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S.1 OPTIMAL CONTRACTS WITH LIMITED COMMITMENT

To implement the optimal contract, the principal commits to reduce the agent’s future
incentives in order to reduce his ex-ante information rent. The commitment is captured
by the multiplier Yt in the dual problem. However, the optimal contract is not robust to
renegotiation: At any time t, the principal would reduce her costs by renegotiating the
contract and “starting over” from Yt = 0. As long as the agent receives her promised
continuation value Vt, he would agree to such renegotiation. In practice, a contract can
be renegotiated by mutual agreement between the principal and the agent, or if the agent
could transfer between principals. In this appendix, I explore optimal contracts when the
principal is unable to fully commit.

S.1.1 LIMITED-COMMITMENT CONTRACTS

To understand why the optimal contract is not robust to renegotiation, suppose the prin-
cipal offers the agent the contract in section 3. At time t > 0, the principal is committed
to limit the agent’s risk exposure, as indicated by a strictly positive multiplier Yt > 0.
At that time, the continuation contract is CR(vt,yt,φt) and, by Theorem 3, its cost for the
principal is G∗(Vt, Yt, φt) − YtG

∗
Y +(Vt, Yt, φt). If the principal could renegotiate the con-

tract and replace it with CR(vt,0,φt), her cost would change to G∗(Vt, 0, φt). By the con-
cavity of G∗(V, ·, φ), the cost for the principal would be lower because G∗(Vt, Yt, φt) −
YtG

∗
Y +(Vt, Yt, φt) ≥ G∗(Vt, 0, φt), with strict inequality if G∗Y +(Vt, Yt, φt) < G∗Y +(Vt, 0, φt).

*University of Notre Dame, Mendoza College of Business – s.pegoraro@nd.edu. For the latest version
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After renegotiating the contract, the agent would obtain the same continuation value
Vt, but the principal would face lower cost. In this situation, the principal and the agent
would mutually agree to change the terms of the contract ex post, as in the “commitment
and renegotiation” model of Laffont and Tirole (1990). With the possibility of renegoti-
ation, the optimal contract of section 3 is not credible. The terms of the contract would
be continuously renegotiated, ruling out the option of an ex-ante optimal contract that
requires ex-post commitment.

I therefore develop the notion of a limited-commitment contract, which defines a set
of contracts that remain credible even when the principal cannot fully commit not to rene-
gotiate. The principal may lack commitment power because she can mutually agree with
the agent to alter the terms of the contract ex post, as discussed above. Alternatively, the
principal may lack commitment power because the agent may transfer between two prin-
cipals in a frictionless market,1 with the second principal disregarding the first principal’s
commitment.

To provide a definition of a limited-commitment contract, let Fts := {(Ri)t≤i≤s} be the
smallest σ-algebra for which (Ri)t≤i≤s is measurable possibly augmented by the P -null
sets. Hence, (Fts)s≥t is the augmented filtration generated by the history of returns starting
from time t.

DEFINITION S.1. A contract C is a limited-commitment contract if, conditional on Vt and φt,
the continuation contract at time t is Fts-adapted for all t ≥ 0.

Intuitively, in a limited-commitment contract, the principal “disregards” part of the
history of returns leading up to any time t. From time t onward, the principal offers
a contract that may depend on the agent’s continuation value Vt, the posterior beliefs
φt, and the agent’s future performance, but not on other functions of the agent’s past
performance.

The optimal contract derived in section 3 is not a limited-commitment contract. In fact,
conditional on Vt and φt, the continuation contract at time t depends on the principal’s
commitment measured by the multiplier Yt, which is a function of the agent’s history
of returns up to time t. In the primal problem (14), the principal’s full commitment is
captured by the promise-keeping constraint on the information rent, (12). In a limited-
commitment contract, the principal still commits to a continuation value for the agent,
but she is unable to commit to the agent’s information rent.

