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1 Axioms of KP and Admissible Sets

An admissible set is a transitive set A satisfying the axioms of Kripke-Platek
Set Theory (KP):

• The regular axioms of pairing and union. Explicitly, unordered pairing
and arbitrary union:

– x, y ∈ A→ {x, y} ∈ A
– x ∈ A→ ∪x ∈ A

• ∆0 Separation Axiom Schema / Axiom of Subsets: For every pa-
rameter B ∈ A and ∆0 formula φ with parameters, {x ∈ B : φ(x)} is
a set. Recall briefly that in the language of set theory, ∆0 formulas are
allowed to contain bounded quantifiers ∃x ∈ y, ∀x ∈ y.

• ∆0 Collection Schema / Bounding Schema: For all B ∈ A and ∆0

formulas φ with parameters,

[∀x ∈ B, ∃yφ(x, y)]→ [∃V,∀x ∈ B, ∃y ∈ V, φ(x, y)]

Now even though these axioms are called the axioms of Kripke-Platek Set
Theory, they were NOT introduced as alternative axioms to ZFC. Some authors,
such as Barwise, have certainly taken them this way. However both Kripke and
Platek [cite, cite] introduced these axioms (independently) with the idea that
they expressed the essential features a set needed to exhibit in order to be a
well-behaved domain of computation. As we will see a little later, there is a
natural way to interpret the natural numbers as an admissible set.

So what are these essential features? Why did Kripke and Platek care about
∆0 Separation and Collection? To address this question, we will have to intro-
duce a few more notions first.

Let A be an admissible set. A set X ⊆ A is called A-computably enu-
merable if it is Σ1-definable over A- namely, if it is definable by a Σ1 formula
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containing finitely many parameters from A. A set X ⊆ A is A-computable if
both it and its complement in A is A-c.e. In other words, a set is computable if
it is ∆1-definable over A. The members of A are the A-finite sets. A function
is said to be partial A-computable if its graph is A-c.e.

Note briefly that A generalizes ω as a domain of computation - the original
computable sets are subsets of ω, which is why we would like our more general
computable sets to be subsets of ω.

Now, we can return to the question of what the axioms of KP are intended
to capture. The point of ∆0 separation and collection is that they can be used
to prove ∆1 separation and Σ1 collection. Since the ∆1 sets are the computable
sets, ∆0 separation implies that the intersection of a computable subset of A
with an A-finite set is still A-finite. Together with ∆0 collection this implies
that the image of a finite set under a computable map is finite. This latter
property is precisely what the axioms were designed to capture; it is equivalent
to Σ1 replacement, which the axiom that Platek used in his original definition
of admissible set.

To get familiar with the axioms, let’s prove:

Theorem 1. Every admissible set A also satisfies ∆1 Separation. Equivalently,
if X is finite and Y is ∆1(A) then X ∩ Y is finite.

Proof. Since Y is ∆1, both it and its complement are Σ1-definable. So let
x ∈ Y ⇐⇒ ∃zφ0(x, z) and x 6∈ Y ⇐⇒ ∃zφ1(x, z) where each φi is ∆0(A).
Then

∀x ∈ X ∃z (φ0(x, z) ∨ φ1(x, z)

since every element of X is either in Y or not. Hence 3∃V ∈ A ∀x ∈ X ∃z ∈
V (φ0(x, z) ∨ φ1(x, z))3 by ∆0 bounding/collection. Thus

{x ∈ X : ∃z ∈ V (φ0(x, y))} = X ∩ Y

is in A by ∆0 separation.

2 Admissible Ordinals

The objects of study in classical recursion theory are sets of natural numbers,
or sets X ⊆ ω. But what if we replaced ω with α, and considered sets of
ordinals? Kripke in particular designed his axioms so that the intended models
would essentially be ordinals α that were well-behaved domains like ω. This
generalization seems to be the most straightforward, since our direct intuition
of operating on numbers applies. But our domains needs not be α strictly, just
as in classical recursion theory our domain need not strictly be ω. For example,
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the elements of ω are just symbols - we may just as well have created a notion
of computability that operates only on the even numbers, and the two would be
considered conceptually equivalent. What formalizes this intuition is the fact
that there is a computable bijection, or computable isomorphism, between the
set of even numbers and ω. In the general case also, we will consider domains
computably isomorphic to α.

To be precise, an admissible ordinal is an ordinal α for which Lα is an
admissible set. Why the switch from α to Lα? It turns out that both domains
are equivalent - we will show that there is a computable bijection between the
two sets. One advantage of using  Lα as our admissible set is that we can use
nice properties we already know about constructible sets. However, one should
always keep in mind the intuition that we are working on a domain of ordinals,
just as in the classical case - this is indispensible for developing a strong intuition
of how recursion on Lα is supposed to look.

