for a proof of (PP) from the remainder
of Euclid.

That Lambert does not see in the behavior of arcs on a (real or imaginary) sphere
any indication that the parallels postulate might be independent of the rest of Euclid
is not entirely surprising: arcs on a real sphere are not infinite; they also violate the
Euclidean principle that two points determine a unique line. Most importantly for
our purposes, there is also a relatively clear sense in which the sides of the triangle-
like figures drawn on a sphere are not “straight:” the fact that the internal angles of
such a figure sum to more than two right angles is in no tension with the principle
that real triangles will have an angle sum equal to that of two right angles. As
Katherine Dunlop has put it, regarding Lambert’s view of the question “whether the
principles that hold of figures on [the surface of a sphere] constitute a theory that is
genuinely comparable to Euclid’s”:

Lambert appears to share the consensus view that they do not. It was
not news, in the second half of the 18th century, that Euclid’s parallel
axiom did not hold of arcs on a sphere. But Lambert’s contemporaries
did not regard the arcs as lines. . . . He clearly does not take the fact that
the second hypothesis is satisfied on a spherical surface to show that it
could belong to geometry after all. ([Dunlop 2009] p. 47.)

9See [Lambert 1786]. For discussion, see [Ewald 1996b]
10Saccheri’s division was actually couched in terms of the angle-sums of quadrilaterals rather

than of triangles; the two issues are equivalent.
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In short: the sides of spherical triangles are not lines. Therefore the fact that they
behave “non-Euclideanly” gives no reason to suppose that lines might.

Similar concerns arguably attach to realizations of the third hypothesis, according
to which two straight lines in a plane can converge without intersecting. Lambert’s
view is that this kind of asymptotic approach, discussed here with respect to two
posited lines CD and AD, is contrary to the idea of straight lines:

Whoever at this point objects that CD could perhaps approach AD
asymptotically (like, for instance, the hyperbola and other asymptotic
bent lines) in my opinion changes what the logicians call the statum
quaestionis, or he deviates from Euclid . . . . I do not see how in the rep-
resentation of straight lines objections about hyperbolas can be made.
[Lambert 1786 §3]

Similarly, “[T]he idea that AD, CF are straight lines . . . cannot coexist with the idea
of an asymptotic approach. [ibid §10]

So a surface whose geodesics approach asymptotically, of the kind now familiar as
a model of hyperbolic geometry, could not have been seen from Lambert’s point of
view as a surface truly described by the negation of the parallels postulate: the only
way to describe such a surface from this viewpoint is as a perfectly well-behaved
Euclidean object whose geodesics are not lines.

Neither Lambert nor his contemporaries has the idea of a mathematical theory as
providing an implicit definition of a structure-type, or of the mathematical terms in
a theory as place-holders for the elements of satisfying structures. So the idea of
curved lines as appropriate candidates for filling such a place, i.e. as objects satis-
fying implicitly-defined conditions, can make no sense from this perspective. Also
lacking at this point is the idea that the proof of sentences one from another is unaf-
fected by the reinterpretation of the geometric terms in those sentences. This idea,
as natural as it seems now, requires an understanding of the mathematical language
as peculiarly well-behaved in various ways, including a stratification into defined and
primitive terms in such a way that none of the mathematical content resides in im-
plicit connections between the contents of those terms. In short, neither of the views
essential to the idea of reinterpretation as a method for proving independence, i.e.
the idea of axioms as implicit definitions and the idea of rigorous proof as surviving
reinterpretation, is part of the standard conception of mathematical theories in the
middle of the eighteenth century.

The idea of geometry as a reinterpretable theory rather than a doctrine of space,
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and the idea that good principles of proof should survive re-interpretation, were
both helped along by the success of projective geometry and its duality principles in
the early 19th century: it is irresistible to view the counterpart theorems obtained
by switching “point” with “line” etc. in the projective setting as also obtained by
coordinated re-interpretations of those terms. The idea that an axiom and its dual
are in some sense “the same” axiom under different interpretations is the beginning
of a certain broadening in the understanding of the role of the term “line” within
axioms. Also critical in this progression toward the loosening of the conception
of geometric axiom was Riemann’s reconceptualization of geometry as a theory of
arbitrary n-dimensional manifolds, of which space itself forms merely a particular
instance.11

The final piece of background to mention before looking at the role of models in
the middle of the nineteenth century is the work of Lobachevsky. Following up
on Saccheri’s third hypothesis, Lobachevsky had provided in 1840 an elegant and
deep theory involving the denial of the parallels postulate, and according to which
the angle-sum of triangles is less than two right angles. ([Lobachevsky 1840]) The
demonstration that one can go as far as Lobachevsky goes in developing the non-
Euclidean theory, without encountering contradiction, provided compelling reason
to think that the behavior of parallel lines might not, after all, be dictated by the
rest of Euclid.

