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Abstract

One of the many uses of parallel computing is to numerically solve partial differential equations. Such numerical simulations
involve communication of data among the parallel processing elements. A typical implementation requires such communication
at every iteration of the numerical algorithm. As the number of processors increases, the time and energy required for
communication turns out to be a major portion of the overall simulation time and energy. Developing strategies to reduce
communication without compromising on the quality of the solution are, thus, an important research area. In this paper, we
cast the parallel numerical solution as a problem of reaching consensus in a multi-agent system. Consequently, we propose two
“relaxed communication” schemes inspired from consensus in multi-agent systems – periodic and event-triggered – to reduce
communication and, thus, save on simulation time and energy while guaranteeing convergence to the same solution. We model
the system as a switched dynamical system and analyze properties such as stability and rate of convergence of the resulting
numerical algorithm. The reduction in simulation time and communication energy due to reduced communication is shown
through numerical experiments.
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1 INTRODUCTION

A popular application of parallel computing is the nu-
merical solution of partial differential equations (PDEs).
In most implementations, the spatial domain is usually
divided into many processing elements (PEs). In order to
compute the space derivatives of the PDE at the bound-
aries of a PE, the boundary values of the PE which have
been assigned neighboring sub-domains need to be com-
municated. Further, all the PEs need to exchange infor-
mation among each other to guarantee that the stop-
ping criterion for convergence of the numerical solver
has been met across the entire domain. Both these forms
of communication – local communication of boundary
values among neighboring PEs and global communica-
tion of convergence criterion among all the PEs – are
typically associated with a synchronization operation
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which makes a PE wait for values that are arriving from
other PEs before proceeding with the next iteration. Es-
pecially as the number of PEs increase, time spent on
such communication and synchronization typically be-
comes a major portion of the overall simulation time, e.g,
Bergman et al. (2008). Motivated by this observation, it
is of great importance to find ways to reduce communi-
cation and the associated synchronization requirements
in implementations of numerical algorithms.

Among the parallel computing community, researchers
have focused on two approaches to tackle this problem.
The first approach is that of asynchronous algorithms.
These algorithms still carry out local communication at
every iteration, but relax the synchronization require-
ment for local communication. This means that the PEs
still send data at every iteration resulting in local com-
munication, but do not wait for the updated values to be
received from other PEs before starting their next itera-
tion. Instead, they proceed with the last values that were
communicated to it. For a survey of asynchronous meth-
ods, the reader is referred to Frommer & Szyld (2000),
Bertsekas & Tsitsiklis (1989). Of relevance to this pa-



per is the application of asynchronous methods to finite
difference schemes to solve PDEs by Donzis & Aditya
(2014), Aditya & Donzis (2017), Lee et al. (2015).

While asynchronous schemes save simulation time, they
still assume that the PEs communicate at every itera-
tion. A second class of algorithms have been proposed
that relaxes the requirement of communication at every
iteration, see Demmel et al. (2008). These algorithms,
popularly known as communication-avoiding (CA) algo-
rithms, not only save on time but also on energy spent
on communication. Due to reduction in communication,
the synchronization associated with communication is
also naturally reduced.

In this paper, we cast the parallel numerical solution of
PDEs as a problem of reaching consensus in a multi-
agent system. There has been a lot of work focused on re-
ducing the communication between agents in such prob-
lems, see Nowzari et al. (2019) for a survey. Motivated
by these techniques, we design new algorithms for re-
duced communication in parallel computing. While the
algorithms we propose, also lie in the general class of CA
algorithms, we propose novel algorithms by borrowing
the techniques of periodic and event-triggered commu-
nication from consensus literature to design newer CA
schemes that are amenable to analysis of stability, con-
vergence rate and numerical error. We focus on the Ja-
cobi method for our analysis and experiments, however
the techniques we propose apply more generally. More
specifically,

• We first propose a periodic communication algorithm
where the local communication for boundary values
and global communication for exchange of conver-
gence criterion occurs periodically. Using techniques
from control literature such as lifting, we study the
stability and convergence of the algorithm.
• We then propose an event-triggered communica-

tion algorithm where the local communication hap-
pens in an event-triggered fashion. We choose a
threshold-based discrete event-triggered communica-
tion scheme, e.g. Demirel et al. (2017), where an event
for communication happens if the value to be com-
municated has changed from the last communicated
value by some threshold. With the assumption of a
bound on the outdated values from the neighbor PEs,
we show that a numerical solver with event-triggered
communication is stable and converges to the same
solution as that with regular communication.

While an event-triggered communication scheme seems
entirely new in the context of parallel computing, we
note Hoemmen (2010) and Lee & Bhattacharya (2016) as
relevant and pioneering works towards the use of periodic
communication in this area. However, our results are
quite different from these works. For instance, Hoemmen
(2010) develops s-step Krylov subspace solvers where s
is the period of communication but concludes that the

algorithm can be unstable for high values of s. We show
that our Jacobi solver with periodic communication is
always stable irrespective of the period of communica-
tion. On the other hand, Lee & Bhattacharya (2016)
design iterative solvers for quadratic optimization using
periodic communication. They are able to prove that the
solver with periodic communication converges only for
very high values of period of communication, while our
proof of convergence holds for any period of communi-
cation. We also note that a direct computation of values
from one period to another without iterating for inter-
mediate values between periods as considered in Lee &
Bhattacharya (2016) may not be tractable for large-scale
PDE solvers. On the contrary, we explicitly consider in-
termediate iterations and take them into account in our
results on simulation time.