Similar to the main model, I define an optimal contract and a relaxed optimal contract
within the class of limited-commitment contracts. Fix initial beliefs φ0 and the agent’s

1Payne (2018) studies optimal contracts when principals and agents meet in a matching market with
search frictions.
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initial outside option V0. An optimal limited-commitment contract is a contract that min-
imizes the principal’s cost (1) within the class of limited-commitment contracts, while
delivering the agent an expected lifetime utility (2) at least as large as V0. A relaxed optimal
contract with limited commitment is a contract that minimizes, within the class of limited-
commitment contracts, the cost for the principal (1) subject to the necessary incentive-
compatibility condition (9) and subject to delivering expected promised utility V0 to the
agent if he does not shirk.

Even with limited commitment, enforcing full effort remains optimal. In other words,
Lemma 1 remains valid because it does not rely on any particular assumption about the
principal’s commitment. Moreover, Theorem (1) also remains valid because it character-
izes incentive compatibility in a generic contract with learning. Finally, the incentive-
compatibility constraint (9) always binds in any optimal contract with limited commit-
ment because expected excess returns are non-negative if the agent does not shirk.

To solve for an optimal limited-commitment contract, I proceed as in section 3. First,
I focus on a relaxed optimal contract with limited commitment and characterize it as a
solution of a HJB equation. Then, I provide a condition to verify whether such a candidate
contract is incentive compatible with no shirking and, hence, whether it is fully optimal
in the class of limited-commitment contracts. As always, I assume parameters are such
that the principal’s cost is positive, and I thus rule out infinite profits. Condition (O.11) in
the online appendix remains a sufficient condition to rule out negative costs.

Consider the following HJB equation:

rjL(φ) = min
c,β̂≥ηzL(φ)

{
c− ηφβ̂ − ηz

L(φ)

λ
cρ + jL(φ)

(
δ

1− ρ
− c1−ρ

1− ρ
+

1

2
ρβ̂2

)

+ ηβ̂φ(1− φ)jLφ(φ) +
1

2
η2φ2(1− φ)2jLφφ(φ)

}
, (S.1)

where the function zL solves the differential equation

zL(φ)cL(φ)1−ρ− β̂L(φ)ηφ(1−φ)− (1−ρ)β̂L(φ)ηφ(1−φ)zLφ (φ) =
1

2
η2φ2(1−φ)2zLφφ(φ), (S.2)

and where cL(φ) and β̂L(φ) are the minimizers in (S.1).
As in section 3, I associate a contract with the minimizers of (S.1). In particular, let

contract CL(v0,φ0) = (CL
t , K

L
t )t≥0 be such that CL

t := vtc
L(φt), KL

t := vtk
L(φt) with kL(φ) :=

(β̂L(φ)−ηzL(φ)) c
L(φ)ρ

λσ
, and where vt and φt evolve as in (25) and (3) for some initial v0 and

φ0, and with ct = cL(φt), β̂t = β̂L(φt), and mt = 0 for all t ≥ 0. By definition, CL(v0,φ0) is
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a limited-commitment contract. The following proposition verifies that CL(v0,φ0) is optimal
in the class of limited-commitment contracts.

PROPOSITION S.1. Let jL : [0, 1]→ R be a twice-differentiable solution of (S.1) satisfying l1 ≤
jL ≤ l0 for two positive constants l1 and l0. Let zL : [0, 1]→ R be a positive, bounded, and twice-
differentiable solution of (S.2). Define CL(v0,φ0) as the contract generated by the policy functions of

(S.1) with v0 = ((1− ρ)V0)
1

1−ρ . Assume ML > 0 exists such that |cL(φ)|+ |β̂L(φ)| < ML for all
φ ∈ [0, 1]. If CL(v0,φ0) is admissible, the following holds:

(I) At any time t, the agent’s continuation value is v1−ρt

1−ρ if he does not shirk, and his information
rent is v1−ρt zL(φt).