Against this backdrop, the middle of the nineteenth century saw the construction
of surfaces deliberately understood as “models” of non-Euclidean geometry in the
sense of containing line-like entities which, often under an alternative understanding
of such central notions as that of distance along the surface, satisfied the postulates of
two-dimensional Lobachevskian geometry, which we will call “L.” Beltrami provides,
for example, a metric on the open unit circle that satisfies L when its open chords
are taken as lines, and another for that circle when selected arcs play the role of
lines.([Beltrami 1868a], [Beltrami 1868b]) In each case, the line-like entities are finite
on the Euclidean measure, but not on the imposed metric; triangles formed by these
entities are just what one would expect (enclosed, in the ordinary Euclidean sense,
by three chords or arcs), and the triangles’ angle-measure is on the imposed metric
essentially what it ‘actually’ is on the Euclidean metric, summing in each case to less
than two right angles. The simple geometric relations between points and lines (the
intersection of lines, the lying of a point on a line) are, similarly, understood in the

11See [Riemann 1873]. For discussion of the mathematical background to the broadening of the
concept of line, and especially the central role of the use of analysis in this reconceptualization of
geometry, see [Gray 1979].
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ordinary Euclidean way.

The most significant of the constructions at this point is Beltrami’s celebrated pseu-
dosphere and the cover he constructs on it, a surface of constant negative curvature
whose geodesics play the role of lines in L.12 In this case, the line-like entities are
very much like lines: they are “really” infinite, i.e. infinite on the ordinary Euclidean
metric, and as a result behave in the way that lines on an infinite Euclidean plane
would, given an appropriate warping of that plane. Because the curvature of the
surface is constant, it satisfies the principle of the free mobility of figures on the
plane, allowing the important proof-technique of superposition. The surface is, in
short, just what one needs in order to provide a vivid depiction of what lines would
be like if space had a constant negative curvature: they would be just as described
by Lobachevsky.

The close analogy between the geodesics on the constructed surface and the lines of
Euclidean geometry is crucial to the role played by the surface in Beltrami’s thought.
As he puts it,

The most essential figure in elementary geometry is the straight line. Its
specific character is that of being completely determined by two points,
so that two lines which pass through the same points coincide throughout
their extension. . . .

Now this characteristic . . . is not peculiar to straight lines in the plane; it
also holds (in general) for geodesics on a surface of constant curvature.
. . . [T]he surfaces of constant curvature, and only these, have the property
analogous to that of the plane, namely: given two surfaces of constant and
equal curvatures, in each of which there is a geodesic, the superposition
of the two surfaces at two points of the geodesic causes them to coincide
(in general) along its whole extension.

It follows that, except in the case where this property is subject to ex-
ceptions, the theorems of planimetry proved by means of the principle of
superposition and the straight line postulate, for plane rectilinear figures,
also hold for figures formed analogously on a surface of constant curvature
by means of geodesics.[[Beltrami 1868a], pp 8-9 of [Stillwell 1996a]]13

12For discussion of the construction, see [Stillwell 1996b]. For discussion of the place of Beltrami’s
work in the history of the independence claim, see [Scanlan 1988], [Stump 2007].

13The “straight line postulate” is the postulate that two points completely and uniquely determine
a line.
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That is to say: the figures on this surface analogous to triangles will have all of those
properties provable of Euclidean triangles with the exception of those that depend
on the parallels postulate; the geodesics will share the corresponding portion of the
Euclidean properties of lines, and so on. And that the geodesics are described by L es-
tablishes Beltrami’s central point, that the surface is a “substrate for” Lobachevsky’s
geometry, so that this theory is not idle. ([Beltrami 1868a].)

