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Logical Consequence 

Patricia A. Blanchette 

Introduction 

 Whenever one asserts a claim of any kind, one engages in a commitment 

not just to that claim itself, but to a variety of other claims that follow in its wake, 

claims that, as we tend to say, follow logically from the original claim. To say that 

Smith and Jones are both great basketball players is to say something from 

which it follows that Smith is a great basketball player, that someone is a great 

basketball player, that there is something at which Smith is great, and so on.  

This general fact, that certain claims follow logically from others, is the 

central concern of a theory of logical consequence. Logical consequence is just 

the relation that connects a given claim or set of claims with those things that 

follow logically from it: to say that B is a logical consequence of A is simply to say 

that B  follows logically from A. All of our ordinary reasoning turns on the 

recognition of this relation. When we notice, for example, that a certain prediction 

follows from a given theory, that a particular view is a consequence of some 

initial commitments, that a collection of premises entails a given conclusion, and 

so on, we are engaged in reasoning about logical consequence.  

The other logical properties and relations whose recognition is central to 

ordinary reasoning are closely related to, and can be defined in terms of, logical 

consequence. We say that an argument is valid iff its conclusion is a logical 

consequence of its premises; a set of claims Γ entails a claim α iff α is a logical 

consequence of Γ; a set of claims is consistent iff no contradiction is a logical 

consequence of it, and a claim α is independent of a set of claims Γ iff α is not a 

logical consequence of Γ. Finally, a claim is a logical truth iff it is a logical 

consequence of the empty set of claims.  

 The investigation of logical consequence and related notions consists 

largely in the attempt (a) to give a systematic treatment of the extension of this 

relation, i.e. of the issue of which claims do in fact follow logically from which 
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others; and (b) to give an informative account of the nature of the relation.  There 

is much room for debate about both of these issues. Though there is no doubt 

about the fact that some claims do in fact follow logically from others, and 

(perhaps more obviously) that some sets of beliefs are inconsistent, that some 

arguments are definitely not valid, and so on, there is room for disagreement 

about cases. Philosophers have disagreed, for example, about whether certain 

purely mathematical claims are logical consequences of apparently non-

mathematical claims. They have disagreed about whether existential claims 

about properties follow logically from ordinary predications. And so on.  

To give a determinate answer to each and every question of the form 

"Does this follow logically from that?" will require, among other things, a decision 

about the precise boundaries separating logical consequence from set-theoretic 

or mathematical fact, and a decision about the metaphysical commitments of 

various kinds of claims. The project of clarifying the extension of the logical-

consequence relation thus turns to some extent on issues outside the scope of 

the philosophy of logic proper, on issues, for example, that fall within the camp of 

pure metaphysics, philosophy of mathematics, and related fields. But some of the 

central questions about the extent of the relation depend for their answers on the 

second of the two topics noted above, namely on the issue of the nature of 

logical consequence. Reflection on some clear, easily-recognized cases of 

logical consequence (e.g. that Socrates is mortal follows logically from the pair of 

claims All humans are mortal and Socrates is human) easily reveals some 

straightforward necessary conditions for logical consequence. It is 

uncontroversial, for example, that the logical consequences of true claims must 

themselves be true. That is, as we can put it briefly, that the relation of logical 

consequence is truth-preserving. But things get more difficult, and more 

contentious, when we try to fill in more details.  Some of the disagreements here 

turn, for example, on questions about whether the conclusion of a valid argument 

must in some sense be "about" the same subject-matter as are its premises, and 

about whether there is a clear sense in which the fundamental principles of logic 

must hold independently of any particular subject-matter, to be, as it is often put,  
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"topic-neutral." Further disagreements arise about whether, and in what sense, 

logical truths must always be necessary truths, and so on. Different answers to 

these questions will deliver different views about the precise extension of the 

logical-consequence relation, and will consequently give rise to different 

systematic treatments of consequence in the form of formal systems of logic. 

The purpose of this chapter is to provide a brief introduction to the central 

issues surrounding the nature and the extension of logical consequence, and to 

the role of formal systems in the investigation of consequence. 

 

Early Formal Systems and Accuracy 

 A formal system of logic consists of a rigorously-specified formal language 

(i.e., a collection of formulas defined solely in terms of their syntax) together with 

a deductive system (i.e., a specification of those series of formulas that will count 

as deductions of particular formulas from collections of formulas). Since the end 

of the nineteenth century, formal systems have been widely used as means of 

codifying and analyzing the relation of logical consequence and its associated 

notions. 

 The earliest formal systems, e.g. those of Gottlob Frege (1848-1925) were 

intended to give a way of rigorously demonstrating relations of logical 

consequence – i.e., of demonstrating of particular claims that they were indeed 

logical consequences of particular sets of claims. The intention in designing the 

system was, to put it somewhat loosely, that the system would include a 

deduction of a formula ϕ from a set Σ of formulas only if ϕ was indeed a logical 

consequence of Σ. Deducibility within the system was to have been a reliable 

indicator of logical consequence. 

 The "somewhat loose" character of the above description is due to the fact 

that that the formulas themselves – i.e. strings of marks on paper – are not in fact 

the items that bear the logical consequence relation to one another. Thus we 

cannot, strictly speaking, describe the goal of system-design as one of making 

sure the deducibility-relation is included in the logical-consequence relation. As 

Frege saw it, the items that bear logical relations to one another are nonlinguistic 
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propositions, the kinds of things that are expressed by fully-interpreted 

sentences, and that are the objects of the propositional attitudes. And, as Frege 

saw it, his formulas as they appeared in deductions always expressed 

determinate propositions. Thus the Fregean goal for an adequate formal system 

can be described, now accurately, as follows: a formula ϕ is to be deducible from 

a set Σ of formulas only if the proposition expressed by ϕ is a logical 

consequence of the propositions expressed by the members of Σ.1 

 It is, in principle at least, a straightforward matter to check whether a 

system satisfies this requirement. Since the deducibility relation is typically 

defined in the familiar way in terms of axioms and rules of inference, the quality-

control check is (in principle, at least) simple: one checks to see that every 

proposition expressible by an axiom is a truth of logic, and that each rule of 

inference countenances the deduction of a formula α from an n-tuple of formulas 

β1…βn only if the proposition expressed by α is a logical consequence of those 

expressed by β1…βn. 