Part of our work on periodic communication has been
presented in Ghosh et al. (2018a). We extend that work
here by providing a more general proof of asymptotic
stability and extensive numerical experiments. Initial re-
sults of our work on event-triggered communication was
presented in Ghosh et al. (2019) with implementation
details in Ghosh et al. (2018b). In this paper, we develop
the idea further and illustrate it with more numerical
experiments.

The paper is organized as follows. We begin in Section 2
by formulating the PDE problem that we use for our
analysis and experiments. Section 3 describes the two
main algorithms proposed in this paper with further
analysis in Sections 4 and 5. Section 6 demonstrates the
efficiency of the proposed algorithms through numerical
experiments. Section 7 concludes the paper with scope
of future work.

Notation: The symbol ||.||∞ stands for the infinity
norm of a vector or matrix, as will be clear from the
context. I denotes an identity matrix of appropriate or-
der. Rn denotes the n-dimensional real space. ρ(M) and
det(M) denotes the spectral radius and the determinant
of a matrix M respectively.

2 PROBLEM FORMULATION

PDEs and their discretization: Our focus is on PDEs
that can be expressed in the form

ρS(x) + ξ
∂u

∂t
=

D∑
d=1

αd(x)
∂du

∂xd
, (1)

on a bounded domain with Dirichlet boundary condi-
tions, where u(x, t) ∈ R is the dependent variable, x and
t denote continuous space and time respectively,D is the
highest order of the derivative, and S(x) is a spatially
varying function. Dirichlet boundary conditions specify
the fixed values that the solution to the PDE needs to
take along the boundary of the domain.
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Remark 1 The analysis described in this paper for the
type of PDE in (1) can be easily extended to multiple
dimensions (x, y, z) with minor modifications; hence, we
focus on the 1-D case for notational ease.

The PDE in (1) is a specific but widely studied class
of PDEs. Note that choosing ξ = 1 in (1) yields a
time-dependent PDE while ξ = 0 describes a time-
independent PDE. An example of time-dependent PDE
is obtained from (1) by setting D = 2, α1 = 0, α2 6= 0,
ξ = 1 and ρ = 0 which yields the diffusion (or heat)
equation. Similarly, an example of time-independent
PDE is obtained by setting D = 2, α1 = 0, α2 6= 0,
ξ = 0 and ρ = 1 in (1), yielding the Poisson equation.

We assume that the PDE in (1) is solved using the fi-
nite difference method with a forward difference in time
and central difference in space (FTCS) scheme. The res-
olution of discretization in time and space are chosen to
be ∆t and ∆x respectively. Denote by ui(k) the value
of the dependent variable at the k-th discrete time step
(k = 0, 1, · · · ) and i-th grid space point (i = 1, · · · , L).
For convenience, define µ = dD2 e. To enforce Dirichlet
boundary conditions, let ui(k) be constant values at ev-
ery time k for i = 1, · · · , µ and i = L − µ + 1, · · · , L.
Then, (1) can be discretized as

ρSi+ξ
ui(k + 1)− ui(k)

∆t
= α1

(
ui+1(k)− ui−1(k)

2∆x

)
+ α2

(
ui+1(k)− 2ui(k) + ui−1(k)

∆x2

)
+ · · · , (2)

for i = µ+ 1, · · · , L−µ and k ≥ 0, where Si is the value
of S(x) at the i-th spatial grid point.

For time-dependent PDEs where ξ = 1, we group the
coefficients in the discretized equation (2) and obtain

ui(k + 1) = γ1ui−µ(k) + · · ·+ γµ+1ui(k)

+ · · ·+ γD+1ui+µ(k) + γSSi, (3)

for suitably defined coefficients {γi}′s that are functions
of {αj}′s, ∆t and ∆x. Note that the FTCS discretiza-
tion of the time-dependent PDE leads to an explicit nu-
merical scheme (Thomas (2013)). For time-independent
PDEs where ξ = 0, a similar procedure of grouping co-
efficients in (2) yields an equation of the form

Si = γ1ui−µ + · · ·+ γµ+1ui + · · ·+ γD+1ui+µ, (4)

for appropriately defined coefficients {γi}′s.

Matrix-vector formulation: We now formulate the
iterations (3) and (4) in a matrix form.

• For the time-dependent PDE in (3), we stack the vari-
ables ui(k) for i = µ + 1, · · · , L − µ to define a state
vector U(k) ∈ R(L−2µ). Then (3) can be written in
short as

U(k + 1) = ĀU(k) + b̄, (5)

where Ā ∈ R(L−2µ)×(L−2µ) is the iteration matrix and
b̄ ∈ R(L−2µ) is a constant that contains terms corre-
sponding to ui(k) for i = 1, · · · , µ and L−µ+1, · · · , L
(i.e., the boundary conditions) and the source Si. The
initial condition for this time-dependent problem is
represented by U(0).

• For the time-independent PDE in (4), we can sim-
ilarly define U by stacking the variables ui for i =
µ+ 1, · · · , L− µ and rewrite (4) as

MU = v, (6)

for a suitably defined matrix M and vector v. Often
the equation (6) is solved using an iterative solver. A
popular class of iterative solvers are relaxation-type
iterative solvers such as Jacobi, Gauss-Seidel or Suc-
cessive Over-relaxation (Strang & Aarikka (1986)). In
this paper, we assume that the Jacobi method is being
used. In this case, we write M = D +R where D is a
diagonal matrix and R is a matrix with zeroes along

the diagonal. If we define Â = −D−1R and b̂ = D−1v,
then (6) can be solved iteratively as

U(k + 1) = ÂU(k) + b̂. (7)

Given the similarity of iterations (5) for time-dependent
PDEs and (7) for time-independent PDEs, from now on
we will consider the system described by

U(k + 1) = AU(k) + b. (8)

An interesting property to note is that A has a banded
Toeplitz structure.

