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O.1 ADDITIONAL PLOTS

(a) Dual cost function (b) Sufficient condition

(c) Drift of y (d) Incentives

Figure O.1: Properties of the optimal contract as functions of the multiplier y and beliefs φ. Figure (a) plots
the dual cost function g(y, φ); Figure (b) plots the right-hand side of (28); Figure (c) plots the drift of y;
Figure (d) plots incentives β̂(y, φ). The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.
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(a) Performance and compensation with φ0 = 0.01 (b) Performance and compensation with φ0 = 0.99

Figure O.2: Relation between cumulative performance and change in compensation when beliefs are close
to zero or one. The curves represent the change in log-compensation as a function of cumulative perfor-
mance. Curves are shifted to represent changes relative to an agent that has a zero cumulative performance.
Performance and change in compensation are computed while assuming that returns are realized uniformly
over time during the course of one year. Figures are drawn for initial multiplier y0 = 0 and initial beliefs
φ0 = 0.01 in (a) and φ0 = 0.99 in (b). The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02,
and σ = 0.18.

(a) Incentives for φ0 = 0.1 (b) Incentives by type for φ0 = 0.1

(c) Incentives for φ0 = 0.9 (d) Incentives by type for φ0 = 0.9

Figure O.3: Incentives, β̂(yt, φt), over time for prior φ0 equal to 0.1 and 0.9. The plots on the left show
the unconditional distribution of incentives at each point in time. The plots on the right show the average
incentives conditional on the agent’s type. The distributions are obtained from a sample of 10,000 indepen-
dent simulations in which the fraction of skilled agents is equal to the prior φ0. The parameters are r = 0.02,
δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and σ = 0.18.
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(a) Pay-performance sensitivity for φ0 = 0.1 (b) Pay-performance sensitivity by type for φ0 = 0.1

(c) Pay-performance sensitivity for φ0 = 0.5 (d) Pay-performance sensitivity by type for φ0 = 0.5

(e) Pay-performance sensitivity for φ0 = 0.9 (f) Pay-performance sensitivity by type for φ0 = 0.9

Figure O.4: Pay-performance sensitivity, εC(yt, φt), over time for prior φ0 equal to 0.1, 0.5, and 0.9. The
plots on the left show the unconditional distribution of the pay-performance sensitivity at each point in
time. The plots on the right show the average pay-performance sensitivity conditional on the agent’s type.
The distributions are obtained from a sample of 10,000 independent simulations in which the fraction of
skilled agents is equal to the prior φ0. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02,
and σ = 0.18.
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(a) Capital ratio for φ0 = 0.1 (b) Capital ratio by type for φ0 = 0.1

(c) Capital ratio for φ0 = 0.5 (d) Capital ratio by type for φ0 = 0.5

(e) Capital ratio for φ0 = 0.9 (f) Capital ratio by type for φ0 = 0.9

Figure O.5: Capital ratio, k(yt, φt), over time for prior φ0 equal to 0.1, 0.5, and 0.9. The plots on the left
show the unconditional distribution of the capital ratio at each point in time. The plots on the right show
the average capital ratio conditional on the agent’s type. The plots on the right show the average pay-
performance sensitivity conditional on the agent’s type. The parameters are r = 0.02, δ = 0.05, ρ = 1/3,
λ = 0.95, ση = 0.02, and σ = 0.18.
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O.2 COMPARATIVE STATICS

(a) Incentives (b) Capital ratio (c) Compensation ratio

Figure O.6: Marginal effect of a change in the signal-to-noise ratio η on incentives β̂(y, φ), capital ratio
k(y, φ), and compensation ratio c(y, φ), shown as function of the co-state y and beliefs φ. Results are shown
for three values of the co-state y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.

(a) Incentives (b) Capital ratio (c) Compensation ratio

Figure O.7: Marginal effect of a change in the efficiency of shirking λ on incentives β̂(y, φ), capital ratio
k(y, φ), and compensation ratio c(y, φ), shown as function of the co-state y and beliefs φ. Results are shown
for three values of the co-state y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.

In this section, I briefly discuss the effect of a marginal change in parameters on the

optimal contract. Based on the HJB equation (27), only four quantities affect the choice

of the optimal controls, β̂(y, φ) and c(y, φ), and the shape of the cost function, g(y, φ): the

signal-to-noise ratio η, the efficiency of shirking λ, the relative discount rate of the two

players r − δ(1− ρ), and the agent’s relative risk aversion ρ.