We might ask what, exactly, constructions like Beltrami’s were understood to show
in this period about the parallels postulate and its connection to the rest of Euclidean
geometry. The answer, arguably, is that there is no single precise lesson that was
drawn from these constructions, aside from the general view that they showed, in
some sense, the coherence of L and hence the independence (in some sense) of the
parallels postulate. In 1868, axiomatic theories were still not understood as providing
implicit definitions, and there was no well-developed sense of proof as semi-formal, or
of the mathematical language as usefully subject to arbitrary reinterpretation. The
constructed “models” of L were consequently not tools for demonstrating the modern
notions of IndependenceD or of IndependenceS. To get a sense of what the models
were in fact taken to show, we look briefly here at the lessons drawn by Helmnholtz
and Poincaré.

To begin with, Helmholtz continues in Beltrami’s mold to emphasize the importance
of the analogy between Euclidean lines and the geodesics on curved surfaces, and the
corresponding analogies between the figures constructed in each domain. As he puts
it, speaking specifically of Gauss’s surfaces:

The difference between plane and spherical geometry has long been evi-
dent, but the meaning of the axiom of parallels could not be understood
till Gauss had developed the notion of surfaces flexible without dilata-
tion and consequently that of the possibly infinite continuation of pseu-
dospherical surfaces. Inhabiting a space of three dimensions . . . we can
represent to ourselves the various cases in which beings on a surface might
have to develop their perception of space . . . ([von Helmholtz 1876] 308)

and

These remarks will suffice to show the way in which we can infer from the
known laws of our sensible perceptions the series of sensible impressions
which a spherical or pseudospherical world would give us, if it existed. In
doing so we nowhere meet with inconsistency or impossibility ... We can
represent to ourselves the look of a pseudospherical world in all directions
. . . Therefore it cannot be allowed that the axioms of our geometry depend
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on the native form of our perceptive faculty, or are in any way connected
with it. (ibid 319)

In short, as Helmholtz sees it, these geometric constructions show that Kant is wrong.
The pseudospherical models demonstrate that a non-Euclidean “world” is repre-
sentable to us, with the consequence that Euclidean space is not uniquely determined
by our representational capacities.

Despite having a radically different picture of the nature of geometrical truth, Poincaré
shares essentially this reaction to the demonstrative value of geodesics on curved
surfaces. Having claimed that Beltrami has shown via his pseudosphere that no
contradiction is deducible from Lobachevsky’s geometry, Poincaré continues:

This he has done in the following manner: [I]magine beings without thick-
ness living on [a surface of constant curvature] . . . These surfaces . . . are
of two kinds: - Some are of positive curvature, and can be so deformed as
to be laid on a sphere. . . . Others are of negative curvature. M. Beltrami
has shown that the geometry of these surfaces is none other than that of
Lobachevsky. ([Poincaré 1892] 405)

The result of this demonstration is, as Poincaré sees it, similarly anti-Kantian:

[W]e ought . . . to inquire into the nature of geometrical axioms. Are
they synthetic conclusions a priori, as Kant used to say? They would
appeal to us then with such force, that we could not conceive the contrary
proposition, nor construct on it a theoretical edifice. There could not be
a non-Euclidean geometry. (ibid 406-7.)

That there is in fact a non-Euclidean geometry, as demonstrated by the combination
of Lobachevsky and Beltrami, shows in Poincaré’s view the conceivability of that
contrary science, and hence the falsehood of the claim that Euclid’s geometry is
synthetic a priori.

It is worth noting that this late-19th-century inference from the existence of Beltrami-
style surfaces to the possibility or the conceivability of non-Euclidean space is by no
means a trivial one. There is nothing about those surfaces that conflicts with Euclid:
they are constructed within a purely Euclidean framework. And unless the actual
behavior of the geodesics on a pseudosphere is taken to indicate the conceivable
or possible behavior of lines, their satisfaction of L fails to tell us anything about
the coherence of non-Euclidean surfaces or spaces. The question whether geodesics
should be taken as such representatives is not a technical question but a conceptual
one: Helmholtz and Poincaré, in keeping with the emerging confidence of the late
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19th century in the richness and safety of the non-Euclidean framework, take it this
way; those with a more conservative understanding of the nature of a line could in
principle reject the inference, just as Lambert did with the sides of spherical triangles.
That the geodesics on the pseudosphere did successfully play this representative role
is due both to a certain loosening of the concept of line in the intervening century,
and to the recognizably line-like character of the geodesics themselves.