Stability of numerical algorithm: The numerical al-
gorithm in (8) is said to be asymptotically stable if the
values of U(k) converge to a stationary point U∗ as
k →∞.

Assumption 1 The spectral radius of A in (8), denoted
by ρ(A), is less than 1.

Assumption 1 also implies thatA is Schur diagonally sta-
ble (Kaszkurewicz & Bhaya (2012)). From the theory of
linear time-invariant dynamical systems, we know that
Assumption 1 is a necessary and sufficient condition for
asymptotic stability of (8).

Parallelization: For solving (8) using parallel comput-
ing, we decompose the spatial grid among the N PEs.
For simplicity and without loss of generality, we assume
that each PE has an identical number n of consecutive
grid points. We find it useful to denote the value of the
dependent variable on the i-th grid point (1 ≤ i ≤ n)
in the I-th PE (1 ≤ I ≤ N) by uIi . However, the grid
points for i = 1, . . . , µ for 1st PE and for i = L−µ, . . . , L
for N -th PE are not considered owing to the specifi-
cation of the Dirichlet boundary conditions. Further,
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denote the vector of the values of the dependent vari-
able for every grid point in the I-th PE by UI(k) ,
[uI1(k), uI2(k), . . . , uIn(k)]> ∈ Rn×1 with suitable modifi-
cations for the I-th andN -th PEs. Finally, the entire vec-
tor of the dependent variable values for every grid point
U(k) can be expressed as [U1(k)>, U2(k)>, ..., UN (k)>]>.
Since computation of the space derivatives at the PE
boundaries requires values from PEs assigned neighbor-
ing sub-domains, communication of these values have to
take place before the next iteration begins. In typical
parallel computation, this communication happens at
every iteration k. Let BIJ denote the set of all boundary
points which the I-th PE receives from J-th PE. This
exchange of values with neighboring PEs results in local
communication. We define the state of a PE as the val-
ues of the grid points in its sub-domain. In other words,
the values of UI(k) are considered to be the state of the
I-th PE at iteration k. Further, we find it convenient
to decompose A into blocks as A = [AIJ ]1≤I≤N,1≤J≤N
where AII corresponds to the independent state of the
I-th PE and AIJ is the state of I-th PE that is depen-
dent on the J-th PE. Then, (8) can be rewritten as

UI(k + 1) = AIIUI(k) +
∑
J∈NI

AIJUJ(k) + bI , (9)

for all 1 ≤ I ≤ N where bI is the block of b corresponding
to the I-th PE and NI is the set of neighbors of the I-th
PE. We find it useful to collect all the diagonal entries
of A into a separate matrix A1 and define A2 = A−A1.

For any numerical solver, some metric has to be mon-
itored as a stopping criterion. When this metric de-
creases to a specified value called tolerance, the itera-
tions are stopped and the numerical solver is consid-
ered to have converged. Two popular choices of this
convergence metric are the change in iteration defined
as E(k) = U(k + 1) − U(k) and residual defined as
R(k) = MU(k)− v. Every PE can calculate only the lo-
cal convergence metric for the sub-domain allocated to
it. In order to ensure that the specified level of tolerance
has been met uniformly throughout the entire domain,
all the PEs need to exchange the local convergence in-
formation among themselves to come to a consensus re-
garding global convergence information. Such an oper-
ation, which is typically done at every iteration, results
in global communication. Since the PEs cannot proceed
to the next iteration before checking the global conver-
gence criterion, global communication also keeps the it-
erations synchronized, ensuring that all PEs execute the
same iteration at the same time. Now we state the pseudo
code of a typical parallel algorithm in the I-th PE in Al-
gorithm A. The evolution of the values at various grid
points described by this parallel algorithm follows the
same dynamical system as described for the centralized
algorithm in (8). Subsequently, if the centralized algo-
rithm converges to a value, this parallel algorithm will
converge to the same value in the same number of iter-

Algorithm A: Regular Communication

do
Compute UI(k + 1) as in (9)
Communicate boundary values to neighbors
Calculate local convergence criterion
Global convergence criterion

← max1≤I≤N (local convergence criterion)
while Global convergence criterion > tolerance

ations. We note that two forms of communication, local
and global, take place at every iteration of the numer-
ical solver. We call this the regular algorithm because
it involves a regular pattern of communication at every
iteration.

Analogy to Consensus: We note that our problem is
analogous to the problem of consensus in multi-agent
systems. From Olfati-Saber et al. (2007), consider the
formulationUI(k+1) = UI(k)+RI(k) whereUI(k) is the
state of agent I and RI(k) = −

∑
j∈NI (UI(k)− UJ(k))

is the state-feedback input required to reach consensus.
Then the dynamics of each agent is obtained as UI(k +

1) = P̃IIUI(k)+
∑
J∈NI P̃IJUJ(k) where P̃ is a suitably

defined matrix. This is very similar in form to (9). We
can similarly draw an analogy between the objective of
reaching the average of the initial states of all agents in
consensus problems and to reaching the tolerance value
of the convergence metric in our problem.

It has been observed that both the local communication
for exchange of boundary values and global communica-
tion for determination of convergence criterion usually
turn out to be more expensive in terms of time than
computation in a parallel computing system with many
PEs. This means that the solver spends a lot of time
communicating data among the PEs rather than doing
useful computation. We propose two methods of allevi-
ating this problem by considering the following analogy.