Although the volatility of returns does not enter the HJB equation (27), it affects the

pay-performance sensitivity and capital ratio through (29) and (30). In particular, when

the volatility of returns increases (while keeping the signal-to-noise ratio constant), the

pay-performance sensitivity declines. Moreover, less capital is allocated to the agent be-

cause, with more variability in returns, shirking becomes more difficult to detect and
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(a) Incentives (b) Capital ratio (c) Compensation ratio

Figure O.8: Marginal effect of a change in the principal’s discount rate r on incentives β̂(y, φ), capital ratio
k(y, φ), and compensation ratio c(y, φ), shown as function of the co-state y and beliefs φ. Results are shown
for three values of the co-state y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.

agency frictions are exacerbated.

To study how the remaining parameters affect the optimal contract, I numerically

solve the model for a small change in parameters around the values I used in the paper. I

then plot the effect of this marginal change on incentives, capital ratios, and compensation

ratios.

Figure O.6 plots the marginal effect of an increase in the signal-to-noise ratio η. In

general, incentives and capital ratio increase with η, whereas the compensation ratio de-

clines. The mechanism for these results is analogous to the mechanism linking changes in

these variables to changes in beliefs. When η and expected returns increase, the principal

wants to delegate more capital to the agent and thus sets steeper incentives to prevent

shirking. Furthermore, the cost of deferring compensation declines when expected re-

turns are higher. The principal then chooses to back-load more compensation and lower

the compensation ratio.

Figure O.7 shows that incentives and capital ratio decline in λ, but the compensation

ratio increases. When the agent can steal more efficiently because of a higher λ, the prin-

cipal faces worse agency frictions. Hence, she optimally chooses to invest less, provide

more insurance to the agent, and limit the extent of compensation deferral.

In Figure O.8, I consider a change in the relative discount rate r− δ(1− ρ) driven by a

change in the principal’s discount rate r. As the principal discounts the future more, she
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(a) Incentives (b) Capital ratio (c) Compensation ratio

Figure O.9: Marginal effect of a change in the agent’s relative risk aversion ρ on incentives β̂(y, φ), capital
ratio k(y, φ), and compensation ratio c(y, φ), shown as function of the co-state y and beliefs φ. Results are
shown for three values of the co-state y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02,
and σ = 0.18.

reduces the capital ratio and further back-loads consumption to the future. The effect on

incentives is ambiguous, with a positive effect for a small y or a large φ, and a negative

effect in the opposite case.

Finally, Figure O.9 shows the effect of an increase in the agent’s relative risk aver-

sion. With a more risk-averse agent, the principal faces increased costs when exposing

the agent to risk. Hence, the principal reduces both incentives and capital delegation.

The consumption ratio declines, and it declines more for points of the state space where

c(y, φ) is larger, thus generating a smoother consumption path for the agent.
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O.3 AUXILIARY LEMMAS

LEMMA O.1. Given a contract C = (Ct, Kt)t≥0 that is incentive compatible with (mt)t≥0, beliefs

φt evolve as

dφt = ηφt(1− φt)dW C
t ,

where

W C
t :=

1

σ

∫ t

0

[dRt − (σηφt −mt)dt] (O.1)

is a standard Brownian motion under the measure of returns induced by C.

Proof. Define

W C,0
t :=

1

σ

∫ t

0

(dRs +msds) ,

which is a Brownian motion conditional on h = 0, and define the likelihood ratio process

Xt := exp

{
ηW C,0

t −
1

2
η2t

}
,

which, by Girsanov’s theorem, represents the ratio between the likelihood that the path

(Rs)0≤s≤t is generated by a skilled agent (h = 1) and the likelihood that the same path is

generated by an unskilled agent (h = 0.) Therefore, Xt = E[h|Ft]
1−E[h|Ft] .

We can then express beliefs as

φt =
φ0Xt

φ0Xt + (1− φ0)
.

After applying Ito’s lemma, we obtain

dφt = − (1− φ0)φ
2
0

(φ0Xt + (1− φ0))3
(ηXt)

2dt+
(1− φ0)φ0

(φ0Xt + (1− φ0))2
ηXtdW

C,0
t

= − (1− φ0)

φ0Xt + (1− φ0)
η2φ2

t +
(1− φ0)

φ0Xt + (1− φ0)
ηφtdW

C,0
t

= −(1− φt)η2φ2
t + (1− φt)ηφtdW C,0

t
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= (1− φt)ηφt
1

σ
(dRt +mtdt− σηφtdt).

LEMMA O.2. Let C = (Ct, Kt)t≥0 be a contract that is incentive compatible with the shirking

process m := (mt)t≥0. Let

V m
t = Ṽ m(Ct, φt) := E

[∫ ∞
t

e−δ(s−t)u(Cs + λmsKs) ds

∣∣∣∣Ft] (O.2)

be the agent’s continuation value at time t ≥ 0. Then, there exists a progressively measurable

process (βmt )t≥0 such that

dV m
t = (δV m

t − u(Ct + λmtKt))dt+ βmt dW
C
t with lim

t→∞
E
[
e−δtV m

t |F0

]
= 0. (O.3)

Note equations (5) and (6) are special cases of equations (O.2) and (O.3) when the

contract C is incentive compatible with no shirking; that is, mt = 0 for all t ≥ 0.