The importance of the representative capacity of the curved surface, i.e. the repre-
sentability of lines on a plane by geodesics on that surface, is emphasized by Poincaré
in his commentary on just how such a surface undermines the claim that Euclid’s ax-
ioms are synthetic a priori. In a truly synthetic a priori science like arithmetic, claims
Poincaré, there can be no such representation of an alternative possibility:

[L]et us take a true synthetical a priori conclusion; for example, the follow-
ing: - If an infinite series of positive whole numbers be taken, . . . there will
always be one number that is smaller than all the others. . . . Let us next
try to free ourselves from this conclusion, and, denying [this proposition],
to invent a false arithmetic analogous to the non-Euclidean geometry. We
will find that we cannot . . . . ([Poincaré 1892] 406.)

There is of course no difficulty in providing a model, in a modern sense, for the
negation of the principle Poincaré describes here, the least-number principle. Simply
interpret “less-than” via the greater-than relation; alternatively, take “positive whole
number” to be interpreted by the negative integers. Poincaré’s claim is that we
“cannot” represent the positive whole numbers as failing to satisfy the least-number
principle; his point is that a collection that fails this principle is not the positive
whole numbers. Lines, on the other hand, can be represented faithfully as failing to
satisfy the parallels postulate. What we get from Beltrami’s surface, on this account,
is a demonstration that Lobachevsky’s geometry is just as coherent as is Euclid’s,
not in the sense of (semi-) formal deductive consistency (which holds just as well in
the case of the “false arithmetic”), but in the sense that each provides a coherent
description of space.14

In general: the construction of Beltrami-style models of L demonstrated the inde-
pendence of the parallels postulate in a sense quite different from those later notions
of IndependenceD and IndependenceS, which notions could not in any event have
been made sense of in the setting of a traditional understanding of geometry and
its language. The independence-claim in question was instead the less rigorously-

14For Poincaré, of course, unlike Helmholtz, the further lesson to be drawn is that the choice
between the two is purely conventional: they describe the same empirical possibility for space.
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demarcated idea of the coherence of a space whose lines behave non-Euclideanly.
The role of the constructed surface in this project is to depict a genuine possibility
for space itself. Hence the kind of independence shown is very strong: from the claim
that it’s possible for lines to satisfy most of Euclid without satisfying the parallels
postulate, we conclude that one cannot prove the latter from the former, even if one
employs proof procedures much richer and more content-sensitive than are the formal
or semi-formal deductive principles favored after the turn of the twentieth century.
The result is strong enough to establish not just IndependenceD and IndependenceS,
but arguably also the Frege-independence of the parallels postulate.

But while the representational strategy just described proves a strong result, an
important weakness of the strategy is that its scope of applicability is severely limited.
There is no way via appeal to representative surfaces to demonstrate, for example,
the independence of (BETA) from (BETC), since no construction of points on a line-
like element will satisfy one of the between-ness claims without satisfying the other.
And as Poincaré points out above, no such representative strategy can successfully
depict a situation in which the natural numbers fail the least-number principle. More
generally, there is no straightforward way to extend the strategy beyond the scope
of a small part of geometry, that part in which the statement to be demonstrated
independent is one whose negation can be represented via recognizable analogues of
lines and figures.

6 The turn of the century

In addition to the developments mentioned above concerning the recognition of du-
ality principles in projective geometry and the Riemannian generalization of the
scope of geometry, the path from Beltrami to Hilbert turns on closely-related de-
velopments concerning mathematical languages and their subject-matter. Here the
developments are of both a mathematical and a logical kind. In the first cate-
gory is the development of the view of mathematical theories not as statements
about determinate collections of entities, but instead as collections of sentences that
characterize multiply-instantiable structural properties. This development opens the
way for a conception of consistency as satisfiability, and hence of independence as
IndependenceS. On the more purely-logical side is the increasingly-important idea
near the end of the twentieth century of proof as characterizable in terms of semi-
formal (or later purely formal) principles of sentential deduction, an idea that made
IndependenceD a natural and central concern.
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The modern strategy in place by the turn of the twentieth century, the Hilbert-style
method described above, is both much more broadly applicable (since it can be ap-
plied to any relatively well-regimented axiomatic theory) and more rigorous than is
the kind of appeal to constructed surfaces made by Helmholtz and Poincaré. There
is no need for a Hilbert-style model to contain recognizable analogues of elements of
an original subject-matter, and there is no conceptual question to be raised about
whether the model depicts a conceivable arrangement of the target objects and prop-
erties. As long as the sentences in question are true as re-interpreted, and the rules of
proof preserve truth under the reinterpretation, IndependenceS and IndependenceD
are immediate. Poincaré’s objections about the impossibility of representing false
synthetic a priori theories have no purchase in this setting, and Lambert’s concerns
about the representability of lines by non-lines are irrelevant both to the newly-
conceived notions of independence, and to their modern demonstration.