Another reason Lα is the intended model of KP instead of α is that the
structure (α,∈) never satisfies KP outright. For example, if β, γ < α the set
{β, γ} is never an ordinal unless β = ∅ and γ = 1. Thus ordinals as sets do not
generally satisfy pairing.

Lemma 2. The ordinal α is admissible iff Lα satisfies ∆0 collection.

Proof. (→) Trivial, by definition of admissible ordinal.
(←) Consider the case where α is a limit ordinal. Recall that each Lβ is transi-
tive. Since α is a limit ordinal, it is easy to check that pairing and union hold in
Lα, by almost exactly the same proofs that they hold in L. We now check ∆0

separation. Fix a B and a ∆0 formula φ(ū, x). Then all of φ’s parameters are in
Lβ for some β < α so {x : x ∈ B∧φ(ū, x)} is in Lβ+1 and so in Lα. Note briefly
that (Lα,∈) really thinks this set is what it is because of the absoluteness of ∆0

formulas for every transitive set.
Now consider the case where α = β + 1 is a successor ordinal. We will show
(←) holds vacuously, namely it is never the case that Lα satisfies ∆0 collection.
For suppose it did. Recall that the ordinals in Lα are just those less than α.
Consider the constant ∆0 function (with parameter β) defined by f(x) = β. By
collection, β ∈ X for some X ∈ Lβ+1, which implies X ⊆ Lβ . Thus β ∈ Lβ , a
contradiction.

Theorem 3. The ordinal ω is the first admissible ordinal.

Proof. Clearly it is the first, if it is admissible, since no successor ordinal can be
admissible. We need only show ∆0 collection by the previous theorem. Recall
that Lω = Vω and both sets are equal to HF , the collection of hereditarily
definable sets. Fix an HF set B and suppose ∃yφ(x, y) for each x ∈ B. Pick
some such yi for each x ∈ B and consider the collection {yi}. Since B is finite
and each yi is hereditarily finite, this set is hereditarily finite. This set witnesses
collection and thus ∆0 collection. (In fact, while we’re at it, remember that HF
satisfies all axioms of ZF besides infinity.)
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Intuitively speaking, it is clear that HF is in recursive bijection with ω - HF
can be coded by natural numbers.

In general, recall that each Lα is well-ordered by some order <L, which is
easy to describe.

Lemma 4.

The relation <L on Lα is computable.

The map taking β ∈ α to the β’th element of Lα a computable bijection.

Proof. Omitted. The complete proof is given in Barwise. It is quite long and
technical and detail-oriented.

3 Amenability and Oracle Computability

Let X ⊆ A for an admissible set A. We define the X-computable sets to be the
the ones which are computable in the structure (A,X,∈) as a model of KP.

Not all subsets of an admissible ordinal α work well as oracles. The following
property identifies which ones do:

Definition 1. A set X ⊆ α is called amenable for α or regular if for every
U ∈ Lα, X ∩ U ∈ Lα. In other words, the intersection of such a set with any
finite set is still finite.

By ∆1 separation, all of the ∆1 sets are amenable for α. Next, we will show
that if α is a successor cardinal, then all of the c.e. sets are amenable.

Definition 2. Let α be an an admissible ordinal. The Σ1 projectum, denoted
α∗ or σ1p(α) is the least β such that there is a total α-computable one-to-one
function from α into β.

Assume A ⊂ δ < α∗. If A is α-c.e. then A is α-finite.

Proof. Let A be α-c.e. and suppose g is a computable function whose range is
A and domain is an initial segment of α. The domain of g can’t be all of α,
since then g would be a total one-to-one α-c.e. map into δ ¡ α∗, a contradiction.
So the domain of g is some β ∈ α. But the image of a finite sets under a
computable map is finite.

Theorem 5. The projectum α∗ is the least β such that some α-c.e. subset of
β is not α-finite.

Proof. By the previous proposition, we only need to find a subset of β which is
not α-finite. Let f be a one-to-one total recursive map into β. The image of
α in β is certainly c.e. - we claim further that it is not finite. Suppose for the
same of a contradiction that it is. Since f is injective, there is a partial recursive
map f−1 : f(α)→ α. But the image of a finite set under a recursive function is
finite, so f−1(f(α)) = dom(f) is finite; this is only possible if it is not all of α,
a contradiction.
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Corollary 6. There exists a non-regular α-c.e. set iff α∗ < α. In other words,
if α∗ = α then every α-c.e. set is regular. In particular, if α is a successor
cardinal then we immediately see that α = α∗.

As a final remark, if V = L then every set is amenable for α for every
admissible α, modulo some conditions on α. A proof of this is found in Sacks. In
modern computable structure theory using α recursion theory, this is a common
assumption.
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