Proof. I use the martingale-representation approach as in Proposition 1 at p. 975 in San-

nikov (2008).

Define

Smt :=

∫ t

0

e−δsu(Cs + λmsKs) ds+ e−δtV m
t . (O.4)

Because Smt = E[SmT |Ft] for all t and T such that 0 ≤ t ≤ T , Smt is a P -martingale adapted

to the filtration (Ft)t≥0. By the martingale-representation theorem (Karatzas and Shreve,

1991), a progressively measurable process (βmt )t≥0 exists such that

Smt = S0 +

∫ t

0

e−δsβms dW
C
s , (O.5)

where W C
t , defined as in (O.1), is a standard Brownian motion under the measure of re-

turns induced by C.

9



By plugging (O.5) into (O.4) and differentiating, I obtain

e−δtβmt dW
C
t = e−δtu(Ct + λmtKt)dt− δe−δtV m

t + e−δtdV m
t .

After dividing by e−δt and rearranging terms, I obtain the stochastic differential equa-

tion in (O.3). The limit condition limt→∞ E
[
e−δtV m

t |F0

]
= 0 ensures the solution of the

backward stochastic differential equation (O.3) coincides with (O.2).

LEMMA O.3. Let φt be the value of the principal’s beliefs at time t, and let φAt be the value of the

agent’s beliefs at time t. If ms = 0 for all s > t, then at time t, the agent’s future expected utility

exceeds the continuation value promised by the principal by an amount equal to

E

[∫ ∞
t

e−δ(s−t)ΓAt,sβsη(φAs − φs) ds
∣∣∣Ft] ,

where (ΓAs )s≥t is a density process such that

ΓAt,s := exp

{∫ s

t

η(φAu − φu) dW C
u −

1

2

∫ s

t

η2(φAu − φu)2 du
}
. (O.6)

Proof. Let Vt = Ṽ (Ct, φt) be the agent’s continuation value promised by the principal, and

let V A
t = Ṽ (Ct, φ

A
t ) be the agent’s future expected utility based on the agent’s information.

For s ≥ t, let

WA
t,s :=

1

σ

∫ s

t

[
dRu − σηφAu du

]
be a standard Brownian motion under the measure of returns induced by contract C and

time-t beliefs equal to φAt .

I define a density process (ΓAt,s)s≥t, where ΓAt,s is given by (O.6). By Girsanov’s theorem,

ΓAt,s represents the change of measure for the path of returns from t to s induced by the

agent’s private beliefs φAt . In particular, if P C
t,s is the probability measure for which (W C

u −

W C
t )t≤u≤s is a standard Brownian motion, and if PA

t,s is the probability measure for which
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(WA
t,u)t≤u≤s is standard Brownian motion, then ΓAt,s =

dPAt,s
dPC
t,s

. Therefore,

V A
t = E

[∫ ∞
t

e−δ(s−t)ΓAt,su(Cs) ds
∣∣∣Ft] .

Applying Girsanov’s theorem to (6), we have

dVs = (δVs − u(Cs) + βsη(φAs − φs))ds+ βsdW
A
s

and, solving forward,

Vt = E

[∫ ∞
t

e−δ(s−t)ΓAt,s
(
u(Cs)− βsη(φAs − φs)

)
ds
∣∣∣Ft] .

I thus obtain

V A
t − Vt = E

[∫ ∞
t

e−δ(s−t)ΓAt,sβsη(φAs − φs) ds
∣∣∣Ft] .

LEMMA O.4. The information rent ξt is related to the marginal value of beliefs ∂φV (Ct, φt) by

ξt = φt(1− φt)∂φṼ (Ct, φt).

Moreover, in any incentive-compatible contract, ξt ≥ 0.

Proof. To show ξt = φt(1− φt)∂φṼ (Ct, φt), note

Vt = Ṽ (Ct, φt) = (1− φt)E
[∫ ∞

t

e−δ(s−t)u(Cs) ds

∣∣∣∣Ft, h = 0

]
+ φtE

[∫ ∞
t

e−δ(s−t)u(Cs) ds

∣∣∣∣Ft, h = 1

]
.

The conditional expected values in the last term are functions only of the contract C

and not of beliefs. Therefore, letting V h
t := E

[∫∞
t
e−δsu(cs) ds

∣∣∣∣Ft, h] for h ∈ {0, 1}, and
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taking partial derivatives with respect to φt in the previous expression, we obtain

φt(1− φt)∂φṼ (Ct, φt) = φt(1− φt)(V 1
t − V 0

t ) = φt(V
1
t − Vt).