(II) CL(v0,φ0) is a relaxed optimal contract in the class of limited-commitment contracts. The cost

of contract CL(v0,φ0) for the principal is ((1− ρ)V0)
1

1−ρ jL(φ0).

(III) Suppose that, for all φ ∈ [0, 1],

(1− ρ)zL(φ)β̂L(φ) + zLφ (φ)ηφ(1− φ)− η(1− 2φ)zLφ (φ) ≥ 0. (S.3)

Then CL(v0,φ0) is incentive compatible with no shirking, and hence, it is an optimal limited-
commitment contract.

All proofs are in the appendix of this supplement.
Condition (S.3) is equivalent to (13), after considering that v1−ρt zL(φt) is the agent’s

information rent at time t with contract CL(v0,φ0).
Contract CL(v0,φ0) is also internally consistent (Bernheim and Ray, 1989) and weakly

renegotiation proof (Di Tella and Sannikov, 2021; Farrell and Maskin, 1989; Strulovici,
2020). In particular, consider t ≥ 0 and t′ ≥ 0 such that Vt = Vt′ and φt = φt′ . Then, the
cost for the principal to offer the continuation contracts at t and t′ is the same.

In a limited-commitment contract, learning and moral hazard still play a key role in
shaping the contract’s dynamics. However, the principal’s commitment does not. Next, I
illustrate the properties of the optimal limited-commitment contract obtained in Proposi-
tion S.1, and I highlight the differences and similarities with the (full-commitment) opti-
mal contract of section 4.

S.1.2 INCENTIVES WITH LIMITED COMMITMENT

I numerically solve for the optimal contract using the recursive characterization in Propo-
sition S.1. As for the optimal contract with full commitment, I first verify the contract I
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(a) Sufficient condition (b) Incentives

(c) Capital ratio (d) Pay-performance sensitivity

Figure S.1: Verification of condition (S.3), incentives, β̂L(φ), capital ratio, kL(φ), and pay-performance
sensitivity, εLC(φ), in the optimal limited-commitment contract as functions of beliefs φt. Figure (a) plots the
left-hand side of equation (S.3); if non-negative for all φ ∈ [0, 1], the contract is incentive compatible with
no shirking. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and σ = 0.18.

obtain satisfies condition (13), which, by Proposition S.1(III), is equivalent to (S.3). Figure
S.1(a), plots the left-hand side of (S.3). Because the left-hand side of (S.3) is non-negative,
the contract is incentive compatible with no shirking.

Figure S.1(b) shows the agent’s incentives as a function of beliefs. As in the full-com-
mitment contract, the principal increases the agent’s incentives when beliefs increase.
Whereas in the full-commitment contract incentives also depend on the principal’s com-
mitment, now beliefs are the only state variable determining incentives. Because beliefs
increase with past performance by Bayesian learning, incentives also increase with past
performance.

The intuition for this result is the same as in section 4 and relies on the interaction
of learning and moral hazard. Because of learning, beliefs increase with the agent’s past
performance. Because of moral hazard, the principal must increase incentives in order to
allocate more capital to the agent. In fact, (9) can be written as

kL(φ) =
β̂L(φ)− ηzL(φ)

λσ
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(a) Performance and compensation (b) Performance and capital

Figure S.2: Relation between cumulative performance, change in compensation, and change in capital
under management in the optimal limited-commitment contract. The curves represent the change in log-
compensation (Figure (a)) and log-capital (Figure (b)) as functions of cumulative performance. Curves are
shifted to represent changes relative to an agent that has a zero cumulative performance. Performance,
change in compensation, and change in capital are computed while assuming that returns are realized
uniformly over time during the course of one year. Figures are drawn for initial beliefs φ0 = 0.5. The
parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and σ = 0.18.

for contract CL(v0,φ0).
After good (bad) performance, the expected productivity of the agent increases (de-

clines). The principal wants then to allocate more (less) capital to the agent and increase
(reduce) the capital ratio kL(φ). Because of the incentive-compatibility condition above,
the principal must therefore increase (reduce) the agent’s incentives as well.