3 ALGORITHM DESCRIPTION

Having noted the analogy to consensus as above, we can
then also take motivation from literature on consensus
under communication constraints (Nowzari et al. (2019))
to relax the requirement of communication at every it-
eration. Instead, we propose to initiate communication
based on a criterion. When the criterion is not satisfied,
computation proceeds with the last communicated val-
ues. This corresponds to a zero-order hold at the receiver.
Because the criterion for communication is not satisfied
at every iteration, the sender PE does not send values at
every iteration. Consequently, the receiver PE also does
not receive a value at every iteration. As a result of this
relaxation in communication, the update equation in (9)
is modified as

UI(k + 1) = AIIUI(k) +
∑

J∈NI

AIJUJ(τIJ(k)) + bI , (10)
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where τIJ(k) denotes the last iteration before or includ-
ing iteration k at which PE I receives a value from PE J .
The value τIJ(k) is dependent on the criterion for com-
munication which can be quite general. In this paper, we
consider two types of criteria described below.

3.1 Periodic Communication

Our first algorithm is one in which both local and global
communication happens periodically with a period r. In
between the iterations involving communication, the re-
ceiving PE keeps using the value that was last commu-
nicated to it. Since both the sender and the receiver are
aware of the instants at which communication happens,
this algorithm can be implemented using standard MPI
two-sided communication (Gropp et al. (1999)).

Formally, in this algorithm for every iteration k,
τI,J(k) = k − (k mod r). Note that τIJ(k) is indepen-
dent of I or J in this algorithm. The regular update
equation in (8) can thus be written as

U(k + 1) = A1U(k) +A2U (k − (k mod r)) + b. (11)

As stated above, we make the global communication
also periodic with the same period r. As a result, the it-
erations in all the PEs are synchronized at the iterations
involving communication. This means that even if a PE
is faster and completes more iterations than the others,
it has to wait at the point of global communication for
the other PEs to catch up to the same iteration. The
pseudo code for the algorithm with periodic communi-
cation is shown in Algorithm B. Henceforth we refer to
this algorithm with periodic communication as the pe-
riodic algorithm for convenience. Note that the regular
algorithm in (8) corresponds to r = 1.

Algorithm B: Periodic Communication

do
Compute UI(k + 1) as in (11)
if k mod r == 0 then

Communicate boundary values to neighbors
Calculate local convergence criterion
Global convergence criterion
← max1≤I≤N (local convergence criterion)

end if
while Global convergence criterion > tolerance

3.2 Event-Triggered Communication

Our second algorithm triggers communication based on
the state of a PE. While there can be many choices on
how to choose the event triggering the communication,
we design it based on the change in values (from the last
communicated values) of the points on the boundary of
the sub-domain allocated to the sending PE. When this

change exceeds some user specified threshold δ, the val-
ues are communicated to the PEs that have been as-
signed the neighboring sub-domain; otherwise the in-
tended receiver PE keeps using the values last com-
municated from the sender PE. Since occurrence of an
event that triggers a communication is known only to
the sending PE but not the receiving PE, this algorithm
requires an advanced MPI implementation, called MPI
one-sided (Gropp et al. (2014)). This implementation of-
ten leads to a situation when a message sent from the
J-th PE at iteration k may be received at the I-th PE
at an iteration later than k. The sequence τIJ(k) used
in (10) is identified as the sequence received by the I-th
PE. We also define a separate sending sequence λIJ(k)
where λIJ(k) denotes the last iteration before or includ-
ing iteration k at which PE J sends a value to PE I. Due
to the delay in receiving a message, τIJ(k) may be differ-
ent from λIJ(k). Further, this delay is usually stochastic
and varies across different iterations and different PE
boundaries. As a result of this stochastic delay, the up-
dates in the numerical scheme becomes stochastic. As
a simplification, we consider the following assumption
about this delay:

Assumption 2 The delay in receiving a message is
bounded by a finite non-negative integer d.

The event-triggering condition determines the sending
sequence λIJ(k). Formally, we define

λIJ(k) =

{
k, if (uBIJ (k)− uBIJ (λIJ(k − 1))) ≥ δ
λIJ(k − 1), otherwise,

(12)

where δ is a designer specified threshold. The condi-
tion (12) means that when the change in the boundary
value exceeds a threshold, the current boundary value is
sent to the neighboring PE.

Note that with this rule, when the boundary grid points
have almost reached their steady state, no more events
for communication will be triggered. In other words, the
change in boundary values near the steady state does
not exceed the threshold δ. Fig 1 illustrates this phe-
nomenon. In order to fix this phenomenon and ensure
that the messages are sent infinitely often as needed for
asymptotic convergence, we enforce a lower bound on
the last received message. To this effect, we make the
following assumption:

Assumption 3 To ensure that λIJ(k) is lower bounded
by a positive constant, we superimpose periodic commu-
nication with period r.

With this assumption, the event-triggering criterion
in (12) can be rewritten as:

λIJ(k) =


k, if (uBIJ (k)− uBIJ (λIJ(k − 1))) ≥ δ

OR k mod r == 0

λIJ(k − 1), otherwise,

(13)
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Fig. 1. The basic idea showing the first attempt of even-
t-triggered communication. (a) shows the evolution of the
boundary values over iterations with the asterisks showing
the points where the threshold criterion triggers the commu-
nication (threshold of 0.1 shown here). (b) shows the values
used by the receiving PE. Note that after the value crosses
0.9 in (a), an event for communication fails to trigger because
the value never crosses the threshold of 0.1. As a result, the
receiver does not receive updated values after 0.9.

This criterion states that an event for communication
happens when the boundary changes by δ or when the
periodic condition is satisfied. The corresponding mes-
sage is then received at iteration τIJ(k).