7 The Formalization of Logic

In the period of roughly 1880 to 1905, it became standard to apply to mathemati-
cal axiom-systems a handful of fundamental “meta-theoretical” questions, including
those of completeness (in various senses), consistency, and mutual independence.
Independence demonstrations for axioms of number theory, geometry, and analysis
were familiar by the end of this period, and proceeded in essentially the Hilbert-style
way.15

Between 1905 and 1915, the Hilbert school became increasingly interested in the
development of systems of axioms for logic itself, and specifically in the formal, i.e.
syntactic, specification of such systems. The natural question to raise at this point is
whether the independence-proving techniques that are clearly useful in mathematical
settings can be applied to systems of pure logic. Can one, for example, demonstrate
the independence of logical axioms one from another using the modern technique of
interpretation-style models?

Bertrand Russell, asked this question in 1909, responds as follows:

I do not prove the independence of primitive propositions in logic by the
recognized methods; this is impossible as regards principles of inference,
because you can’t tell what follows from supposing them false: if they are

15For discussion of these developments, see [Awodey and Reck 2002], [Mancosu et al. 2009], [Zach
1999].

15



true, they must be used in deducing consequences from the hypothesis
that they are false, and altogether they are too fundamental to be treated
by the recognized methods. (Russell to Jourdain, April 1909, as reported
in [Grattan-Guinness 1977] p. 117.)

A similar sentiment appears in Principles of Mathamatics, and again in Principia
Mathematica. ([Russell 1903] §17, [Russell and Whitehead 1910-1913] *1.)

It is not difficult to see the problem as Russell sees it. Suppose (with Russell) that the
basic idea of an independence proof is to assume some collection of claims to be true,
assume a further claim to be false, and then check to see whether any contradiction
follows. As applied to the independence of the parallels postulate, the idea is that
we are assured by the coherence of the non-Euclidean surface that no contradiction
follows from supposing that the parallels postulate is false while the rest of Euclid
is true. The role of the model on this picture is not that of re-interpretation to
show IndependenceD or IndependenceS; it is the earlier idea of a representation of a
situation in which the axioms in question are true and false respectively. Given this
understanding of an independence-proof and of the role of models, it is clear that one
cannot, just as Russell says, apply the technique to principles of logic. To assume a
handful of logical axioms true and a target logical axiom false is already to engage in
contradiction. And there is no sense in which such a collection of sentences, i.e. one
including the negation of a principle of propositional logic, can be taken to describe a
coherent situation. In short, and as Russell notes, the principles of logic - to which we
must appeal when demonstrating independence in the arenas of geometry or analysis
- are “too fundamental to be treated by” such a method.

Nevertheless, there is clearly something wrong with Russell’s idea that the “recog-
nized method” at the time of his writing cannot be applied to systems of logic. By as
early as 1905, Hilbert had already been lecturing on the use of arithmetical interpre-
tations to show the mutual independence of axioms for propositional logic. And by
1918, Bernays uses just such interpretations to demonstrate the mutual independence
of some of Russell’s own propositional axioms ([Bernays 1918]).16

Bernays’ technique for demonstrating the independence of an axiom A from axioms
A1 . . . An is essentially as follows: We give a systematic assignment of values (e.g. the
numbers 1, 2, 3) to every sentence of the language, in such a way that, for example:
each of A1 . . . An, together with every sentence deducible from these via the specified
inference rules, is assigned the value 1; A itself is not assigned 1. The immediate
conclusion is that A is not deducible from A1 . . . An.

16For discussion of Bernays 1918, see [Mancosu et al. 2009].
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The first thing to note about this strategy is that, contra Russell, it does not involve
supposing that A is false. It also doesn’t involve the representation of a state of affairs
that in any sense satisfies or exemplifies A1 . . . An; there is no need to try to make
sense of the presumably-incoherent idea of a state of affairs in which an instance of
an axiom of propositional logic is false. What is demonstrated by Bernays’ method
is simply the non-deducibility, now in an entirely formal - i.e. syntactic - sense, of
the formula A from the collection A1 . . . An of formulas.