As in section 4, I define the agent’s pay-performance sensitivity as the percentage
change in the agent’s compensation for a 1% return. Because compensation in the optimal
limited-commitment contract is CL

t = vtc
L(φt), the pay-performance sensitivity can be

expressed as

εLC(φt) :=
dCL

t /C
L
t

dRt

=
1

σ

(
β̂L(φt) +

σLc (φt)

cL(φt)

)
,

where σLc (φt) is the volatility of cL(φt).
Figure S.1(d) shows that, similar to the optimal full-commitment contract, the pay-

performance sensitivity of the agent increases with beliefs which, in turn, increase with
past performance. As a result, even with limited commitment, the model generates a pos-
itive and convex relation between changes in log-compensation and performance. Figure
S.2(a) provides an illustration.

In contrast to the optimal full-commitment contract, with limited commitment in-
centives do not tend to decline over time, as Figure S.3 shows. In the optimal full-
commitment contract, the principal optimally commits to reduce future incentives in
order to lower the ex-ante information rent of the agent. With a limited-commitment
contract, the principal is unable to honor such a commitment. Absent the principal’s
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(a) Incentives over time for φ0 = 0.5

(b) Incentives over time for φ0 = 0.1 (c) Incentives over time for φ0 = 0.9

Figure S.3: Distribution of incentives over time in the optimal limited-commitment contract for different
initial values of φ0. The distributions are obtained from a sample of 10,000 independent simulations in
which the fraction of skilled agents is equal to the prior φ0. The parameters are r = 0.02, δ = 0.05, ρ = 1/3,
λ = 0.95, ση = 0.02, and σ = 0.18.

commitment, expected future incentives depend solely on the expected path of beliefs
and the shape of the β̂L(φ) function.2 In this model, because beliefs are a martingale and
because β̂L(φ) has minimal curvature, expected future incentives are virtually identical to
the agent’s current incentives

In conclusion, the optimal limited-commitment contract highlights that changes in in-
centives are positively correlated with performance even in the absence of commitment.
The key mechanism behind this property is the interaction of learning and moral haz-
ard. The commitment of the principal, however, is crucial to obtain a declining path of
expected future incentives. With no commitment power, the principal is unable to reduce
the agent’s ex-ante information rent by promising low incentives in the future.

2Expected future incentives would tend to increase (decline) if beliefs had a positive (negative) drift, as
might be the case if the agent’s productivity were a stochastic process, rather than a constant. Expected
incentives would also tend to increase (decline) if β̂L(φ) were a convex (concave) function, as Ito’s lemma
suggests.
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S.2 OPTIMAL CONTRACTS WITH PERFECT INFORMATION

To further disentangle the mechanism behind the main model’s prediction, I now con-
sider a model where the agent’s type is common knowledge. Instead of considering a
binary type h ∈ {0, 1} as in the main model, I now assume the agent’s type π takes values
in the interval [0, 1]. An agent of type π generated returns

dR = (σηπ −mt)dt+ σdWt,

where mt denotes shirking at time t.
In this setting, an optimal contract is defined exactly as in Definition 2, and Lemma 1

remains valid: Any optimal contract is incentive-compatible with no shirking.
Condition (7) is a necessary and sufficient condition for incentive compatibility for

any type π. To formally see why, it is sufficient to specialize Theorems 1 and 2 to the
perfect-information case, where ξt = ωt = 0 for all t. Moreover, (7) holds as an equality in
the optimal contract because capital produces positive expected returns, and hence, the
principal optimally increases capital under management until the incentive-compatibility
condition binds.