Assumptions 2 and 3 ensure that τIJ(k) is lower bounded
by k− r− d+ 1. This intuitively means that the bound-
ary values from neighbor PEs continue to be received at
least once within r+ d steps even if the event triggering
condition is not satisfied. Such an assumption of periodic
communication on top of event-triggered communica-
tion has been made in the control literature to safeguard
against faulty components (Demirel et al. (2017)). Note
that imposing the periodic assumption on top of the
event-triggered scheme is different from periodic event-
triggered control which evaluates the event-triggering
condition periodically (Heemels et al. (2013)).

We note that λIJ(k) varies with I, J, k, except when the
condition k mod r == 0 is satisfied. In other words,
when k mod r == 0, λIJ(k) = k for all I, J in the
domain, meaning that all PEs perform local commu-
nication to exchange boundary information. Since k
mod r == 0 is thus a global event for local communica-
tion in the entire domain, we consider the global com-
munication to also take place at these iterations. The
pseudo code for this algorithm is given in Algorithm C.
We refer to the algorithm with event-triggered commu-
nication as the event-triggered algorithm for the sake of
convenience. Note that the regular algorithm in (9) is
given by this same pseudo code with r = 1 and δ = 0.

4 CONVERGENCE ANALYSIS OF PERI-
ODIC ALGORITHM

In this section, we present the convergence properties of
Algorithm B.

Algorithm C: Event-Triggered Communication

do
Compute UI(k + 1) as in (10)
if (uBIJ (k)−uBIJ (λIJ(k−1)) ≥ δ||k mod r == 0)

then
Communicate boundary values to neighbors

end if
if k mod r == 0 then

Calculate local convergence criterion
Global convergence criterion
← max1≤J≤N (local convergence criterion)

end if
while Global convergence criterion > tolerance

4.1 Formulation as a Linear Periodic System

Following the usual treatment of linear periodic sys-
tems (Bittanti & Colaneri (2009)), define the augmented

state X(k) ∈ R(L−2µ)r , [U(k)>, U(k − 1)>, ..., U(k −
r + 1)>]>. Also define B ∈ R(L−2µ)r , [b, 0, · · · , 0]>.
We can then define r matrices H1, H2, . . . ,Hr ∈
R(L−2µ)r×(L−2µ)r, such that the system (11) evolves as

X(k + 1) = HjX(k) +B, j = (k mod r) + 1. (14)

Note that the augmented state involves the terms
U(−1), · · · , U(−r + 1) which are assumed to be equal
to U(0). For simplicity, we define m ≥ 0 as the index
of the iterations involving local and global communi-
cation. For example, if r = 3, communication happens
at iterations k = 0, 3, 6, 9, . . . which correspond to
m = 0, 1, 2, 3, . . . respectively. The evolution of the
state for every r iterations can thus be obtained as

X ((m+ 1)r) = WX(mr) + V B. (15)

where W , Hr . . . H2H1 and V ,
∑r−1
j=2Hr · · ·Hj + I.

(15) is a time-invariant system that is stable if and only
if the original periodic system (11) is stable. Since this
is an easier system to analyze, we concentrate on the sta-
bility properties of (15) from here on. Before proceeding
further, we note the following properties of the matrices
Hi and W .

Lemma 1 Consider the matrices H1, H2, . . . ,Hr and
W as defined above. Then, it holds that

• ‖Hj‖∞ = 1, ∀ j = 1, · · · , r.
• ρ(W ) ≤ 1.

PROOF. The first claim follows by inspection of the
matrices H ′js. The second claim follows from the sub-
multiplicativity property of the infinity-norm as ρ(W ) ≤
||W ||∞ = ||Hr . . . H1||∞ ≤ ||Hr||∞ . . . ||H1||∞ = 1. �

4.2 Asymptotic Stability

Now we examine the asymptotic stability of (15). We
begin with the following result that simplifies the system
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we need to study.

Lemma 2 Define C , Ar1 +
∑r−1
j=0 A

j
1A2 and b̃ ,∑r−1

j=0 A
j
1b The system (15) is equivalent in asymptotic

stability to the system

U(m+ 1) = CU(m) + b̃. (16)

PROOF. The proof follows by expanding (15) and is
omitted for space constraints. �

Lemma 3 The matrices (I−A1) and (I−Ar1) commute.

PROOF. Note that (I −A1)(I −Ar1) = I −Ar1−A1 +
Ar+1

1 and (I−Ar1)(I−A1) = I−A1−Ar1 +Ar+1
1 . Since

the two products are same, the matrices commute. �

Theorem 1 Consider the time invariant system given
in (16). The system converges to the same value as the
regular algorithm in (8).

PROOF. For the regular case when r = 1, C = A2 +
A1 = A and b̃ = b. Hence the fixed point value is given
by U∗ = (I −A)−1b. For period r, the fixed point value
is given by

U = (I − C)−1b̃

=

{
I −

(
Ar

1 +

r−1∑
i=0

Ai
1A2

)}−1 r−1∑
i=0

Ai
1b

=

{( r−1∑
i=0

Ai
1

)−1

−
( r−1∑

i=0

Ai
1

)−1

Ar
1 −A2

}−1

b

=

{( r−1∑
i=0

Ai
1

)−1

(I −Ar
1)−A2

}−1

b

=
{{

(I −A1)−1(I −Ar
1)
}−1

(I −Ar
1)−A2

}−1

b

=
{

(I −Ar
1)−1(I −A1)(I −Ar

1)−A2

}−1

b

(a)
=
{

(I −Ar
1)−1(I −Ar

1)(I −A1)−A2

}−1

b

=
(
I −A1 −A2

)−1
b

=
(
I −A

)−1
b = U∗. �

where (a) follows from Lemma 3. The above proof is
a general version of the proof specified in our previous
work Ghosh et al. (2018a) which had an assumption on
linearly independent eigenvectors. We also note that Lee
& Bhattacharya (2016) provides a similar proof which
only holds for large enough r. Our proof holds for any
value of r.