The connection between the method of Hilbert 1899 and Bernays 1918 can be brought
out as follows. First of all, both methods are instances of what we can call the ar-
bitrary valuation strategy : That strategy, applied to a formula A and a collection
A1 . . . An of formulas, is to assign values to formulas in such a way that, for a desig-
nated value V, V is assigned to each of A1 . . . An and to each formula deducible from
them, but is not assigned to A. The two coordinated differences between Hilbert
1899 and Bernays 1918 are (i) the kind of values employed, and (ii) the nature of the
deducibility relation.

For Hilbert 1899, the value V is in each case the value “expresses a theorem of B
under interpretation I,” where B is a background theory (typically a theory of con-
structions on the real numbers) and I is the interpretation of the formulas in question
via the subject-matter of B. Deducibility is a relation not explicitly specified, but
understood in terms of self-evident principles of inference, subject to the constraint
that the principles be semi-formal, holding independently of the interpretations of
the geometric terms appearing in those formulas. The critical fact about deducibil-
ity assumed throughout is that anything deducible from a formula that expresses a
theorem of B is also a formula that expresses a theorem of B. This assumed feature
of deducibility is the guarantee that V is preserved by deducibility. The guarantee
that the target formula A lacks value V, i.e that A does not express a theorem of
B under interpretation I, is given by the facts that (a) by design, ¬A expresses a
theorem of B under I, and (b) B is, by assumption, itself consistent.

No such valuation, and no such account of deducibility, can work in the setting of
independence proofs for principles of pure logic. First of all, the designated value V
must in this setting be one that is not automatically had by all truths of logic, since
it is precisely a truth of logic that we will want to demonstrate lacks V. So V cannot
be the value “expresses a theorem of theory B under interpretation I,” for any B or
I. The relation of deducibility, in addition, cannot be merely a generally-understood
notion of (semi-formal) provability, since any such notion will count the formulas
of pure logic as deducible from everything. Bernays’ method rests on the existence
of a syntactically-specified relation of deducibility, with respect to which it is not
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trivially true that each principle of logic is deducible from everything. It also rests
on the choice of a targeted value V that has nothing to do with the “interpretation,”
in any ordinary sense, of the formulas in question: i.e. nothing to do with the idea
of those formulas as expressing truths and falsehoods about either the intended or
an alternate subject-matter.

With respect to the question, then, of whether Russell is right that the “recognized
method” is not applicable to questions of independence in systems of logic, the answer
will turn on what exactly we take to fall under the scope of “recognized method.”
Taking that method to be the very broad strategy we’ve called the “arbitrary val-
uation” strategy, Russell is wrong: the method works, as Bernays shows. Taking,
on the other hand, that method to be the more narrowly-construed instance of that
technique in which valuations are understood in terms of re-interpretations into an
assumed-consistent background theory, then Russell is right: we cannot interpret
the language in such a way that axiom-sentences of propositional logic express the
negations of theorems of a consistent background theory. Finally: given Russell’s
own, old-fashioned way of understanding the “recognized method,” as involving the
supposition of the falsehood of the target axiom and a subsequent question about
the consistency of the result, the method is clearly not applicable to principles of
logic, for the reasons Russell himself gives.

A further important difference between the method as employed by Hilbert 1899 and
its refinement in Bernays 1918 involves the kind and the strength of the independence
claims thereby demonstrated. As above, Hilbert’s technique shows IndependenceD:
it shows that A is not deducible from A1 . . . An, where “deducible from” is the semi-
formal relation described above. Similarly, Bernays’ technique shows that A is not
deducible from A1 . . . An, where “deducible from” is now the rigorously-specified
relation specific to a particular formal system. But Hilbert’s technique also demon-
strates, as we’ve discussed, the stronger result of “IndependenceS,”: it demonstrates
that the condition implicitly defined by {A1 . . . An,¬A} is satisfiable. But Bernays’
method provides no such further result: no domain is exhibited that satisfies con-
ditions implicity defined by the formulas in question. And indeed, the satisfiability
claim in question makes no sense as applied to the formulas to which Bernays applies
it: the axioms are not implicit definitions of structural conditions, and there is no
sense to be made of a domain with respect to which some of those axioms express
falsehoods.