I proceed as before and look for a candidate optimal contract by solving a HJB equa-
tion. I maintain parametric assumptions to ensure the principal’s cost is positive. Con-
dition (O.11) in the online appendix is sufficient to rule out negative costs. Consider the
following HJB equation:

rjπ = min
c≥0,β̂≥0

{
c− ηπ β̂c

ρ

λ
+ jπ

(
δ

1− ρ
− c1−ρ

1− ρ
+

1

2
ρβ̂2

)}
. (S.4)

Let cπ and β̂π be the minimizers in (S.4). I associate a contract, Cπv0 = (Cπ
t , K

π
t )t≥0, with

the policy functions of the HJB equation. In this contract, Cπ
t := vtc

π, Kπ
t := vtk

π with
kπ := β̂π (cπ)ρ

λσ
, and vt evolves as in (25) for some initial v0 with ct = cπ and β̂t = β̂π.

PROPOSITION S.2 (Verification). Let jπ be a positive and finite number satisfying (S.4). Then,
the contract Cπv0 with v0 = ((1− ρ)V0)

1
ρ is an optimal contract for an agent of type π with outside

option V0. The cost for the principal is v0jπ.

Next, I use this proposition to solve for an optimal contract for each type π ∈ [0, 1]. I
then discuss the results and compare them to the results in section 4.

RESULTS AND DISCUSSION. For an agent of type π, incentives β̂π, consumption ratio
cπ, and capital ratio kπ are constant over time. Therefore, the prediction that incentives
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(a) Incentives by type π (b) Capital ratio by type π

(c) Pay-performance sensitivity by type π (d) Compensation ratio by type π

Figure S.4: Comparative statics with respect to the agent type. The figures show incentives, β̂π , capital
ratio, kπ , pay-performance sensitivity, επC , and compensation ratio, cπ , in the optimal contract as functions
of the agent’s known type π. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.

change based on past performance does not hold when the agent’s type is known: Incen-
tives are constant after any history of performance. Figure S.4(a) shows the optimal level
of incentives as a function of the agent’s type.

However, the comparative statics in Figure S.4, provide an intuition analogous to Fig-
ure 2 for the model with learning. The principal gives stronger incentives to a more
productive agent in order to invest more capital but still deter shirking. In fact, Figure
S.4(a) shows incentives increase with the agent’s productivity, similar to how incentives
increase with the agent’s estimated productivity in Figures 2(a) and O.1(d) for the full-
commitment model, and Figure S.1(b) for the limited-commitment model.

As incentives increase with the agent’s type, so does the sensitivity of pay to perfor-
mance, επC , which, without learning, is simply proportional to β̂π; that is, επC = β̂π/σ.
Because the sensitivity of pay to performance is constant when the agent’s type is known,
log-compensation increases linearly with cumulative performance, as Figure S.5(a) illus-
trates. This is in contrast with Figure 3(a) in the paper, where log-compensation increases
in a convex way with performance.
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(a) Performance and compensation with known
type

(b) Performance and capital with known type

Figure S.5: Relation between cumulative performance, change in compensation, and change in capital
under management for an agent of type π = 0.5. The curves represent the change in log-compensation
(Figure (a)) and log-capital (Figure (b)) as functions of cumulative performance. Curves are shifted to
represent changes relative to an agent of type π = 0.5 that has a zero cumulative performance. Performance,
change in compensation, and change in capital are computed while assuming that returns are realized
uniformly over time during the course of one year. The parameters are r = 0.02, δ = 0.05, ρ = 1/3,
λ = 0.95, ση = 0.02, and σ = 0.18.

Total compensation, Cπ
t , and capital under management, Kπ

t , still increase in perfor-
mance for an agent with known type, as Figure S.5 shows. In fact, compensation and
capital are given, respectively, by Cπ

t = vtc
π and Kπ

t = vtk
π. Although cπ and kπ are

constant, the agent’s promised value, vt, is not. The agent’s promised value increases in
performance in order to deter the agent from shirking, and the sensitivity of the promised
value to performance is β̂π. As the agent’s promised value increases with performance,
so do compensation and capital. For a discussion of why compensation and capital scale
with the agent’s promised value, see section 3.4.

