Short Introduction to Admissible Recursion Theory

Rachael Alvir

November 2016

1 Axioms of KP and Admissible Sets

An admissible set is a transitive set A satisfying the axioms of Kripke-Platek Set Theory (KP):

- The regular axioms of pairing and union. Explicitly, unordered pairing and arbitrary union:
 - $\begin{array}{l} \ x,y \in A \rightarrow \{x,y\} \in A \\ \ x \in A \rightarrow \cup x \in A \end{array}$
- Δ_0 Separation Axiom Schema / Axiom of Subsets: For every parameter $B \in A$ and Δ_0 formula ϕ with parameters, $\{x \in B : \phi(x)\}$ is a set. Recall briefly that in the language of set theory, Δ_0 formulas are allowed to contain *bounded quantifiers* $\exists x \in y, \forall x \in y$.
- Δ_0 Collection Schema / Bounding Schema: For all $B \in A$ and Δ_0 formulas ϕ with parameters,

$$[\forall x \in B, \exists y \phi(x, y)] \to [\exists V, \forall x \in B, \exists y \in V, \phi(x, y)]$$

Now even though these axioms are called the axioms of Kripke-Platek *Set Theory*, they were NOT introduced as alternative axioms to ZFC. Some authors, such as Barwise, have certainly taken them this way. However both Kripke and Platek [cite, cite] introduced these axioms (independently) with the idea that they expressed the essential features a set needed to exhibit in order to be a well-behaved domain of *computation*. As we will see a little later, there is a natural way to interpret the natural numbers as an admissible set.

So what are these essential features? Why did Kripke and Platek care about Δ_0 Separation and Collection? To address this question, we will have to introduce a few more notions first.

Let A be an admissible set. A set $X \subseteq A$ is called A-computably enumerable if it is Σ_1 -definable over A- namely, if it is definable by a Σ_1 formula containing finitely many parameters from A. A set $X \subseteq A$ is A-computable if both it and its complement in A is A-c.e. In other words, a set is computable if it is Δ_1 -definable over A. The members of A are the A-finite sets. A function is said to be **partial** A-computable if its graph is A-c.e.

Note briefly that A generalizes ω as a domain of computation - the original computable sets are subsets of ω , which is why we would like our more general computable sets to be *subsets* of ω .

Now, we can return to the question of what the axioms of KP are intended to capture. The point of Δ_0 separation and collection is that they can be used to prove Δ_1 separation and Σ_1 collection. Since the Δ_1 sets are the computable sets, Δ_0 separation implies that the intersection of a computable subset of Awith an A-finite set is still A-finite. Together with Δ_0 collection this implies that the image of a finite set under a computable map is finite. This latter property is precisely what the axioms were designed to capture; it is equivalent to Σ_1 replacement, which the axiom that Platek used in his original definition of admissible set.

To get familiar with the axioms, let's prove:

Theorem 1. Every admissible set A also satisfies Δ_1 Separation. Equivalently, if X is finite and Y is $\Delta_1(A)$ then $X \cap Y$ is finite.

Proof. Since Y is Δ_1 , both it and its complement are Σ_1 -definable. So let $x \in Y \iff \exists z \phi_0(x, z)$ and $x \notin Y \iff \exists z \phi_1(x, z)$ where each ϕ_i is $\Delta_0(A)$. Then

$$\forall x \in X \exists z \ (\phi_0(x, z) \lor \phi_1(x, z))$$

since every element of X is either in Y or not. Hence $\exists \exists V \in A \ \forall x \in X \ \exists z \in V \ (\phi_0(x, z) \lor \phi_1(x, z)) \exists by \ \Delta_0 \ bounding/collection.$ Thus

$$\{x \in X : \exists z \in V(\phi_0(x, y))\} = X \cap Y$$

is in A by Δ_0 separation.

2 Admissible Ordinals

The objects of study in classical recursion theory are sets of natural numbers, or sets $X \subseteq \omega$. But what if we replaced ω with α , and considered sets of ordinals? Kripke in particular designed his axioms so that the intended models would essentially be ordinals α that were well-behaved domains like ω . This generalization seems to be the most straightforward, since our direct intuition of operating on numbers applies. But our domains needs not be α strictly, just as in classical recursion theory our domain need not strictly be ω . For example,

the elements of ω are just symbols - we may just as well have created a notion of computability that operates only on the even numbers, and the two would be considered conceptually equivalent. What formalizes this intuition is the fact that there is a *computable bijection*, or *computable isomorphism*, between the set of even numbers and ω . In the general case also, we will consider domains computably isomorphic to α .

To be precise, an **admissible ordinal** is an ordinal α for which L_{α} is an admissible set. Why the switch from α to L_{α} ? It turns out that both domains are equivalent - we will show that there is a computable bijection between the two sets. One advantage of using L_{α} as our admissible set is that we can use nice properties we already know about constructible sets. However, one should always keep in mind the intuition that we are working on a domain of ordinals, just as in the classical case - this is indispensible for developing a strong intuition of how recursion on L_{α} is supposed to look.