The importance of IndependenceS is most vivid in the setting of the kind of struc-
turalist approach to mathematical theories and axioms that was beginning to take
hold at the end of the nineteenth century, and remains of central importance today.
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In Dedekind’s work, for example, the theory of natural-number arithmetic is the
theory of any and all ordered collections of objects that satisfy the natural-number
axioms, or equivalently the theory of any and all ω-sequences.17 The role of each ax-
iom on this conception is to provide a partial characterization of the type of structure
in question. Given a collection of axioms A1 . . . An, the addition of a further axiom
A would be redundant if every structured domain satisfying the former collection
already satisfied the latter. The important independence relation, from this point
of view, is the relation of non-redundancy in this sense, which is to say that it is a
matter of the satisfiability of {A1 . . . An,¬A}, i.e. of IndependenceS.

IndependenceD is the relevant kind of independence if instead the goal of the axioms
is the deductive characterization of a body of truths. In this setting, A is redundant
with respect to A1 . . . An if A is deducible from A1 . . . An, and hence independent in
the relevant sense if IndependentD of those axioms. In a setting in which axioms are
intended to provide both a deductive characterization of a theory and a definition of
the structural characteristics of its domain, both kinds of independence are relevant;
and as above, both are demonstrable via the construction of a model in the mode
of Hilbert 1899. Once we move to Bernays 1918, however, the goal of the axioms
is purely deductive (there being no sense in which the axioms of the propositional
calculus define properties of structures), and the relevant kind of independence is
just IndependenceD.

8 Summing Up

The idea with which we began was the traditional idea that the development of
model-theoretic methods around the turn of the 20th century provided, at last, a rig-
orous way of answering old independence questions. The contrary proposal suggested
here is that this is not quite the right way to view the developments of the period
1870 - 1920. Instead of a single notion of independence that’s given increasingly-
rigorous treatment, we have a handful of different independence questions, some of
which are susceptible to rigorous treatment, and some of which are not. As our
methods have changed, so too have the questions that we are in a position to ask
(and answer).

Passing from 1870 to 1899 to 1918, we see the following three lines of develop-
ment.

17See Dedekind [1888].
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First, we see a gradual increase in rigor. By 1899, questions of independence are
divorced from questions about the representability of the subject-matter (e.g. of
lines by geodesics, of positive numbers by negative numbers), and linked to the more
tractable notion of reinterpretation. By 1918, the appeal to an informal notion of
provability is replaced by appeal to an explicitly-defined relation of formal deducibil-
ity.

Secondly, we see an increase in the scope of the methods. In 1870, the canonical
independence-proof technique applies to the parallels postulate and to that small
collection of geometric propositions whose negation can be represented as holding on
something recognizably like a surface. By 1899, we have a technique that applies to
all of geometry and arithmetic. And by 1918, the standard technique allows us to
prove independence even of the axioms for formalized systems of logic.

But, thirdly, we see in this period a gradual decrease in the strength of the inde-
pendence claims demonstrable by the emerging methods. In 1870, as understood
e.g. by Helmholtz, a model establishes a strong modal claim, i.e. the claim that
space might really be a certain way, and that we can conceive of its being that
way. By 1899, the method exhibited in Hilbert’s Foundations of Geometry makes no
claim to establishing such a strong claim about the possible configuration of space
or about our conception of it; the claims made via the new method are claims of
non-deducibility and of the satisfiability of implicitly-defined conditions. Finally,
the method employed by Bernays in 1918 provides us with clear demonstrations of
non-deducibility; it is neither intended to provide, nor is it capable of providing, any
modal results about the subject-matter of the theory or any conclusions about the
satisfiability of structural conditions.

If the oldest versions of the question of the independence of the parallels postulate
are questions whose positive answer would establish the possibility or conceivability
of non-Euclidean space, then they are not the questions answerable via either the
method of 1899 or the method of 1918. And if the questions asked of arithmetic
and geometry by Deekind and Veblen have to do with the satisfiability of conditions
implicitly defined by the axioms in question, then those questions, decisively answer-
able via the method of 1899, are not answerable via the method of 1918.18 The
weakest of our independence relations, that of pure non-deducibility in a rigorously-
specified formal system, is also the cleanest, and the most crisply demonstrable. It is
natural to take it to be, in some sense, a refinement of older and more inchoate ques-
tions about independence. But if the suggestions made here are accurate, then the

18See [Dedekind 1888], [Veblen 1904].
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gap between the independence-claims cleanly demonstrable via the modern methods
and the independence-claims that originally motivated much geometric work prior
to the end of the 19th century is quite large; and it is sufficiently large that we
cannot take the newer methods to be merely cleaned-up ways of answering the old
questions.
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