 Frege himself did not offer any uniform method for carrying out this 

"checking", i.e. for demonstrating that a given proposition is in fact a truth of 

logic, or that a given proposition does in fact follow logically from a particular 

collection of propositions. He seems to presume that the very simplest cases of 

logical truth and of logically-valid inference are obvious when encountered. The 

accuracy of the formal system was to have been established by simply pointing 

out that the propositions expressed by axioms were indeed obvious truths of 

logic, and that the rules of inference obviously generated only logical 

consequences from premises. The importance of the formal system was, in large 

part, that once an audience had granted the handful of (ostensibly) immediately-

obvious logical principles required for axioms and rules of inference, it was a 

straightforward matter to demonstrate the validity of considerably complicated 

and non-obvious arguments. The accuracy of the system as a whole rested 

simply on the logical status of the axioms and rules of inference, and the validity 

                                            
1 See Frege's Grundgesetze Vol I, esp the Introduction and §§14, 15, 18, 20. 
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of extremely complicated arguments was guaranteed by the accuracy of the 

system. 

 As it turned out, Frege's favored formal system (that of the Grundgesetze 

der Arithmetik of 1893/1903) was not in fact accurate. His deducibility relation 

contained a subtle but important flaw, with the result that the system contains 

deductions of both a formula ϕ and its negation ~ϕ from the empty set of 

premises. And since the propositions expressed by such pairs of formulas cannot 

both be logical truths, Frege's deducibility relation cannot be considered a 

reliable indicator of logical consequence. Some of the fundamental claims that 

Frege took to be "obvious" logical truths were in fact falsehoods.2 

Successors to Frege's system of course avoid this particular error, and a number 

of them offer presumably-accurate indications of logical consequence. Before 

turning to a discussion of contemporary formal systems, two features of Frege's 

approach to formal systems are worth noting. 

 The first is the Fregean view of the bearers of the logical relations. Of 

central concern in the philosophy of logic, the question is this: what kinds of 

things, exactly, are the logical truths, the relata of the logical-consequence 

relation, the components of valid arguments, and so on? Frege's answer is, as 

noted above, that these bearers of logical relations are a particular kind of 

abstract object, namely, nonlinguistic propositions. The attraction of this view 

stems from the fact that these propositions are also, as Frege and most 

proposition-theorists see it, both the semantic values of our utterances and the 

objects of our propositional attitudes. The combination of these views gives an 

easy explanation of the fact that not only our assertions, but also our beliefs, the 

contents of our hopes and fears, and so on, can have logical implications. The 

view also helps to make sense of the apparent logical connections between 

                                            
2 The problem arises from Frege's assumption that to every predicate or open sentence there 

corresponds a set-like entity called an extension. As Russell's Paradox shows, this assumption is 

false. See Russell's letter to Frege of 16 June 1902 and Frege's response of 22 June 1902 (both 

translated and printed in Philosophical and Mathematical Correspondence pp 130-133). See also 

Frege, Grundgesetze Vol II, Appendix (trans in Basic Laws of Arithmetic at pp 127-141). 
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these different kinds of entities: the very thing that forms the content of one 

person's desire can logically contradict the content of another's assertion and of 

yet a third person's belief; and the straightforward explanation of this, on the 

propositional view, is that the desire, the assertion, and the belief all have 

propositions as their contents. But the view is not without problems. The central 

difficulty with the view of nonlinguistic propositions as the bearers of the logical 

relations is that, arguably, it is doubtful that there are such things as nonlinguistic 

propositions. Reasons for doubting the existence of propositions stem primarily 

from the difficulty of giving clear criteria of individuation for propositions, from 

general worries about abstract objects, and from considerations of ontological 

parsimony.3 

Skepticism about nonlinguistic propositions leads to the alternative view 

that sentences are the bearers of the logical relations. Some caution is required 

here, however, about precisely what is meant by the claim that sentences are 

logical truths, are logical consequences of one another, and so on.  Taking a 

sentence to be simply a series of marks or sounds, the view that the logical 

relations are borne by sentences is untenable. The string of symbols "All men are 

mortal" does not, by itself, have any logical implications, any more than does the 

string "Axz%f." Though it is tempting to view the first string as having a rich 

collection of logical implications, it is important to note that this temptation is felt 

only when we take the sentence to be not merely a string of shapes on paper, 

but rather to be something with a determinate meaning. A bare series of symbols 

does not have any logical properties at all, though a string of symbols together 

with the right kind of semantic value certainly does. The view that the logical 

relations obtain between sentences, then, is only a reasonable view if by 

"sentence" we mean something like "series of symbols together with a 

determinate meaning." The view, in short, is that the bearers of the logical 

relations are meaningful sentences. 

 The two views in question (that nonlinguistic propositions are the primary 

bearers of the logical relations, and that sentences together with their meanings 

                                            
3 See: Quine "On What There Is," and Philosophy of Logic Ch. 1; also Cartwright, "Propositions." 
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are the primary bearers of the logical relations) are not importantly different if, as 

is sometimes done, one takes the meanings of sentences just to be nonlinguistic 

propositions. But if one takes the meaning of a sentence to be something non-

propositional, for example a pattern of use in a given population, then the two 

views are importantly different, with the first but not the second committed to the 

existence of something like Fregean propositions. The latter understanding of 

"meaning" is of course required by those whose view is motivated by skepticism 

about the existence of nonlinguistic propositions. 