The continuation value Vt evolves as in (6). By the martingale representation theorem

and Girsanov’s theorem, V 1
t evolves as

dV 1
t = (δV 1

t − u(Ct)− η(1− φt)β1
t )dt+ β1

t dW
C
t ,

for some Ft-adapted process (β1
t )t≥0. Using Ito’s lemma, I thus derive the law of motion

of φt(V 1
t − Vt),

d[φt(V
1
t − Vt)] = (δφt(V

1
t − Vt)− ηβtφt(1− φt))dt+ ω′tdW

C
t ,

where ω′t := ηφt(1− φt)(V 1
t − Vt) + φt(β

1
t − βt). Because limt→∞ E[e−δtVt|F0] = 0 by (6), and

because 0 ≤ φtV
1
t ≤ Vt, a terminal condition limt→∞ E[e−δtφt(V

1
t − Vt)] = 0 holds. Solving

the BSDE for φt(V 1
t − Vt) yields

φt(V
1
t − Vt) = E

[∫ ∞
t

e−δsηβsφs(1− φs) ds
∣∣∣∣Ft] .

Comparing this expression with (10), we conclude ξt = φt(1− φt)∂φṼ (Ct, φt).

It remains to prove that in an incentive-compatible contract, ξt ≥ 0. Define ot :=

βt − u′(Ct)σλKt − ηξt ≥ 0. Then, (12) can be written as

dξt = [δξt − (u′(Ct)σλKt + ηξt + ot)ηφt(1− φt)]dt+ ωtdW
C
t with lim

t→∞
E[e−δtξt|F0] = 0.

Solving this BSDE, we obtain the following expression for ξt

ξt = E

[∫ ∞
t

e
∫ s
t (η2φi(1−φi)−δ) diηφs(1− φs)[u′(Cs)λσKs + os] ds

∣∣∣∣Ft] .
12



Because u′(Cs)λσKs ≥ 0 and os ≥ 0 in an incentive-compatible contract, we conclude that

ξt ≥ 0.

LEMMA O.5. The dual cost function takes the form G∗(V0, Y0, φ0) = v0g
∗(y0, φ0) for some func-

tion g∗, where vt := ((1− ρ)Vt)
1

1−ρ and yt := v−ρt Yt.

Proof. I start by deriving the laws of motion of vt and yt. To do so, define the scaled control

variables ct := Ct
vt

and β̂t := βt
v1−ρt

.

Starting from the stochastic differential equation for Vt in (6) and from vt := ((1 −

ρ)Vt)
1

1−ρ , I apply Ito’s lemma to obtain

dvt = ((1− ρ)Vt)
ρ

1−ρ

(
δVt −

C1−ρ
t

1− ρ

)
dt+

1

2
ρ ((1− ρ)Vt)

2ρ−1
1−ρ β2

t dt+ ((1− ρ)Vt)
ρ

1−ρ βt dW
C
t

dvt = vρt

(
δ
v1−ρt

1− ρ
− C1−ρ

t

1− ρ

)
dt+

1

2
ρv2ρ−1t β2

t dt+ vρt βt dW
C
t

dvt =

(
δ

1− ρ
− cρt

1− ρ

)
vt dt+

1

2
ρvtβ̂

2
t dt+ vtβ̂t dW

C
t , (O.7)

which coincides with (25) after dividing both sides of the equality by vt.

Next, I combine (19), (25), and yt := v−ρt Yt and I use Ito’s lemma to obtain

dyt = v−ρt

(
(r − δ)Ytdt+ φt

η2

λ
Cρ
t dt+ ηdUt

)
− ρv−ρt Yt

(
δ

1− ρ
− c1−ρt

1− ρ
+

1

2
ρβ̂2

t

)
dt+

+
1

2
ρ(ρ+ 1)v−ρt Ytβ̂

2
t dt− ρv

−ρ
t Yt dW

C
t

dyt = φt
η2

λ
cρt dt+ yt

(
r − δ

1− ρ
+ ρ

c1−ρt

1− ρ
+

1

2
ρβ̂2

t

)
dt− ρyt dW C

t + ηdût, (O.8)

where (ût)t≥0 ∈ I is defined as ût :=
∫ t
0
v−ρs dUs. The law of motion in (O.8) coincides with

(26) after observing that, in an optimal dual contract solving (20), Ut = 0 for all t ≥ 0.

From equation (O.7), we obtain

vt = v0 exp

{∫ t

0

(
δ

1− ρ
− c1−ρs

1− ρ
+

1

2
ρβ̂2

s −
1

2
β̂2
s

)
ds+

∫ t

0

β̂sdW
C
s

}
.
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Using this expression for vt together with ct = Ct
vt

, β̂t = βt
v1−ρt

and dût = v−ρt dUt, I write

the objective function of the dual problem as

v0 sup
(ût)t≥0∈I

E

[∫ τ

0

e
−
∫ t
0 r−

(
δ

1−ρ−
c
1−ρ
s
1−ρ + 1

2
ρβ̂2
s

)
ds
Bt

{(
ct −

η

λ
φtβ̂tc

ρ
t + ytηφt(1− φt)βt

)
dt− β̂tdût

} ∣∣∣∣F0

]
,

(O.9)

where Bt is a density process,

Bt := exp

{∫ t

0

β̂s dW
C
s −

1

2

∫ t

0

β̂2
s ds

}
.