4.3 Marginal Stability

The time invariant system in (16) models the behavior
of the periodic algorithm at the points of communica-
tion. However, it does not provide information about

the iterations in between points of communication. This
motivates us to check if the periodic communication
has any effect on stability during the iterations in be-
tween points of communication. To this effect, we use
the augmented steady state error for our analysis. De-
fine X∗ = [U∗, · · · , U∗] as the augmented steady state.
Also define the augmented steady state error of (14)
G(k) ∈ R(L−2µ)r as

G(k) = X(k)−X∗. (17)

Lemma 4 The augmented steady state error system
G(k) follows the dynamics

G(k + 1) = HjG(k) ∀ j = 1, · · · , r. (18)

PROOF. First we note that by definition of steady
state, we obtain X∗ = HjX

∗ + B ∀ j = 1, . . . , r.
Therefore,

G(k + 1) = X(k + 1)−X∗

= HjX(k) +B −HjX
∗ −B

= Hj(X(k)−X∗)
= HjG(k). �

Theorem 2 The system (18) is marginally stable.

PROOF. We use the sub-multiplicative property of the
infinity-norm to obtain ||G(k + 1)||∞ = ||HjG(k)||∞ ≤
||Hj ||∞||G(k)||∞. Using first result in Lemma 1, we ob-

tain ||G(k+1)||∞
||G(k)||∞ ≤ 1, which implies that the system is

marginally stable. �

4.4 Rate of convergence

In this subsection, we study the rate of convergence of the
periodic algorithm. While we have established asymp-
totic convergence for the periodic algorithm to the same
final solution irrespective of the value of r, the rate of
convergence does vary with r. For this analysis, first we
define the error w.r.t the steady state for the system
in (8) as

E(k) = U(k)− U∗. (19)

Lemma 5 For the regular Algorithm A,E(k) follows the
dynamics

E(k + 1) = AE(k). (20)

PROOF. The proof is similar to that of Lemma 4 and
is omitted for space constraints. �

For the periodic Algorithm B, E(k) evolves as E(k +
1) = A1E(k) + A2E (k − (k mod r)). Note that the
augmented version of the error E(k) is G(k) as defined
in (17).
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Corollary 1 (to Lemma 5) The evolution of error
system between the points of communication is given
by E(m + 1) = CE(m) where m is the index of the
iterations involving communication defined before.

A measure of the rate of convergence of the state in
the periodic Algorithm B is the spectral radius of C
in (16). The rate of convergence influences the number
of iterations taken to converge to a specified level of tol-
erance. In order to consider that, we have to estimate
when the convergence criterion reaches the tolerance ε.
In Section 2, we have already mentioned two possible
convergence criterion, namely, the change in iteration
E(k) and the residual R(k). Since we check the con-
vergence criterion only at the iterations involving com-
munication given by m in Algorithm B and Algorithm
C, we modify the convergence criteria to the average

change in iteration E(m) = U(m+1)−U(m)
r and the resid-

ual R(m) = MU(m) − v. We have the following result
for the evaluation of these quantities.

Lemma 6 The metric E(m) evolves as

E(m+ 1) = CE(m).

PROOF. By definition, we can write

E(m+ 1) =
U(m+ 2)− U(m+ 1)

r

=
E(m+ 2) + U∗ − E(m+ 1)− U∗

r

=
(C − I)E(m+ 1)

r
=

(C − I)CE(m)

r
.

Similarly, we can write E(m) = (C−I)E(m)
r . Combining

E(m+1) and E(m), we obtain the desired expression. �

The residual R(m) evolves as R(m+ 1) = CR(m). The
proof is similar and omitted due to space constraints.

When the convergence criterion reaches the tolerance ε,
the numerical scheme is considered to have converged.
We can estimate the number of iterations the numerical
solver takes to converge. Let p be the number of itera-
tions involving communication. If E(m) is used as the
convergence criterion, we can write ||E(p)||∞ = ε =⇒
||CpE(0)||∞ = ε. Then we can write Cp ≈ Cζ |ζ|p where

Cζ ∈ R(L−2µ)×(L−2µ) is independent of p. Thus, we ob-

tain p ≈
ln

(
ε

||CζE(0)||∞

)
ln |ζ| . Similarly, when the convergence

criterion is the residual, the development is the same as

above and the final expression of p is p ≈
ln

(
ε

||CζR(0)||∞

)
ln |ζ| .

Since the convergence criterion is checked only at the it-
erations when communication happens, the total num-
ber of iterations till convergence is approximated by pr.

Remark 2 The total simulation time taken by the nu-
merical solver with periodic algorithm can be estimated.
Denote the time taken for an iteration at which commu-
nication among the PEs happens as tc. For iterations not
involving communication, we assume that the time taken
per iteration is qtc where 0 < q < 1. Both tc and q can
be approximately characterized for a given parallel com-
puting set up. Now, p iterations involve communication
among the PEs and p(r − 1) are communication avoid-
ing iterations. Thus, the overall time for the solver is
approximately given by T = ptc (1 + q(r − 1)).

5 CONVERGENCE ANALYSIS OF THE
EVENT-TRIGGERED ALGORITHM

We now analyze the event-triggered Algorithm C. Once
again, we utilize the error system E(k) defined in (19).
It is straight forward to see that the E(k) evolves as

EI(k + 1) = AIIEI(k) +
∑
J∈NI

AIJEJ(τIJ(k)), (21)

where τIJ(k) is given by (13).