 Despite the intrinsic interest of this issue, the difference between the two 

views (propositional and sentential) of the bearers of the logical properties and 

relations will not be terribly important in what follows, and we will not pause here 

to adjudicate between them. The important point about both views is that they 

are fundamentally "semantic" in the sense that they construe the logical relations 

as obtaining either between meanings themselves (propositions), or between 

pairs of syntactic items and meanings. And this is as it should be: as noted 

above, the logical relations do not obtain between bare syntactic items, but only 

between items which make some determinate claim on the world; which are, in 

brief, meaningful. In what follows, we shall simply continue our practice of 

referring to the relata of the logical relations as claims, taking the word to be 

ambiguous between nonlinguistic propositions and meaningful sentences. Except 

where noted, everything said below will apply on either reading. 

 The second feature worth noting here about the conception of logic 

underlying Frege's and similar formal work concerns the distinction between the 

pretheoretic relation of logical consequence and the various relations of formal 

deducibility given by particular formal systems. The relation of logical 

consequence is pretheoretic in the sense that neither the relation itself, nor our 

recognition of the relation, depends upon the existence or the deliverances of 

formal systems. Similarly for the related notions of logical truth, consequence, 

consistency, and so on. When we infer Katy is wise from the pair of claims All of 

John's children are wise and Katy is a child of John's, we recognize a connection 

between these claims that would have held whether or not anyone had ever 
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invented formal systems, and whether or not any of those systems had 

pronounced the inference valid. Similarly for the ordinary notions of 

inconsistency, validity, entailment, and so on that we recognize in everyday 

reasoning. These logical properties and relations link our assertions, beliefs, and 

theories one to another in ways that do not depend upon the results of work in 

formal logic. The dependence is, rather, the other way round: standard systems 

of formal logic will count the argument just noted (or a formalized version of it) as 

valid because those systems are designed to accurately reflect the pretheoretic 

logical properties and relations. It is only with respect to this sense of a system-

independent notion of logical consequence that we can make sense of the idea 

of a formal system's being accurate or inaccurate, since the accuracy of the 

system is a matter of the extent to which its relation of formal deducibility reliably 

indicates the pretheoretic relation of logical consequence. And, of course, it is 

only against the background of such a system-independent notion of logical 

consequence that we can agree with Frege's later assessment of his own formal 

system as inaccurate in the way noted above. 

 
Contemporary Formal Systems 

 Contemporary formal systems differ from Frege's in two ways that are 

relevant to the issue of their accurate reflection of the logical properties and 

relations. First of all, we do not, these days, typically view the formulas that occur 

in deductions as each expressing unique claims. Each formula is typically 

thought, rather, to be capable of expressing a broad range of claims. The 

guidelines governing precisely which claims each formula can appropriately 

express are seldom made explicit; they are simply the rules of thumb we pass on 

when teaching students how to do "translations" between formal and natural 

languages. They are, in the typical case, rules about the fixed meanings to be 

assigned to the logical constants, the kinds of meanings assignable to the 

members of each syntactic category, rules of compositionality, and so on. These 

are the rules we have in mind when we note that, for example, "∃xFx" can be 
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used to formalize the claims There's at least one prime or Someone is French, 

but not All cows are mammals. 

 The second relevant difference between Fregean and standard 

contemporary systems is that the latter typically incorporate a model-theoretic 

apparatus. A model for a formal language is a function which, while meeting a 

variety of requirements specific to that language, assigns a truth-value to each 

closed formula of the language. The standard requirements include, for example, 

the requirement that a model assign true to a formula of the form (α & β) only if it 

assigns true to both α and β. For a quantified language, the assignment of truth-

values proceeds via an assignment of individuals and sets to the atomic parts of 

formulas.  

Instead of assessing the adequacy of formal systems in the Fregean way, 

by directly examining the relationship between deducible formulas and the claims 

they express, typical practice with contemporary systems is to assess the 

adequacy of a system by examining the relationship between deducible formulas 

and the truth-values assigned those formulas by various models. Where Σ is a 

set of formulas of a formal system S and ϕ is a formula of S, we say that ϕ is a 

model-theoretic consequence in S of Σ if every one of S's models that assigns 

true to each member of Σ also assigns true to ϕ.  We abbreviate this claim as: "Σ 

|=S ϕ." We also say that a formula ϕ is a model-theoretic truth of S if every one of 

S's models assigns true to ϕ. A central question that arises for a formal system 

with a model-theoretic apparatus is that of the coincidence between the relation 

of model-theoretic consequence and the relation of deducibility.  Abbreviating "ϕ 

is deducible in S from Σ" as: "Σ |-S ϕ", the two halves of the coincidence-claim 

form the soundness and completeness theorems for S, as follows: 

Soundness of S:  For every set Σ of formulas of S, and every formula ϕ of 

S: If  Σ |-S ϕ, then Σ |=S ϕ. 

Completeness of S: For every set Σ of formulas of S, and every formula ϕ 

of S: If  Σ |=S ϕ, then Σ |-S ϕ. 
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If one's primary interest is in devising a formal system whose deductive 

and model-theoretic consequence-relations coincide, then the soundness and 

completeness theorems are of interest in their own right. When, on the other 

hand, the purpose is the design of a formal system that will be a reliable indicator 

of logical consequence, these theorems are of interest largely because they 

allow us to infer the adequacy of one of these consequence-like relations 

(deducibility or model-theoretic consequence) from the other.  If we know that 

model-theoretic consequence within a system S is a reliable indicator of logical 

consequence, then the soundness theorem for S will give us a reliability result for 

S's deducibility relation. If on the other hand we have an independent guarantee 

of the reliability of S's deducibility relation with respect to logical consequence, 

then the completeness theorem for S will establish the reliability in this regard of 

S's model-theoretic apparatus. 

Because unlike their Fregean antecedents, standard contemporary 

systems take each formula to be capable of formalizing a wide range of claims, 

we need to introduce somewhat more complexity in formulating the questions of 

the reliability of the model-theoretic and the deductive consequence relations of 

formal systems. We cannot simply ask whether ϕ's being a model-theoretic 

consequence in S of Σ entails that the claim expressed by ϕ is a logical 

consequence of the set of claims expressed by Σ, since there are no unique 

claim and set of claims expressed by ϕ and by Σ, respectively. We want, rather, 

to ask whether this implication holds for all of the claims and sets of claims 

expressible by ϕ and Σ respectively. Similarly for the relation Σ |-S ϕ. 