The minimization problem in (20) is equivalent to minimizing (O.9) with respect to

(ct, β̂t)t≥0 and subject to (O.8) and (3) with mt = 0 for all t ≥ 0. Hence, G∗(V0, Y0, φ0) =

v0g
∗(yû0 , φ0), where

g∗(yû0 , φ0) =

inf
(ct,β̂t)t≥0

sup
(ût)t≥0∈I

E

[∫ τ

0

e
−
∫ t
0 r−

(
δ

1−ρ−
c
1−ρ
s
1−ρ + 1

2
ρβ̂2
s

)
ds
Bt

{(
ct −

η

λ
φtβ̂tc

ρ
t + ytηφt(1− φt)βt

)
dt− β̂tdût

} ∣∣∣∣F0

]

s.t. (O.8) and (3) with mt = 0 ∀t ≥ 0,

thus concluding the proof.

LEMMA O.6. Consider a point (y, φ) with y ∈ R and φ ∈ [0, 1]. Let N be a neighborhood of

(y, φ). Consider a twice-differentiable function ψ that is concave in y and such that

0 = g∗usc(y, φ)− ψ(y, φ) = max
N
{g∗usc − ψ},

where g∗usc(y, φ) is the upper-semicontinuous envelope of g∗ at (y, φ).1

1The upper-semicontinuous envelope of g∗ at (y, φ) is defined as

g∗usc(y, φ) := lim sup
(y′,φ′)→(y,φ)

g∗(y′, φ′).
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Then,

inf
c≥0,β̂≥ηψy(y,φ)

{(
c− η

λ
φβ̂cρ + yβ̂ηφ(1− φ)

)
+ A[ψ; (y, φ); c, β̂]

}
≥ 0,

where

A[ψ; (y, φ); c, β̂] := ψ(y, φ)

(
δ

1− ρ
− r − c1−ρ

1− ρ
+

1

2
ρβ̂2

)
+ ψy(y, φ)

[
η2

λ
φcρ + y

(
r − δ

1− ρ
+ ρ

c1−ρ

1− ρ
+

1

2
ρβ̂2

)]
− ψy(y, φ)yρβ̂2 + ψφ(y, φ)ηφ(1− φ)β̂

+
1

2
ψyy(y, φ)y2ρ2β̂2 +

1

2
ψφφ(y, φ)η2φ2(1− φ)2

− ψyφ(y, φ)yρβ̂ηφ(1− φ).

Proof. Consider a sequence (yn, φn)n such that (yn, φn) → (y, φ) as n → ∞. Then,

g∗(yn, φn)→ g∗usc(y, φ). Let δn := g∗(yn, φn)− ψ(yn, φn)→ 0 and let (hn)n be a sequence of

strictly positive numbers such that hn → 0 and δn
hn
→ 0 as n → ∞. Consider an arbitrary

c ≥ 0 and β̂ ≥ ηψy(y, φ). Define β̂nt := max{β̂, ηψy(yn,ût , φnt )}, where (vnt , y
n,û
t , φnt )t≥0 denote

the state process with starting point (v0, y
n
0 , φ

n
0 ) = (v0, y

n, φn) and with ct = c and β̂t = β̂nt .

Define the stopping time τn := inf{t ≥ 0: (yn,ût , φnt ) /∈ N}, and let θn := min{τn, hn}.

Using the dynamic programming principle,

v0g
∗(yn, φn) ≤ sup

û∈I
E

[ ∫ θn

0

e−rtvnt

{(
c− η

λ
φtβ̂

n
t−c

ρ + yn,ût− β̂nt−ηφt(1− φt)
)
dt− β̂nt−dût

}
+ e−rθnvθng

∗(yn,ûθn , φ
n
θn)

]
.

Because in N we have that g∗ ≤ ψ,

v0[ψ(yn, φn) + δn] ≤ sup
û∈I

E

[ ∫ θn

0

e−rtvnt

{(
c− η

λ
φtβ̂

n
t−c

ρ + yn,ût− β̂nt−ηφt(1− φt)
)
dt− β̂nt−dût

}
+ e−rθnvnθnψ(yn,ûθn , φ

n
θn)

]
,
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and using Ito’s lemma, we obtain

δn ≤ sup
û∈I

E

[ ∫ θn

0

e−rtvnt

{(
f(yn,ût− , φnt ; c, β̂nt−) + A[ψ; yn,ût− , φnt ; c, β̂nt− ]

)
dt

− β̂nt−dût + ψ(yn,ût− + ηdût, φ
n
t )− ψ(yn,ût− , φnt )

}]
,

where

f(y, φ; c, β̂) := c− η

λ
φβ̂cρ + yβ̂ηφ(1− φ).