In conclusion, incentives are constant in a model with moral hazard but no learning.
When learning is added, incentives are a function of beliefs and of the principal’s commit-
ment. Therefore, learning is crucial for incentives to change in response to performance.
With learning, the agent’s expected productivity changes in response to past performance
(as does the principal’s commitment), prompting the principal to change the level of the
agent’s incentives along with the amount of delegated capital.

S.A PROOFS

S.A.A PROOF OF PROPOSITION S.1

PROOF OF PROPOSITION S.1(I). I first show cL(φ) is uniformly bounded away from
zero. Consider the first-order condition for cL(φ) in (S.1):

1− AL(φ)c(φt)
ρ−1 − jL(φ)c(φt)

−ρ ≥ 0,
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where AL(φ) := ηφ β̂
L(φ)−ηzL(φ)

λ
≥ 0. Note cL(φ) is interior because, as cL(φ) → 0 the left-

hand side of the inequality above tends to −∞. Also, as cL(φ) → ∞, the left-hand side
tends to 1. Hence, 0 < cL(φ) < ∞ and the above inequality holds as an equality. In turn,
this also implies 1− AL(φ)c(φt)

ρ−1 > 0.
From this first-order condition, we have

cL(φ) = (1− AL(φ)c(φt)
ρ−1)−

1
ρ jL(φ)

1
ρ ≥ l

1
ρ

1 .

Therefore, cL(φ) is uniformly bounded from below by l
1
ρ

1 > 0.
To show the agent’s continuation value at time t is v1−ρt

1−ρ if he does not shirk, the proof
proceeds exactly as in Theorem 4(I). I therefore omit this part of the proof.

It remains to show that v1−ρt zL(φt) is the agent’s information rent. Consider a localizing
sequence of increasing stopping times (τn)∞n=0 such that τ0 ≥ t and τn →∞ as n→∞.

Let

Az[zL;φ; c, β̂] = −zL(φ)c1−ρ + (1− ρ)β̂ηφ(1− φ)zLφ (φ) +
1

2
η2φ2(1− φ)2zLφφ(φ)

Given contract CL(v0,φ0), by the Dynkin’s formula and equation (S.2) we have

v1−ρt zL(φt) = E

[∫ τn

t

e−δ(s−t)
{
−v1−ρs Az[zL;φs; c

L(φs), β̂
L(φs)]

}
ds
∣∣∣Ft]+ E

[
e−δ(τn−t)v1−ρτn zL(φτn)|Ft

]
= E

[∫ τn

t

e−δ(s−t)v1−ρs β̂L(φs)φs(1− φs) ds
∣∣∣Ft]+ E

[
e−δ(τn−t)v1−ρτn zL(φτn)|Ft

]
.

The first term on the right-hand side converges to
E
[∫∞
t e−δ(s−t)v1−ρs β̂L(φs)φs(1− φs) ds

∣∣Ft] as n → ∞ by the monotone convergence
theorem. Moreover, because zL(φ) is positive and bounded, z̄ ≥ 0 exists such that
0 ≤ zL(φ) ≤ z̄. Hence,

0 ≤ E
[
e−δ(τn−t)v1−ρτn zL(φτn)|Ft

]
≤ z̄E

[
e−δ(τn−t)v1−ρτn |Ft

]
.

As in the proof of Theorem 4(I), we have that E
[
e−δ(τn−t)v1−ρτn |F0

]
→ 0 as n→∞.

Therefore,

v1−ρt zL(φt) = E

[∫ ∞
t

e−δ(s−t)v1−ρs β̂L(φs)φs(1− φs) ds
∣∣∣Ft] ,

With contract CL(v0,φ0), β
L
s := v1−ρs β̂L(φs), is the agent’s risk exposure at time s. Hence,

v1−ρt zL(φt) is the information rent delivered at time t by the contract CL(v0,φ0).