 Consider, for example, the set of formulas {∀x(Fx → Gx), Fa} and the 

formula Ga. We can take these formulas to express, respectively, the claims All 

primes are odd; Seven is prime; and Seven is odd. On another occasion, we 

might use these formulas to represent the trio All sheep are mammals; Dolly is a 

sheep; and Dolly is a mammal. Each such assignment of claims to the formulas 

of a formal language is what we shall call a reading of that language. That is to 

say: a reading of a language is an assignment of claims to its closed formulas in 

a way that satisfies the usual "rules of thumb," of the kind mentioned above, for 
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that language. When we ask whether deducibility in a given formal system S is a 

reliable indicator of logical consequence, we are interested in whether this 

reliability holds for each of the readings of the language.  Similarly for the 

question of the reliability of the model-theoretic consequence relation for S.  

 Where Σ and ϕ are a set of formulas and a formula, respectively, of the 

language of a formal system S, and R is a reading of that language, by "R(Σ)" we 

shall mean the set of claims assigned by R to Σ, and by "R(ϕ)" the claim 

assigned by R to ϕ. For example: where R1 is the first reading given in the above 

example, R1({∀x(Fx → Gx), Fa}) is the set of claims {All primes are odd, Seven 

is prime}, and R1(Ga) is Seven is odd.  Our questions about the reliability of the 

deductive and model-theoretic consequence relations of a formal system S, then, 

can be expressed as the questions of whether it is generally true that: 

(i) If Σ |-S ϕ, then R(ϕ) is a logical consequence of R(Σ); and 

(ii) If Σ |=S ϕ, then R(ϕ) is a logical consequence of R(Σ). 

If (i) holds for all Σ, ϕ, and R for a formal system S, then we will say that S's 

deducibility relation is reliable. If (ii) holds for all Σ, ϕ, and R for a system S, then 

we will say that S's model-theoretic consequence relation is reliable. 

It is sometimes assumed that, at least for those formal systems standardly 

in use, the model-theoretic consequence relation is "automatically" a reliable 

indicator of logical consequence, which is to say that (ii) is obviously satisfied by 

such systems. This assumption tends to rest on the view that the relation of 

model-theoretic consequence is merely a tidied-up version of, or a successful re-

description of, the pretheoretic relation of logical consequence itself. If this is the 

case, then the question of the reliability of the deducibility relation is immediately 

reducible to the question of its satisfaction of the soundness theorem. This 

assumption of the coincidence between model-theoretic consequence and logical 
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consequence has, however, been challenged, and the grounds for inferring 

deductive reliability from soundness are by no means obvious.4 

Satisfaction of (i) and (ii) are two of the central issues to be treated in 

establishing the accuracy of a formal system that has both a deductive and a 

model-theoretic apparatus. If we are interested in the use of the system not only 

to give positive judgments of logical consequence, but also negative such 

judgments, we will be interested in the stronger biconditional versions of (i) and 

(ii).  

 The central difficulty in establishing either (i) or (ii) (or their strengthened 

biconditional versions) is that we have no independent test for satisfaction of the 

consequent of each. After all, if we already had a reliable test of logical 

consequence, we would not be in the position of devising formal systems to 

provide such a test. Nevertheless, we can in fact formulate some relatively 

straightforward necessary conditions on logical consequence, some of which can 

be used to give at least partial evaluations of formal systems. The idea, roughly, 

is that if C is some condition that must be met by the logical-consequence 

relation, then no formal system whose deductive/model-theoretic consequence-

relation fails to meet C can be said to satisfy (i)/(ii). We take a look below at a 

small sample of such conditions. 

 

Conditions on Consequence 

 The logical-consequence relation is evidently truth-preserving: if each of a 

set of claims is true, then so too are all of its logical consequences. This gives us 

a very minimal condition on formal systems: given a reading R of the language, it 

must never be the case that Σ |-S ϕ if each member of R(Σ) is true while R(ϕ) is 

false. Similarly for |=S. It is a relatively straightforward matter to check for 

satisfaction of this condition, and it is indeed satisfied by all of the standard 

                                            
4 See: Etchemendy, The Concept of Logical Consequence;  Shapiro, "Logical Consequence: 

Models and Modality;" Sher, The Bounds of Logic;  McGee, "Two Problems with Tarski's Theory 

of Consequence;" Blanchette, "Models and Modality." 
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propositional and first-order formal systems. (For issues about second-order 

systems' satisfaction of this criterion, see below.) 

 Presumably, however, we intend a much stronger connection between 

premises and conclusion than mere truth-preservation when we say that the 

latter is a logical consequence of the former. We take it, for example, that agents 

are committed to the logical consequences of the claims they explicitly avow, 

though of course we do not take them to be committed to all of the truths in virtue 

of a commitment to one of them. Hence we take it that we can discover 

unanticipated commitments simply by following out the consequences of our 

explicit claims.  Similarly for theories:  the consequences of a theory's assertions 

are entirely within the realm of claims on the basis of which the theory is to be 

found adequate or wanting, whether or not one takes theories themselves to be 

closed under logical consequence.  In short, an important feature of logical 

consequence is that, as we shall say, it transmits epistemic and theoretical 

commitment. 

 In addition to transmitting commitment, logical consequence would appear 

to be epistemically inert, in the following sense:  The logical consequences of 

things knowable a priori, or knowable non-empirically or without the aid of 

intuition, are themselves, respectively, knowable a priori, non-empirically, without 

the aid of intuition.  For any kind K of objects, things knowable without access to 

objects of kind K pass on this property to their logical consequences.  There is a 

rough sense, then, in which the logical consequences of a claim have no "new 

content" over and above that had by the original claim.  Whether this conception 

of content can be characterized sufficiently clearly, independently of the relation 

of consequence, to provide much elucidation here is unclear; for our purposes it 

will suffice to note that the consequence relation preserves the epistemic 

categories just noted. 