Because ψ is concave in y and because β̂nt− ≥ ηψy(y
n,û
t− , φnt ), the right-hand side of the

previous expression is maximized by dût = 0 for t ∈ [0, θn], and therefore,

δn
hn
≤ E

[
1

hn

∫ θn

0

e−rtvt

(
f(yn,0t , φnt ; c, β̂nt ) + A[ψ; (yn,0t , φnt ); c, β̂nt ]

)
dt

]
,

Where I used the fact that, with ût = 0 for t ∈ [0, θn], the trajectories of (yn,0t , φnt )t∈[0,θn] and

(β̂nt )t∈[0,θn] are continuous in time.

Therefore, for n large enough, θn = hn almost surely. By the mean value theorem,

1

hn

∫ θn

0

e−rtvt

(
f(yn,0t , φnt ; c, β̂nt ) + A[ψ(yn,0t , φnt ); c, β̂nt ]

)
dt

a.s.→ v0

(
f(y, φ; c, β̂) + A[ψ; (y, φ); c, β̂]

)
.

Moreover, the random variable 1
hn

∫ θn
0
e−rtvt

(
f(yn,0t , φnt ; c, β̂nt ) + A[ψ; (yn,0t , φnt ); c, β̂nt ]

)
dt is

bounded almost surely in N . Hence, by the dominated convergence theorem,

v0f(y, φ; c, β̂) + v0A[ψ; (y, φ); c, β̂] ≥ 0.

Because v0 > 0, and because c ≥ 0 and β̂ ≥ ηψy(y, φ) are arbitrary, we obtain the result.

LEMMA O.7. G∗(V, Y, φ) is differentiable with respect to Y for Y 6= 0.

Proof. First note that by Lemma O.5, G∗(V, Y, φ) is constant and equal to zero when V = 0.

Hence, G∗(V, ·, φ) is differentiable for V = 0. Second, note g∗(V, Y, 0) and G∗(V, Y, 1) are
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constant in Y , and hence, G∗(V, ·, φ) is differentiable when φ ∈ {0, 1}.

To prove the result when V > 0 and φ ∈ (0, 1), I use Lemma O.5 to write G∗(V, Y, φ) =

vg∗(y, φ) for y := v−ρY . Because G∗ is concave and increasing in Y , g∗ is also concave and

increasing in y. Therefore, the right and left derivatives of vg∗ with respect to y always

exist in the interior of the domain. Moreover, G∗Y (V, Y, φ) exists if and only if vg∗y(y, φ)

exists.

To prove G∗(V, Y, φ) is differentiable in Y for V > 0, Y 6= 0, and φ ∈ (0, 1), I proceed by

contradiction. Suppose a point (V ′, Y ′, φ′) exists where G∗(V ′, ·, φ′) is not differentiable.

Then, g∗(·, φ′) is not differentiable at y′ := ((1 − ρ)V ′)
−ρ
1−ρY ′. Because g∗(·, φ′) is increasing

and concave, we must have that 0 ≤ g∗y+(y′, φ′) < g∗y−(y′, φ′). Consider a twice differen-

tiable function F such that g∗usc(y, φ) − F (y, φ) has a local maximum at (y′, φ′) and such

that g∗usc(y′, φ′)− F (y′, φ′) = 0.

Next, consider a p ∈ (g∗y+(y′, φ′), g∗y−(y′, φ′)) and take another function,

ψε(y, φ) := F (y′, φ) + p(y − y′)− 1

2ε
(y − y′)2.

For any arbitrary ε > 0, g∗(y, φ) ≤ ψε(y, φ) in a small enough neighborhood of (y′, φ′),

and (y′, φ′) is a local maximizer of g∗usc(y, φ) − ψε(y, φ) with g∗usc(y′, φ′) − ψε(y
′, φ′) = 0.

Moreover, ψε is concave in y. Hence, by Lemma O.6,

inf
c,β̂≥ηp

{
c− η

λ
φ′β̂cρ + y′β̂ηφ′(1− φ′) + ψε(y

′, φ′)(y′, φ′)

(
δ

1− ρ
− r − c1−ρ

1− ρ
+

1

2
ρβ̂2

)
+ p

[
η2

λ
φ′cρ + y′

(
r − δ

1− ρ
+ ρ

c1−ρ

1− ρ
+

1

2
ρβ̂2

)]
− py′ρβ̂2 + Fφ(y′, φ′)ηφ′(1− φ′)β̂ +

1

2
Fφφ(y′, φ′)η2φ′

2
(1− φ′)2

− 1

ε
(ρy′β̂)2

}
≥ 0.