5.1 Asymptotic Stability

The dynamical system in (21) is a discrete-time dynam-
ical system that is time-varying. We analyze the sta-
bility of this time-varying system using a diagonal-type
Lyapunov function specified in Kaszkurewicz & Bhaya
(2012). Before our main stability proof, we need the fol-
lowing lemma:

Lemma 7 There existsN positive real numbersWI , I =

1, . . . , N such that maxI{W−1I

∑N
J=1WJAIJ} < 1.

PROOF. SinceA is Schur diagonally stable, we obtain

WI(1−AII) >
∑
J 6=I

WJAIJ

=⇒WII +
∑
J 6=I

WJ

WI
AIJ < 1 =⇒

N∑
J=1

WJ

WI
AIJ < 1

=⇒ max
I
{W−1

I

N∑
J=1

WJAIJ} < 1. �

Due to assumptions 2 and 3, we know that τIJ(k) be-
longs to the set {k, k − 1, . . . , k − (r + d − 1)}. For
the sake of convenience, we define EI(k) as the error
w.r.t the steady state for the I-th PE. We denote de-
layed versions of EI(k) as EI,l(k) = EI(k − l) for all
l = 0, . . . , r + d − 1 and I = 1, . . . , N . Define GI(k) =
[EI(k)>, EI,1(k)>, . . . , EI,r+d−2(k)>, EI,r+d−1(k)>]>

for I = 1, . . . , N . Note that GI(k) is a subset of G(k)
defined in (17) that corresponds to values for the I-th
PE. Further, we define functions ΨIJ(GJ(k)) that take
the value of exactly one of the variables in the subset
GJ(k) for J = 1, . . . , N . Now we can represent (21) in a
standard state space representation as follows:
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EI(k + 1) =

N∑
J=1

AIJΨIJ(GJ(k)),

EI,1(k + 1) = EI(k),

EI,2(k + 1) = EI,1(k), (22)

...

EI,r+d−1(k + 1) = EI,r+d−2(k).

Theorem 3 The system of equations in (22) is globally
asymptotically stable for all I = 1, . . . , N .

PROOF. We consider the Lyapunov function V (k) =
maxI,l{W−1I ||EI(k)||∞,W−1I ||EI,l(k)||∞}. Then, from
(22),
V (k + 1)

= max
I,l

{
W−1

I

∥∥∥∥∥
N∑

J=1

AIJΨIJ(GJ(k))

∥∥∥∥∥
∞

,W−1
I ||EI,l(k)||∞

}

≤ max
I,l

{
N∑

J=1

WJW
−1
I AIJW

−1
J ‖ΨIJ(GJ(k))‖∞,

W−1
I ||EI,l(k)||∞

}

≤ max
I,l

{
max

I

{
W−1

I

N∑
J=1

WJAIJ

}

×max
J

{
W−1

J ||ΨIJ(GJ(k))||∞
}
,W−1

I ||EI,l(k)||∞

}
(b)
< max

I,l

{
max

J

{
W−1

J ||ΨIJ(GJ(k))||∞
}
,W−1

I ||EI,l(k)||∞

}

≤ max
I,l

{
W−1

I ||EI(k)||∞,W−1
I ||EI,l(k)||∞

}
= V (k).

where (b) follows from Lemma 7. Since V (k+1) < V (k),
the system is globally asymptotically stable. �

5.2 Rate of Convergence

To determine the rate of convergence of (21), the fre-
quency of communication at the PE boundaries needs to
be taken into account. Since every PE will trigger com-
munication at different times depending on the thresh-
old, it seems intractable to find a closed form for the rate
of convergence and we leave it for future work. Instead,
we point to a lower bound for the rate of convergence
based on the period r in Assumption 3.

Proposition 1 The rate of convergence of the system
in (21) where τIJ(k) follows the event-triggered com-
munication rule with threshold δ and period r is lower
bounded by the reciprocal of the spectral radius of the time-
invariant system matrix C corresponding to the same pe-
riod r for the periodic algorithm specified in Section 4.

6 SIMULATIONS

In this section, we demonstrate our proposed algorithms
with numerical experiments on a PDE. We choose a 2D
Poisson PDE which is used to express the electric po-
tential resulting from a distribution of electric charges.
The PDE is given by

∂2V

∂x2
+
∂2V

∂y2
= −ρ

ε
, (23)

where V is the electric potential, ρ is the electric
charge and ε is the permittivity of free space equal
to 8.854 × 10−12m−3kg−1s4A2. After discretizing the
PDE by finite difference, we solve it numerically using
Jacobi method on a parallel computing cluster. It can
be shown that the iteration matrix A as in (8) for this
PDE has spectral radius less than 1, thus satisfying
Assumption 1. We follow a 1D domain decomposition,
meaning that the domain is decomposed along one di-
mension among the multiple PEs. We use a cluster of
nodes with each node having 2 CPU Sockets of AMD’s
EPYC 24-core 2.3 GHz processor and 128 GB RAM
per node. The cluster uses Mellanox EDR interconnect.
The MPI library chosen is mvapich2 built with Intel
compiler. The length of the 2D domain is considered to
be 1 unit in each dimension. The convergence criterion
is chosen to be the maximum residual and the tolerance
is taken to be 10−5.