 And, finally, there is, it is usually agreed, a certain modal characteristic of 

logical consequence. The fundamental idea here is that there is a necessary 

connection between a claim and its logical consequences: if a claim α is a logical 

consequence of a set Γ of claims, then it is not possible for α to be false while the 
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members of Γ are true. Similarly, if an argument is valid, then it is impossible for 

its premises to be true while its conclusion is false.  

 All of these features of the logical-consequence relation give us conditions 

that must be met by any reliable deductive or model-theoretic account of 

consequence. Some of them are more easily formulable and systematically 

tested than others. We will look here briefly at the criterion given by the last-

mentioned condition, namely the modal character of logical consequence. 

 The relevant criteria of adequacy for the deductive and model-theoretic 

consequence relations for a system S are that: 

(i') If Σ |-S ϕ, then it is impossible for each member of R(Σ) to be true while 

R(ϕ) is false; and 

(ii') If Σ |=S ϕ, then it is impossible for each member of R(Σ) to be true 

while R(ϕ) is false. 

As usual, R is an assignment of claims (meeting the usual "rules of thumb") to 

S's formulas. Only if a formal system S satisfies both (i') and (ii') for every Σ, ϕ, 

and R will that system's model-theoretic and deductive consequence relations 

prove reliable indicators of logical consequence. Satisfaction of (i') is relatively 

easily established (or refuted): one simply checks each axiom to see that it 

expresses only necessary truths, and checks each rule of inference to see that it 

preserves this property. In the case of propositional logic, for example, one 

simply notes that the axioms (instances of a small handful of forms, like ((A & B) 

→ A)) express only necessary truths, and that the rule(s) of inference (e.g., 

modus ponens) generate only necessary consequences.  

A similar argument almost suffices for the usual first-order deductive 

systems. The only difficult point here concerns the "non-empty universe" 

assumption built into standard first-order systems. Such formulas as "(∃x)x=x" 

and "(∃x)(Fx → Fx)" are deductive theorems of standard first-order systems. 

But the claims expressible by these formulas are not uncontroversially necessary 

truths, and hence not uncontroversially logical consequences of the empty set. If 

indeed these formulas do express non-necessary truths, then standard first-order 
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systems fail to satisfy (i'), and hence fail to satisfy (i). Aside from these existential 

formulas, however, it is relatively uncontroversial that standard first-order 

systems do satisfy the modal requirement (i').5 

 In both the propositional and first-order cases, the completeness theorem 

enables us to show satisfaction of (ii') via satisfaction of (i'). So standard 

propositional systems do, and standard first-order systems either do satisfy, or 

almost satisfy (ii') as well. 

 We can also establish satisfaction of (ii') directly in certain cases, and it is 

instructive to see how non-trivial this can be, even in the case of propositional 

logic.  Here, for example, is an argument adapted from one by Richard 

Cartwright that establishes satisfaction of (ii') by standard systems of classical 

propositional logic:6 

 Let the language L be a set of formulas freely generated from a non-empty 

set of formulas by the binary operation & and the unary operation N.  Let a 

valuation be a function from L into {T, F}.  Where |= is any relation that takes sets 

of wffs to wffs, and V is a set of valuations, say that V induces |= iff: For every set 

X of wffs and every wff α, X |= α iff, for every v ∈ V, if v(x)=T for every x ∈ X, 

then v(α)=T.  Roughly speaking, the more valuations V contains, the smaller will 

be the relation induced by V; where V is empty, the induced relation is universal, 

and where V contains every valuation, the induced relation will be very small.  

Say that a valuation v is Boolean iff:  For all α and β, v(α) ≠ v(Nα), and v(&αβ) = 

T iff v(α)=v(β)=T.  Let |=B be the relation induced by the set of Boolean 

valuations. Notice that |=B is the relation of truth-table implication: to say that Σ 

|=B ϕ is to say, essentially, that any row of a standard truth-table (treating "&" as 

conjunction and "N" as negation) that assigns T to every member of Σ will assign 

T to ϕ. 

 The question of the satisfaction of (ii') by a standard propositional system is 

the question of whether, for every set Γ of wffs and every wff ϕ, if Γ |=B ϕ, then 

                                            
5 On the issue of these existential requirements, see Chapter – (Free Logic). 
6 See Cartwright, "Implications and Entailments." 
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the appropriate necessary connection obtains between the claims made by the 

members of Γ and that made by ϕ.  Here we need to know something about the 

claims expressible by L's formulas.  Let these be governed by the usual 

constraint:   

(C) For all formulas α and β, Nα expresses the negation of what α 

expresses, and &αβ expresses the conjunction of what α and β 

express. 

 Say that a valuation is admissible if it represents a possible distribution of truth-

values to the formulas, given the constraint (C) on readings.  Thus e.g. a 

valuation assigning T to some wff α and to Nα is not admissible, since no claim 

and its negation can both be true.  |=B satisfies (ii') just in case every admissible 

valuation is Boolean.  So suppose v is not Boolean.  Then either: 

(a) for some wff α, v(α) = v(Nα), in which case v is not admissible (since 

it's not possible for a claim and its negation to be both true or both 

false); 

or 

(b) for some wffs α and β, either v(&αβ)= F and v(α) = v(β) = T, in which 

case v is not admissible (since it's not possible for two claims to be true 

while their conjunction is false), or v(&αβ) = T and either v(α) = F or 

v(β) = F, in which case v is not admissible (since it's not possible for a 

conjunction of claims to be true while one conjunct is false). 

So every admissible valuation is Boolean.  QED. 

 For systems lacking a completeness theorem, e.g. typical systems of 

second-order logic, establishment of (ii'), if indeed (ii') holds, must be by some 

such direct method. The question of the modal adequacy of second-order 

systems is too large to treat in detail here, but some of the relevant concerns are 

as follows.  