Another reason L_{α} is the intended model of KP instead of α is that the structure (α, \in) never satisfies KP outright. For example, if $\beta, \gamma < \alpha$ the set $\{\beta, \gamma\}$ is never an ordinal unless $\beta = \emptyset$ and $\gamma = 1$. Thus ordinals as sets do not generally satisfy pairing.

Lemma 2. The ordinal α is admissible iff L_{α} satisfies Δ_0 collection.

Proof. (\rightarrow) Trivial, by definition of admissible ordinal.

 (\leftarrow) Consider the case where α is a limit ordinal. Recall that each L_{β} is transitive. Since α is a limit ordinal, it is easy to check that pairing and union hold in L_{α} , by almost exactly the same proofs that they hold in L. We now check Δ_0 separation. Fix a B and a Δ_0 formula $\phi(\bar{u}, x)$. Then all of ϕ 's parameters are in L_{β} for some $\beta < \alpha$ so $\{x : x \in B \land \phi(\bar{u}, x)\}$ is in $L_{\beta+1}$ and so in L_{α} . Note briefly that (L_{α}, \in) really thinks this set is what it is because of the absoluteness of Δ_0 formulas for every transitive set.

Now consider the case where $\alpha = \beta + 1$ is a successor ordinal. We will show (\leftarrow) holds vacuously, namely it is never the case that L_{α} satisfies Δ_0 collection. For suppose it did. Recall that the ordinals in L_{α} are just those less than α . Consider the constant Δ_0 function (with parameter β) defined by $f(x) = \beta$. By collection, $\beta \in X$ for some $X \in L_{\beta+1}$, which implies $X \subseteq L_{\beta}$. Thus $\beta \in L_{\beta}$, a contradiction.

Theorem 3. The ordinal ω is the first admissible ordinal.

Proof. Clearly it is the first, if it is admissible, since no successor ordinal can be admissible. We need only show Δ_0 collection by the previous theorem. Recall that $L_{\omega} = V_{\omega}$ and both sets are equal to HF, the collection of hereditarily definable sets. Fix an HF set B and suppose $\exists y \phi(x, y)$ for each $x \in B$. Pick some such y_i for each $x \in B$ and consider the collection $\{y_i\}$. Since B is finite and each y_i is hereditarily finite, this set is hereditarily finite. This set witnesses collection and thus Δ_0 collection. (In fact, while we're at it, remember that HF satisfies all axioms of ZF besides infinity.)

Intuitively speaking, it is clear that HF is in recursive bijection with ω - HF can be coded by natural numbers.

In general, recall that each L_{α} is well-ordered by some order $<_L$, which is easy to describe.

Lemma 4.

The relation $<_L$ on L_{α} is computable.

The map taking $\beta \in \alpha$ to the β 'th element of L_{α} a computable bijection.

Proof. Omitted. The complete proof is given in Barwise. It is quite long and technical and detail-oriented. \Box

3 Amenability and Oracle Computability

Let $X \subseteq A$ for an admissible set A. We define the X-computable sets to be the the ones which are computable in the structure (A, X, \in) as a model of KP.

Not all subsets of an admissible ordinal α work well as oracles. The following property identifies which ones do:

Definition 1. A set $X \subseteq \alpha$ is called **amenable** for α or **regular** if for every $U \in L_{\alpha}$, $X \cap U \in L_{\alpha}$. In other words, the intersection of such a set with any finite set is still finite.

By Δ_1 separation, all of the Δ_1 sets are amenable for α . Next, we will show that if α is a successor cardinal, then all of the c.e. sets are amenable.

Definition 2. Let α be an an admissible ordinal. The Σ_1 projectum, denoted α^* or $\sigma_1 p(\alpha)$ is the least β such that there is a total α -computable one-to-one function from α into β .

Assume $A \subset \delta < \alpha^*$. If A is α -c.e. then A is α -finite.

Proof. Let A be α -c.e. and suppose g is a computable function whose range is A and domain is an initial segment of α . The domain of g can't be all of α , since then g would be a total one-to-one α -c.e. map into $\delta \neq \alpha^*$, a contradiction. So the domain of g is some $\beta \in \alpha$. But the image of a finite sets under a computable map is finite.

Theorem 5. The projectum α^* is the least β such that some α -c.e. subset of β is not α -finite.

Proof. By the previous proposition, we only need to find a subset of β which is not α -finite. Let f be a one-to-one total recursive map into β . The image of α in β is certainly c.e. - we claim further that it is not finite. Suppose for the same of a contradiction that it is. Since f is injective, there is a partial recursive map $f^{-1}: f(\alpha) \to \alpha$. But the image of a finite set under a recursive function is finite, so $f^{-1}(f(\alpha)) = dom(f)$ is finite; this is only possible if it is not all of α , a contradiction.

Corollary 6. There exists a non-regular α -c.e. set iff $\alpha^* < \alpha$. In other words, if $\alpha^* = \alpha$ then every α -c.e. set is regular. In particular, if α is a successor cardinal then we immediately see that $\alpha = \alpha^*$.

As a final remark, if V = L then every set is amenable for α for every admissible α , modulo some conditions on α . A proof of this is found in Sacks. In modern computable structure theory using α recursion theory, this is a common assumption.