PROOF OF PROPOSITION S.1(II). Define

AL[jL;φ; c, β̂] := jL(φ)
(

δ
1−ρ − r −

c1−ρ

1−ρ + 1
2
ρβ̂2
)

+ ηβ̂φ(1− φ)jLφ(φ) + 1
2
η2φ2(1− φ)2jLφφ(φ),
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and consider a localizing sequence of stopping times (τn)n such that τn → ∞ as n → ∞.
By the Dynkin’s formula and equation (S.1),

v0j
L(φ0) = E

[∫ τn

0

e−rs
{
−vsAL[jL;φs; c

L(φs), β̂
L(φs)]

}
ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

L(φτn)|F0

]
= E

[∫ τn

0

e−rsvs

{
cL(φs)− ηφs

β̂L(φs)− ηzL(φs)

λ
cL(φs)

ρ

}
ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

L(φτn)|F0

]
= E

[∫ τn

0

e−rs
(
CL
s − σηφsKL

s

)
ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

L(φτn)|F0

]
.

Because CL(v0,φ0) is admissible, by the dominated convergence theorem, the first expec-

tation on the right-hand side converges to E
[∫∞

0 e−rs
(
CL
s − σηφsKL

s

)
ds
∣∣∣F0

]
as n → ∞.

Moreover, as in the proof of Theorem 4(II), we also have limt→0 E[vtj(φt)|F0] = 0.
Therefore,

v0j
L(φ0) = E

[∫ ∞
0

e−rs
(
CL
s − σηφsKL

s

)
ds
∣∣∣F0

]
(S.5)

is the cost of contract CL(v0,φ0).
To conclude the proof, consider an admissible limited-commitment contract C =

(Cs, Ks)s≥0 satisfying (9) with equality. Consider another limited-commitment contract
C̄ = (C̄s, K̄s)s≥0, also satisfying (9) with equality, and such that C̄s = Cs and K̄s = Ks for
s ≤ t, whereas C̄s = vsc

L(φs) and K̄s = vsk
L(φs) for s > t. Therefore, the continuation con-

tract at time t of C̄ is C̄t = CL
(vt,φt)

, and the implied information rent is ξ̃(C̄t, φt) = v1−ρt zL(φt).
Let β̄s = λσC−ρK̄s + ηξ̃(C̄s, φs) be the agent’s risk exposure at time s under contract C̄

Define the process

Ĵt :=

∫ t

0

e−rs
{
C̄s − ηφs

β̄s − ηξ̃(C̄s, φs)
λ

C̄
ρ
s

}
ds+ e−rtvtj(φt).

The drift of Jt is

e−rtvt

{
c̄t − ηφt

b̄t − ηξ̃(C̄t, φt)/v1−ρt

λ
c̄ρt + vtA

L[jL;φt; c̄t, b̄t]

}
,

where c̄t := C̄t/vt and b̄t := β̄t/v
1−ρ
t .

Because ξ̃(C̄t, φt) = v1−ρt zL(φt) and because of (S.1), we have

c̄t − ηφt
b̄t − ηξ̃(C̄t, φt)/v1−ρt

λ
c̄ρt + vtA

L[jL;φt; c̄t, b̄t] ≥ 0.

Hence, the drift of Ĵt is positive and Ĵt is a submartingale. In particular, Ĵ0 ≤ E[Ĵt|F0] for
all t. Taking limits,

v0j(φ0) = Ĵ0 ≤ lim
t→0

E

[∫ t

0

e−rs (Cs − σηφsKs) ds+ e−rtvtj
L(φt)

∣∣∣F0

]
.
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Because (Cs, Ks)s≥0 is admissible, by the dominated convergence theorem,

lim
t→0

E

[∫ t

0

e−rs (Cs − σηφsKs) ds
∣∣∣F0

]
→ E

[∫ ∞
0

e−rs (Cs − σηφsKs) ds
∣∣∣F0

]
,

and, as above, we also have limt→0 E[e−rtvtj
L(φt)|F0] = 0. Hence,

v0j(φ0) ≤ E

[∫ ∞
0

e−rs (Cs − σηφsKs) ds
∣∣∣F0

]
.