First of all, a complication is that the question of precisely which claims a 

given formula can be taken to express is considerably less clearly answered for 

second-order systems than it is for first-order and propositional systems. For 
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example, the formula "∃X∀y(Xy ↔ y=y)" might, or might not, be taken as an 

appropriate formalization of the claim that there exists a set of all the self-

identical things. If it is taken to be capable of formalizing such a claim, then the 

system in question will fail (ii'), since the formula is a model-theoretic truth, but 

the claim is not a necessary truth, and is indeed a falsehood. If on the other hand 

this reading of the formula is ruled illegitimate, then this particular 

counterexample to (ii') is not available. Similarly for a large number of potentially 

problematic model-theoretic truths of second-order logic: on some construals of 

the expressive power of the language, a variety of such formulas express false 

claims. Though on such understandings of the language, the model-theoretic 

consequence relation clearly fails to reliably indicate logical consequence, this 

does not indict the deductive consequence relation, since again such formal 

systems lack a completeness theorem. The reliability of the deductive system, 

i.e. the satisfaction of (i) and of (i'), is of course to be established by looking at 

the details of particular second-order deductive systems.7 

 For any of the criteria outlined (truth-preservation, topic-neutrality, 

necessity, etc.), the task of checking the reliability of a particular deductive 

system is relatively straightforward, since satisfaction of the criteria by the 

deductive system as a whole can be traced to the satisfaction of these very 

criteria by the relatively manageable collection of axioms and rules of inference. 

Checking the reliability of model-theoretic systems, particularly in the absence of 

a completeness theorem, is often a considerably more difficult matter. Arguments 

here will sometimes turn on ad hoc features of the model-theoretic output of a 

given system. A nice example of such a feature arises in the case of second-

order logic with respect to the continuum hypothesis.8 

 The continuum hypothesis is the hypothesis that there are no sets whose 

cardinality is larger than that of the natural numbers (N) and smaller than that of 

the real numbers (R). It is generally agreed (following the work of Gödel and 

                                            
7 See Shapiro, Foundations Without Foundationalism. 
8 This example is discussed by Etchemendy in The Concept of Logical Consequence Ch 8. 
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Cohen) that the continuum hypothesis (CH) is independent of  the axioms of 

ZFC.9 

The status of the continuum hypothesis makes a difference to model 

theory.  When we ask whether a given formula is true on every model (i.e. is a 

model-theoretic truth), we are asking whether there exist models which falsify 

that formula. Thus which formulas turn out to be true on every model will depend 

to a certain extent on what kinds of models - i.e. on what kinds of sets - there are.  

Because in second-order logic we can define the properties being of 

smaller/larger cardinality than N and being of smaller/larger cardinality than R, 

there are sentences of second-order logic whose status as model-theoretic truths 

will depend on the disposition of the continuum hypothesis.  Specifically, if the 

continuum hypothesis is true, then the following sentence will be true on every 

model: 

 (1) (∀X)(X > N → R ≤ X), 
where "...> N" and "R ≤..." are abbreviations for the definable properties just 

noted. 

 If the continuum hypothesis is false, then there will be models the 

powerset of whose domain contains sets larger than N but smaller than R, and 

hence models which falsify (1).  In this case, however, the following sentence will 

be true on every model: 

 (2) (∃X) X > N → (∃X)( X > N & X < R), 
with abbreviations as above. 

 This would seem to pose a problem for the view that the model-theoretic 

truths of such a language are always logical truths – and hence for the view that 

model-theoretic consequence in such a system reliably indicates logical 

consequence.  For assuming that the continuum hypothesis really is, as above, 

independent of the axioms of ZFC, we know that neither the continuum 

hypothesis nor its negation is a truth of logic. For no truths of logic are 

independent of ZFC.  And if the continuum hypothesis is not a truth of logic, then 

                                            
9 See Chapter 3 of this volume. 
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it is not a truth of logic that every set larger than N is at least as large as R. And 

since (1) simply says that every set larger than N is at least as large as R, we 

must conclude that (1) is not a truth of logic.  Similarly: if the negation of the 

continuum hypothesis is not a truth of logic, then it is not a truth of logic that if 

there are sets larger than N, then there are sets larger than N and smaller than 

R.10 So from the fact that the negation of the continuum hypothesis is not a truth 

of logic, we must conclude that (2) is not a truth of logic either.  Hence the 

problem: Either (1) or (2) is a model-theoretic truth, but neither (1) nor (2) is a 

truth of logic. So at least one model-theoretic truth is not a truth of logic. 

 A potential response to this problem is that it simply shows that there is no 

firm boundary between set theory and logic, hence no firm boundary between 

set-theoretic truth and logical truth.  This may well be so. But it is not of much 

help for the view that model-theoretic consequence and truth in this system 

reliably indicate logical consequence and truth.  For to defend the reliability of the 

model-theoretic account, one must hold that either (1) or (2) is in fact a logical 

truth, and hence that either the continuum hypothesis or its negation is a logical 

truth. But this conflicts with the uncontroversial independence-results which 

prompt the problem in the first place. If logical truth and set-theoretic truth come 

to the same thing, then the independence results demonstrate that neither the 

continuum hypothesis nor its negation is a set-theoretic truth, in which case we 

see no support for the view that either (1) or (2) is a logical truth. If there are set-

theoretic truths which are not logical truths, then the fact (if it is one) that either 

the continuum hypothesis or its negation is a set-theoretic truth does not support 

the view that either (1) or (2) is a logical truth.  In either case, this example would 

seem to give us a reason for deeming the usual second-order model-theoretic 

consequence relation unreliable as an indicator of logical consequence. This 

does not, of course, provide anything like an indictment of second-order logic in 

general, and in particular tells us nothing about the reliability of various second-

order deductive systems as indicators of logical consequence. 