(O.10)

For y′ 6= 0 and φ′ ∈ (0, 1), (ρy′β̂)2 > 0 because β̂ ≥ ηp > 0. Because (ρy′β̂)2 is strictly
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positive and ε can be arbitrarily small, the inequality in (O.10) is a contradiction. Hence,

we must have g∗y+(y, φ) = g∗y−(y, φ) for any y 6= 0 and φ ∈ (0, 1), from which it follows that

G∗(V, ·, φ) is differentiable also for V > 0, Y 6= 0, and φ ∈ (0, 1).

LEMMA O.8. If

η

λρ
≤

√
δ − r(1− ρ)

ρ

√
2(1− ρ), (O.11)

then g∗(0, φ) > 0 for all φ ∈ [0, 1].

Proof. Note g∗(0, φ) ≥ g∗(0, 1) for all φ. Hence, it suffices to prove g∗(0, 1) > 0. With

perfect information, g∗(0, 1) = j1, where v0jh, for h = i ∈ {0, 1}, is the principal’s cost

of delivering continuation value v01−ρ

1−ρ to an agent of known type h. The quantity jh is a

solution of the HJB equation

rjh = min
c≥0,β̂≥0

{
c− ηh

λ
β̂cρ + jh

(
δ − c1−ρ

1− ρ
+

1

2
ρβ̂2

)}
. (O.12)

Let ci and β̂i be the minimizers of (O.12) for h = i ∈ {0, 1}. For h = 0, we have

c0 = (j0)
1
ρ =

(
δ − r(1− ρ)

ρ

) 1
1−ρ

> 0,

and β̂0 = 0.

Define c̄ := (2ρ)
1

1−ρ c0 > 0. To show that j1 = g∗(0, 1) > 0, I proceed as in Di Tella and

Sannikov (2021) and show that j1 ≥ (1− ρ)c̄ρ.

Standard viscosity solution arguments (Fleming and Soner, 2006; Pham, 2009) imply

that j1 is a viscosity solution of (O.12) for h = 1 and that a comparison principle applies.

It is therefore sufficient to show that j̄ := (1− ρ)c̄ρ > 0 is a subsolution of (O.12) for h = 1.

By the comparison principle, then j1 ≥ (1− ρ)c̄ρ.

To show j̄ is a subsolution of (O.12), consider the following:

rj̄ −min
c,β̂

{
c− η

λ
β̂cρ + j̄

(
δ − c1−ρ

1− ρ
+

1

2
ρβ̂2

)}
18



= max
c

{
rj̄ − c− j̄

(
δ − c1−ρ

1− ρ

)
+

1

2
ρ

1

j̄

(
η

ρλ

)2

c2ρ

}

≤ max
c

{
rj̄ − c− j̄

(
δ − c1−ρ

1− ρ

)
+

1

2
ρ

1

j̄

(
δ − r(1− ρ)

ρ

)
2(1− ρ)c2ρ

}
= max

c

{
−c− j̄

(
ρ(c0)1−ρ − c1−ρ

1− ρ

)
+

1

2
ρ

1

j̄
(c0)1−ρ2(1− ρ)c2ρ

}
= max

c

{
−c− c̄ρ

(
ρc1−ρ0 − c1−ρ

)
+

1

2
ρc̄−ρc1−ρ0 2c2ρ

}
= max

c

{
−c− c̄ρ

(
c̄1−ρ/2− c1−ρ

)
+

1

2
c̄1−2ρc2ρ

}
= max

c

{
−c− c̄/2 + c1−ρc̄ρ +

1

2
c̄1−2ρc2ρ

}
= max

c
S(c, c̄)

where the inequality follows from (O.11), and where S(c, c̄) := −c−c̄/2+c1−ρc̄ρ+ 1
2
c̄1−2ρc2ρ.

Note Sc(c̄, c̄) = 0 and

Scc(c, c̄) = −ρ(1− ρ)c−ρ−1c̄− ρ(1− 2ρ)c̄1−2ρc2ρ−2 < 0.

Hence, S(c, c̄) is globally concave in c and it is maximized by c = c̄. Thus,

rj̄ −min
c,β̂

{
c− ηh

λ
β̂cρ + j̄

(
δ − c1−ρ

1− ρ
+

1

2
ρβ̂2

)}
≤ S(c̄, c̄) = 0.