By equation (S.5), the above inequality holds as an equality when C = CL(v0,φ0). Because
the contract C is arbitrary in the set of limited-commitment contracts satisfying (9), we
conclude that CL(v0,φ0) is a relaxed optimal contract with limited commitment, and v0jL(φ0)

is the cost of contract CL(v0,φ0) for the principal.

PROOF OF PROPOSITION S.1(III). Because CL(v0,φ0) is a relaxed optimal contract satisfy-
ing (9), it remains to verify whether CL(v0,φ0) is incentive compatible with no shirking. By
Theorem 2, it is sufficient that (13) is also satisfied. Because ξt = v1−ρt zL(φt) in contract
CL(v0,φ0),

ωt = (1− ρ)v1−ρt zL(φt)β̂
L(φt) + v1−ρt zLφ (φt)ηφt(1− φt).

Substituting the expressions for ξt and ωt in (13) and dividing by v1−ρt , we obtain (S.3).
If this condition is satisfied, CL(v0,φ0) is incentive compatible with full effort, and it is there-
fore an optimal contract in the class of limited-commitment contracts.

S.A.B PROOF OF PROPOSITION S.2

PROOF OF THEOREM S.2 I first show cπ is uniformly bounded away from zero. Con-
sider the first-order condition for cπ in (S.4):

1− Aπ(cπ)ρ−1 − jπ(cπ)−ρ ≥ 0,

where Aπ := ηφ β̂
π

λ
≥ 0. Note cπ is interior because, as cπ → 0 the left-hand side of the

inequality above tends to −∞. Also, as cπ → ∞, the left-hand side tends to 1. Hence,
0 < cπ < ∞ and the above inequality holds as an equality. In turn, this also implies
1− Aπ(cπ)ρ−1 > 0.

From this first-order condition, we have

cπ = (1− Aπ(cπ)ρ−1)−
1
ρ jπ

1
ρ > 0.

Therefore, cπ is uniformly bounded from below.
To show the agent’s continuation value at time t is v1−ρt

1−ρ if he does not shirk, the proof
proceeds exactly as in Theorem 4(I). I therefore omit this part of the proof.

Define

Aπ[jπ; c, β̂] := jπ
(

δ

1− ρ
− r − c1−ρ

1− ρ
+

1

2
ρβ̂2

)
,
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and consider an admissible contract (Ct, Kt)t≥0 satisfying (7). Let ct := Ct/vt, kt := Kt/vt,
and β̂t := βt/v

1−ρ
t .

Consider a localizing sequence of stopping times (τn)n such that τn → ∞ as n → ∞.
By the Dynkin’s formula and equation (S.4),

v0j
π = E

[∫ τn

0

e−rs
{
−vsAπ[jπ; cs, β̂s]

}
ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

π|F0

]
≤ E

[∫ τn

0

e−rsvs

{
cs − ηπ

β̂s
λ
cρs

}
ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

π|F0

]
= E

[∫ τn

0

e−rs (Cs − ηφsKs) ds
∣∣∣F0

]
+ E

[
e−rτnvτnj

π|F0

]
.

with equality when cs = cπ and β̂s = β̂π for all s ≥ 0.
Because (Ct, Kt)t≥0 is admissible, by the dominated convergence theorem, the first

expectation on the right-hand side converges to E
[∫∞

0 e−rs (Cs − ηπKs) ds
∣∣∣F0

]
as n→∞.

Moreover, as in the proof of Theorem 4(II), we also have limt→0 E[vtj
π|F0] = 0.

Therefore,

v0j
L(φ0) ≤ E

[∫ ∞
0

e−rs (Cs − ηπKs) ds
∣∣∣F0

]
with equality when Ct = Cπ

t := cπvt and Kt = Kπ
t := kπvt. Hence, Cπv0 is an optimal

contract for an agent of known type π.
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