                                            
10Assuming, of course, that it is not a truth of logic that there are no sets larger than N.  In this 

case, though both (1) and (2) will be truths of logic, so too will be the continuum hypothesis. 
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Different Formal Systems 

Not every formal system is designed to reflect the full extent of the logical-

consequence relation. Systems of propositional logic, for example, are intended 

to reflect only a small part of the consequence relation as it applies to the claims 

expressible in the languages of those systems. Thus one way in which two 

formal systems can differ over their assessments of logical consequence is that 

one of the systems can reflect logical consequences not reflected, and not 

intended to be reflected, by the other. Such differences need not reflect any 

underlying disagreement about the extension (or nature) of the logical-

consequence relation; they can simply be viewed as more or less partial 

treatments of an agreed-upon relation.  

But more robust disagreements are possible as well, disagreements that stem 

from fundamental disagreements about the nature of the logical-consequence 

relation itself. As noted above, there are those who hold that the logical 

consequences of a given claim must have a subject-matter that is in some sense 

relevant to that of the claim itself. On this view, for example, one cannot validly 

argue from the premises Jones is wise and Jones is not wise to Smith is athletic. 

Standard propositional and quantified systems of logic count the formalized 

version of this argument as both deductively and model-theoretically valid, with 

the result that the relevance-theorist must take those systems to be unreliable 

indicators of logical consequence. These theorists argue that more reliable 

indications of consequence and its related logical notions are given by alternative 

systems of logic, called systems of relevance logic. (See chapter 13 of this 

volume.) 

Similarly, systems of intuitionist logic are prompted by the perceived 

unreliability of classical systems. For the intuitionist, it is simply not the case in all 

domains (for example, when dealing with mathematical existence-assertions) 

that for each claim ϕ, the corresponding disjunction either ϕ or not-ϕ is always 

true. On this view, classical logic is wildly unreliable in its assessments of logical 

consequence. Intuitionist logics are those systems of logic designed to provide 
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reliable indications of logical consequence and related notions as these are 

understood by the intuitionist. (See chapter 11 of this volume.) 

Other disagreements with the classical conception of logical consequence 

have given rise to yet more alternative systems; see especially chapters 12, 14, 

15, 16 of this volume. In all cases, the same principle is at work: a given 

conception of the pretheoretic relation of logical consequence prompts the 

construction of a particular kind of formal system, one that will give an accurate, 

systematic treatment of logical consequence and its related notions. 

 

Analysis of the Relation 

 We turn, finally and briefly, to the intensional question: What is it that 

makes one claim a logical consequence of others? A response to this question 

can take one of two forms. The first, dismissive, response is that the relation of 

logical consequence is primitive and unanalysable, and hence that one cannot 

reduce the fact of A's following logically from B to any more basic facts about A 

and B, or to any more basic relationship between them. The second form of 

response is to explain logical consequence in terms of more fundamental facts 

about A and B and their relationship to one another.  

 Looking at the claims expressible by formulas of a particular formal 

system, one might be tempted to provide an analysis of logical consequence in 

terms of deducibility in that system, or in terms of truth-preservation across the 

models of that system. But a moment's reflection will make it clear that no such 

system-specific analysis of logical consequence can succeed in clarifying what 

logical consequence consists in, i.e. of what makes it the case that certain claims 

are logical consequences of others. Deducibility within just any system will not 

do, since there are countless systems, easily definable, which count exactly the 

wrong things as logical consequences of others. Similarly for model-theoretic 

consequence. So the attempt to analyze logical consequence via deducibility or 

model-theoretic consequence must take the analysans here to be deducibility or 

model-theoretic consequence within a particular well-chosen system or kind of 

system. And the question then arises of what recommends that system or kind of 



22 

system as an acceptable standard of logical consequence. The attempt to 

answer this question, however, threatens to return us to our original question, 

that of what makes one claim a logical consequence of others. 

 An alternative approach is motivated by the fact that logically-valid 

arguments come in patterns, patterns like Aristotle's syllogistic forms, or the 

argument-schemes validated by formal systems, or even the natural-language 

patterns emphasized in teaching critical thinking. Noticing this, it is tempting to 

define the logical properties and relations in terms of these patterns. Thus for 

example one might define the logical truths as the instances of patterns each 

instance of which is true, and similarly for logically-valid arguments. 

Whether such a characterization will be extensionally accurate will turn on 

what counts as a "pattern." The first difficulty here is that patterns themselves are 

definable only for a given language, and facts about which claims and arguments 

instantiate the same pattern will vary with the language in question. Consider the 

argument 

Jones and Smith are of the same height 

Jones is 6' tall    

Therefore, Smith is 6' tall. 

Let L1 be a language in which this argument can be formalized as: 

 h(j) = h(s) 

 h(j) = a 

 h(s) = a, 

while L2 formalizes it as: 

 H(j, s) 

T(j) 

T(s). 

Making the obvious parallel assumptions about the other kinds of claims 

formalizable by these series of formulas in L1 and L2, we see that though each 

argument formalizable by the L1 series is truth-preserving, this is not the case 

with the L2 series. So the question of whether our original argument exhibits a 
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pattern each instance of which is truth-preserving, and hence (on the current 

proposal) the question of whether that argument is valid, will depend on which 

language we have in mind when characterizing the "pattern." The first problem, 

then, with the pattern-analysis of the logical relations is that its deliverances will 

depend in unwanted ways on the language we have chosen to focus on.11 

There will indeed be languages for which such a pattern-characterization 

of the logical relations is extensionally accurate, languages in which the 

sentence-patterns (e.g. "(α & β) → α)") each of whose instances is true will turn 

out to be patterns each of whose instances expresses a logical truth. The clear 

candidates here are the formal languages of modern logic. Things are less tidy 

for languages not intentionally designed to have such a result. It is important for 

the extensional adequacy of the pattern-characterization of logical truth that, e.g., 