Therefore, j̄ := (1−ρ)c̄ρ > 0 is a subsolution of (O.12) for h = 1 and, by the comparison

principle, g∗(0, 1) = j1 ≥ j̄ = (1− ρ)c̄ρ > 0.
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O.4 ADDITIONAL DERIVATIONS

O.4.1 DERIVATION OF EQUATION (31)

Consider all the terms containing β̂ in (27):

−ηφβ̂ c
ρ

λ
+ yβ̂ηφ(1− φ)︸ ︷︷ ︸
flow cost

+g(y, φ)

(
1

2
ρβ̂2

)
︸ ︷︷ ︸
drift of dv/v

+gy(y, φ)

(
1

2
yρβ̂2

)
︸ ︷︷ ︸

drift of dy

+gy(y, φ)
(
−ρyβ̂2

)
︸ ︷︷ ︸
Cov(dv/v,dy)

+ gφ(y, φ) β̂ηφ(1− φ)︸ ︷︷ ︸
Cov(dv/v,dφ)

+
1

2
gyy(y, φ) (yρβ̂)2︸ ︷︷ ︸

Var(dy)

+gyφ(y, φ)
(
−ρyβ̂ηφ(1− φ)

)
︸ ︷︷ ︸

Cov(dy,dφ)

.

Assuming an interior solution β̂(y, φ) > ηgy+(y, φ), the first-order condition for β̂(y, φ)

is

− ηφc(y, φ)ρ

λ
+ yηφ(1− φ) + g(y, φ)

(
ρβ̂(y, φ)

)
+ gy(y, φ) + gy(y, φ)(ρyβ̂(y, φ))

(
−2ρyβ̂(y, φ)

)
+ gφ(y, φ)ηφ(1− φ) + gyy(y, φ)(yρ)2β̂(y, φ) + gyφ(y, φ) (−ρyηφ(1− φ)) = 0.

After rearranging terms, I obtain

ηφ
c(y, φ)ρ

λ
− gφ(y, φ)ηφ(1− φ) = yηφ(1− φ)+

ρβ̂(y, φ)
[
g(y, φ)− ygy(y, φ) + y2ρgyy(y, φ)

]
− gyφ(y, φ)ρyηφ(1− φ),

which coincides with (31) after I define

R(y, φ) := β̂(y, φ)
[
g(y, φ)− ygy(y, φ) + y2ρgyy(y, φ)

]
− gyφ(y, φ)yηφ(1− φ). (O.13)
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O.4.2 DERIVATION OF EQUATION (32)

Consider all the terms containing c in (27):

c− ηφβ̂ c
ρ

λ︸ ︷︷ ︸
flow cost

+g(y, φ)

(
− c1−ρ

1− ρ

)
︸ ︷︷ ︸

drift of dv/v

+gy(y, φ)

[
φ
η2

λ
cρ + y

(
ρ
c1−ρ

1− ρ

)]
︸ ︷︷ ︸

drift of dy

.

Rearranging terms, we thus have

c− σηφβ̂ − ηgy(y, φ)

σλ
cρ + (g(y, φ)− ygy(y, φ))

(
− c1−ρ

1− ρ

)
,

and the first-order condition for c(y, φ) is

1− σηφβ̂(y, φ)− ηgy(y, φ)

σλ
ρc(y, φ)ρ−1 + (g(y, φ)− ygy(y, φ))

(
−c(y, φ)−ρ

)
= 0.

Note the capital ratio k(y, φ) is given by (30) and, by the differentiability of g(·, φ), we

have gy(y, φ) = gy+(y, φ) in the interior of the domain. Hence, in the optimal contract, a

marginal change in c(y, φ) is associated with a marginal change in the capital ratio equal

to
dk(y, φ)

dc(y, φ)
:=

β̂(y, φ)− ηgy(y, φ)

σλ
ρc(y, φ)ρ−1. (O.14)

Furthermore, we have vg(Y v−ρ, φ) = G∗(V, Y, φ) with V = v1−ρ/(1− ρ) and Y = vρy.

Differentiating vg(Y v−ρ, φ) and G∗(V, Y, φ) by v, we have

dG∗(V, Y, φ)

dv
= v−ρG∗V (V, Y, φ) = g(y, φ)− ρygy(y, φ). (O.15)

Finally, let

µv(y, φ) :=
δ

1− ρ
− c(y, φ)1−ρ

1− ρ
+

1

2
ρβ̂(y, φ)2

be the drift of dv/v seen in (25) when the principal offers the contract obtained from the

optimal controls of the HJB equation (27). In this contract, a marginal change in the con-
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sumption ratio c(y, φ) is associated with a marginal change in the drift of dv/v equal to

dµv(y, φ)

dc(y, φ)
:= −c(y, φ)−ρ. (O.16)

After substituting (O.14), (O.15), and (O.16) into the first-order condition, I obtain

1− σηφdk(y, φ)

dc(y, φ)
+
dG∗(V, Y, φ)

dv

dµv(y, φ)

dc(y, φ)
= 0,

which coincides with (32) after rearranging its terms.
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