We choose a grid resolution of 960 in both dimensions
and demonstrate the efficiency of our schemes. Fig 2
shows the reduction in overall simulation time of the pe-
riodic algorithm over various periods of communication.
As the period is increased, there is reduction in simu-
lation time due to time saved on communication. How-
ever, in order to compensate for the reduced communi-
cation, the solver takes more iterations to converge to
the correct solution. When the effect of increased iter-
ations starts dominating the effect of reduced time due
to lesser communication, the simulation time starts in-
creasing as is seen in Fig 2 for periods above 16.

The simulation time results for the event-triggered algo-
rithm versus various thresholds for communication are
shown in Fig 3. Note that in addition to the threshold,
there is a parameter for the period in this algorithm.
Period 1 corresponds to the benchmark solution where
communication happens at every iteration, hence it
takes the same simulation time across various thresh-
olds. We note that time decreases initially with increas-
ing threshold, implying lesser time spent on communica-
tion. A similar trend on reduction in time is noted when
the period is initially increased. However, for higher
periods and higher thresholds, messages are rarely ex-
changed, leading to a significant increase in number of
iterations which results in higher simulation time. For
instance, this effect is seen for period 64 above threshold

9



Fig. 2. Reduction in time using periodic algorithm running
on 48 PEs. The data points for periods of {1,2,4,8,16,32,64}
are shown here.

10−14. A moderate value of threshold equal to 10−2 and
period equal to 8 leads to the lowest simulation time.

Fig. 3. Reduction in time using event-triggered algorithm
running on 48 PEs. The data points for threshold of
{10−18, 10−14, 10−6, 10−2, 102, 104} are shown here.

Both the algorithms are also effective in saving energy.
Firstly, they save running energy costs of the paral-
lel computing cluster by completing simulations faster.
This includes the energy for powering the cluster and
auxiliary costs such as cooling. Further, they also save
on energy spent due to communication. It is estimated
that moving data between PEs connected by a network
require around 1 to 3 pJ per bit (Bergman et al. (2008)).
This means that a numerical scheme involving a signif-
icant number of iterations running on many PEs can
save a significant amount of energy with this class of al-
gorithms. We would like to quantify this savings of the
energy spent due to communication. To the best of our
knowledge, there is no direct way to measure the energy
taken by the interconnect between nodes in a parallel
cluster for measuring the energy spent in communica-
tion. Instead we look at an indirect measurement for
quantifying savings in energy. Specifically we find the

communication ratio for a specified algorithm as

Number of messages exchanged with specified algorithm

Number of messages exchanged with regular algorithm
.

The lesser the communication ratio, the lesser the energy
spent in communication. The communication ratios for
both the periodic and event-triggered algorithms across
various periods are shown in Table 1 in this example. For
the same period, the periodic algorithm involves lesser
communication than the event-triggered algorithm and
hence saves more energy.

Table 1
Factor of energy savings with periodic and event-triggered
algorithms running on 48 PEs. The event-triggered algorithm
is run with a threshold of 10−2.

Period Periodic Event-Triggered

1 1 1

2 0.45 0.52

8 0.14 0.16

16 0.09 0.10

64 0.04 0.05

Now we provide an experimental verification of Proposi-
tion 1 in Section 5. Specifically, we look at the evolution
of the residual (which is our convergence criterion of in-
terest) over iterations for the event-triggered algorithm
(having threshold δ and period r) and the periodic algo-
rithm (with same period r) in Fig 4. The faster the resid-
ual decreases, the faster the numerical algorithm is con-
sidered to be converging to the desired tolerance, hence
higher the rate of convergence. In Fig 4, we see that the
residual for the algorithm with periodic communication
decays slower than that of the event-triggered commu-
nication, establishing that the former is a lower bound
on the rate of convergence of the latter.

We are also interested in the strong scaling of our al-
gorithms. Strong scaling studies how the solution time
decreases with increased number of PEs for a fixed prob-
lem size (Kumar (2002)). Strong scaling is said to be
ideal if the solution time halves when the program is run
on double the number of PEs. In other words, the ideal
speedup of the program with double the number of PEs
is exactly 2 times. We run strong scaling tests for our al-
gorithms from 48 PEs to a significantly high value of 384
PEs. This requires us to choose a large grid resolution of
7680 in both dimensions for these tests. This is in con-
trast to the smaller grid resolution of 960 considered in
Fig 2, Fig 3 and Fig 4 and also Table 1. The strong scal-
ing speedup plots using grid resolution of 7680 are shown
for the periodic algorithm in Fig 5 and for the event-
triggered algorithm in Fig 6. It is seen that the strong
scaling results for the event-triggered algorithm in Fig
6 are closer to the ideal speedup line than the periodic
algorithm in Fig 5. This means that the event-triggered
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Fig. 4. Figure depicting the bound of rate of convergence.
The red solid line corresponds to the residual of the even-
t-triggered algorithm run with threshold δ = 10−2 and pe-
riod r = 8 while the blue dotted line corresponds to the
bound in terms of the periodic algorithm run with period
r = 8. The y-axis of the plot has been truncated at 0.001 to
show the region of interest. The red solid line for event-trig-
gered algorithm has oscillations.

algorithm scales much better upto higher number of PEs
than the periodic algorithm.

Fig. 5. Strong Scaling of the periodic algorithm with period
r = 1, 2, 4. Since we run our simulations on multiples of 48
PEs from 48 to 384, the ideal scaling ranges from 1 to 8.

7 CONCLUSIONS

We present reduced communication schemes for parallel
computing in this paper inspired by ideas from consen-
sus literature. We showed that these methods of periodic
and event-triggered communication have potential to re-
duce time and energy involved in parallel numerical solu-
tion of PDEs. We model the algorithms as discrete-time
linear dynamical systems and provide proofs for asymp-
totic stability with insights on rate of convergence.
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