"Smith did it for Jones' uncle" and "Smith did it for Jones' sake" do not count as 

instantiating the same pattern. And it is important for the attempt to (non-

circularly) analyze the logical relations in terms of patterns that the different 

logical implications had by such pairs of sentences not be appealed to in 

distinguishing their patterns. In brief, the second difficulty of the pattern-analysis 

of the logical properties and relations is this: Though we can, for certain specified 

formal languages, give an extensionally-accurate characterization of the logical 

properties in terms of truth-preservation across patterns, this is no reason to 

suppose that the logical properties are due to, or explicable in terms of, 

characteristics of these sentence-patterns. For the formulas of these languages 

are expressly designed so that they will instantiate the same syntactic patterns 

when and only when the claims they express have relevantly similar logical 

properties. We formalize the two English sentences just quoted very differently 

because we recognize that they express claims with very different logical 

implications; we don't recognize the logical properties on the basis of the 

                                            
11 This difficulty remains even when the claims are, as above, interpreted sentences. For we 

presumably want a sentence S to count as a logical truth iff all sentences synonymous with it are 

as well, and this will not generally be the case on the proposed account. 
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patterns. And when we turn our attention to natural languages, it is difficult to find 

a characterization of patterns that is plausible, extensionally speaking, without 

making covert appeal to the very logical properties and relations at issue.12 

 A perhaps more promising approach is the analysis of logical truth as a 

kind of analytic truth. The difficulties of characterizing analyticity itself are legion, 

but we leave them aside here. The question is whether, granting for the moment 

the coherence of the notion of analytic truth, we can give an account of logical 

truth in terms of it. Where analytic truths are, roughly, sentences whose truth is 

due entirely to matters of meaning (as opposed to matters of "fact"), the logical 

truths will be those whose truth is due entirely to the meanings of a certain small, 

select group of terms. These terms, the "logical constants," include the usual 

"and", "or", "not", "for all", "exists", perhaps "=", and terms definable in terms of 

these. Thus while "All professors are academics" is arguably an analytic truth in 

the broad sense, "If all professors are arrogant then all professors are arrogant" 

falls into the narrower camp of logical truth, since its truth is guaranteed simply 

by the meanings of its logical constants.  

 There are at least two difficulties with this approach. The first is, as noted, 

that it is not entirely clear that the notion of analytic truth can be made sense of. 

The second is that this characterization of the logical properties and relations 

seems to appeal, once again, to the very things it is trying to characterize. To say 

that the meanings of a collection of terms "suffices for" or "guarantees" the truth 

of a sentence seems to mean little more than that the sentence's truth follows 

logically from facts about those meanings, or that its falsehood would be logically 

inconsistent with those facts, etc. And if this is right, then we cannot without 

vicious circularity give a characterization of the logical properties and relations in 

terms of meanings.  

 This last problem, the circularity of the proposed analysis, would seem 

likely to pose difficulties for virtually any attempted analysis of the tight circle of 

inter-defined logical properties and relations. For to give an analysis of logical 

                                            
12 See Etchemendy, "Logic as Form." 
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truth is to say what it is about a given truth that makes it a logical truth. Similarly 

for the notions of validity, logical consequence, inconsistency, and so on. But to 

say that certain features F of a sentence or claim make that claim a logical truth 

is to say something dangerously close to saying that the sentence's having F 

entails that the sentence is a logical truth. And if we say this, then we have 

proceeded in a very small circle. Similarly when the analysis is given as a 

"reduction."  We can try to informatively reduce the property of logical truth to a 

collection of non-logical features F of sentences or claims, holding that to say 

that a claim α is a logical truth is just to say that α has features F. And we have 

certainly not in this brief discussion exhausted all of the possible ways of fleshing 

out such an attempted reduction. But the potential difficulty faced by all such 

attempts is that of saying precisely how F and the logical relationships in 

question are related, without making recourse to anything like entailment 

between the two.  

 Analysis and reduction are typically intimately connected with the logical 

properties and relationships: we analyze complex notions in terms of simpler 

ones, or reduce some to others, in part by noting logical connections between the 

analysans and analysandum. We note facts about inconsistencies between 

affirmations of analysans and denial of analysandum, of entailments between 

claims about one and claims about the other, and so on.  If this general pattern is 

in fact a necessary feature of analysis and reduction, then the logical properties 

and relations will be analysable in terms of, and reducible to, only other members 

of the circle of logical properties and relations, and not to any outside it. If so, 

then we will have to be content with explanations of these notions that consist of 

making explicit their role in our overall semantic and other cognitive activities, but 

that do not give simple, informative answers to questions of the form "what 

makes this a logical consequence of that?" 

 

SUGGESTIONS FOR FURTHER READING 
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Perhaps the most provocative book written in recent years on the topic of 

logical consequence is Etchemendy's The Concept of Logical Consequence, 

which provides a sustained criticism of the assumption that model-theoretic 

consequence relations generally provide adequate analyses of logical 

consequence. Reactions to this criticism can be found in McGee's "Two 

Problems with Tarski's Theory of  Consequence" and Shapiro's "Logical 

Consequence: Models and Modality." The question of whether model-theoretic 

consequence relations can guarantee the required modal connection between 

premises and conclusion is treated Shapiro's paper (just mentioned) and in 

Blanchette's "Models and Modality."  

For discussion of the bearers of the logical relations, and particularly of the 

difficulties involved in supposing the existence of nonlinguistic propositions, see 

Quine's "On What There Is" and his Philosophy of Logic, esp. Ch. 1. Also see 

Cartwright's "Propositions" and Strawson's Introduction to Logical Theory, esp. 

Ch. 1. 

The classic criticism of the notion of analytic truth and related notions, 

together with an influential treatment of logical truth, can be found in Quine's 

"Two Dogmas of Empiricism." A response is found in Strawson's "Propositions, 

Concepts, and Logical Truths." 

A number of useful papers on related topics can be found in Hughes' 

Philosophical Companion to First-Order Logic. A very readable discussion of 

many of these issues can be found in Haack's Philosophy of Logics. 
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