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O.1 ADDITIONAL APPLICATIONS TO EXISTING LIT-

ERATURE

In this appendix, I establish the connection between my model and additional
models of corporate finance, dynamic contracting, and delegation.

O.1.1 MODELS OF DYNAMIC CORPORATE FINANCE

Other models of dynamic corporate finance share similarities with Bolton et al.
(2011). Specifically, a firm manages cash holdings over time. When cash holdings
are depleted, the firm may either liquidate or raise capital at a cost. Finally, the
firm pays dividends above a payout boundary. Next, I consider models by Bolton
et al. (2013), Décamps et al. (2011), and Hugonnier et al. (2015) who provide dif-
ferent applications within this common framework. As discussed in section 4.1, in
these models forward-looking rents originate from the opportunity to grow cash
reserves and pay dividends in the future.

O.1.1.1 BOLTON ET AL. (2013)

Bolton et al. (2013) provide an extension of Bolton et al. (2011) by letting the firm
operate under two regimes: a regime with low financing costs (regime G) and
a regime with high financing costs (regime B). Regimes change according to a
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Markov chain. The HJB equation that chacterizes the firm’s value function in state
S ∈ {G,B} is

rpS(w) = max
i∈R

{
(i− δ)pS(w) + ζ̂S(pS−(w)− pS(w))

+ [(r − λ)w +m− i− g(i)− (i− δ)w] p′S(w) +
σ2

2
p′′S(w)

}
in the interval [

¯
wS, w̄S]. At

¯
wS , the firm chooses to recapitalize or terminate, and

w̄S is a payout boundary. The parameters ζ̂G > 0 and ζ̂B > 0 is the hazard rate of
a transition from state S to state S−. The model is, therefore, analogous to Bolton
et al. (2011), which I discussed in section 4. However, now the flow payoff includes
the expected value of state transition ζ̂S(pS−(w)− pS(w)).

Using numerical methods, the authors find that, near the recapitalization thresh-
olds, the value function in regime B, pB(w), is concave. One can show regime B
is also a direct extension of the model of Bolton et al. (2011), with the only differ-
ence being the term pG(w) − pB(w) added to the flow payoff. One only needs to
note pG(w)− pB(w) is positive and decreasing in w.1 Therefore, link in Bolton et al.
(2011), forward-looking rents emerge when the expected cash flow generated by
a unit of capital, m, is sufficiently large and cash holdings are expected to grow
sufficiently quickly over time.

It is important to note that, in regime G, the firm’s value function may be con-
vex near the recapitalization threshold. In fact, in this case, the firm may choose to
recapitalize before cash holdings are depleted to hedge against the risk of raising
financing in regime B, which involves higher costs of external financing. When
pB(w) − pG(w) is sufficiently negative, (C2’) fails because the flow payoff cannot
be guaranteed to be positive near the recapitalization threshold

¯
wG. Economically,

recapitalization is optimal for the firm and, therefore, the firm has no forward-
looking rents to forego near the recapitalization threshold. In their numerical re-
sults, Bolton et al. (2013) consider a case where the function pG is indeed convex
near recapitalization.

1Because the two states differ in terms of financing costs, the further w is from zero, the smaller
the difference between pG(w) and pB(w).
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O.1.1.2 DÉCAMPS ET AL. (2011)

In Décamps et al. (2011), the value of a firm with cash holdings mt is given by
V (mt), where V solves

rV (m) = [(r − λ)m+ g]V ′(m) +
σ2

2
V ′′(m)

for m ∈ [0,m1], with V (0) = max
{

0,maxi∈[0,∞) V (i/p− f)− i
}

, V ′(m1) = 1, and
V ′′(m1) = 0. The value m1 is a payout boundary such that V (m) = V (m1)+m−m1

for all m ≥ m1. Parameters satisfy r ≥ λ > 0, σ2 > 0, and f > 0. The firm always
has the option to distribute the existing cash and, hence, V (m) > V (0) + m for
m > 0.2

Décamps et al. (2011) show V is concave. I want to highlight this model is
a particular case of the framework of section 3.1. To establish the connection, I
define q(m) := V (m)− V (0)−m, which solves

rq(m) = π(m) + µ(m)q′(m) +
σ2

2
q′′(m),

with q(0) = 0, q′(m1) = 0, and q′′(m1) = 0 and where π(m) := −λm+ g− rV (0) and
µ(m) := (r − λ)m+ g.

I want to show this model satisfies the sufficient conditions for Theorem 1. Be-
cause V (m) > V (0) + m for m > 0, q(m) > 0 and condition (C1) is satisfied.
Moreover, r ≥ λ and g > 0. Hence, µ(m) satisfies condition (C2). It remains to
show π(0) ≥ 0. To this end, I consider the HJB equation at m1, which, together
with q(m1) > 0, implies

q(m1) =
g − λm1

r
− V (0) > 0.

From this inequality, we thus obtain π(0) = g− rV (0) > λm1 > 0. The parameter g
represents the expected cash flow of the firm. Therefore, like in Bolton et al. (2011),
the firm possesses forward-looking rents and becomes risk averse when expected
cash flows are sufficiently large.

2Décamps et al. (2011) use the notation µ instead of g. I changed notation to avoid confusing
this parameter with the drift of the state variable.

3



O.1.1.3 HUGONNIER ET AL. (2015)

In Hugonnier et al. (2015), the value of a firm with cash holdings ct is given by v(ct)

and a c̄ > 0 exists such that v solves

ρv(c) = λ[V1(C∗1)− C∗1 −K + c− v(c)] + v′(c)(rc+ µ0) +
σ2

2
v′′(c)

for c ∈ [0, c̄] with v(0) = l0 ∈ [0, µ0/ρ). Parameters satisfy ρ > r, K > 0, µ0 ≥ 0, and
σ > 0. The parameter λ represents the arrival rate of new investors. When new
investors arrive, the firm pays a fixed cost K to transition to a new state with value
function V1(·). The firm is also recapitalized to the optimal level of cash holdings
C∗1 .

Hugonnier et al. (2015) show a firm may implement two types of strategies,
depending on how large K is and each strategy is associated with a different con-
dition at the upper boundary of the domain. However, in both cases, a B0 > 0 and
B1 > B0 +K exist such that v(c) = V1(B0) + c−B0 −K for any c > B1. Moreover,
for c > 0, Hugonnier et al. (2015) observe v(c) > l0 + c and V1(c) > l0 + c.

Hugonnier et al. (2015) also show the value function is not globally concave, in
general. However, I want to establish that, if µ0 ≥ 0 like in the numerical results of
Hugonnier et al. (2015), this model satisfies the sufficient conditions for Theorem 1
and, hence, the value function is locally concave near termination, as the authors
show numerically. I define q(c) := v(c) − l0 − c and Q1(c) = V1(c) − l0 − c. By the
previous observation, q(c) > 0 and Q1(c) > 0 for c > 0, thus satisfying condition
(C1). The function q(c) solves

ρq(c) = π(c) + v′(c)µ(c) +
σ2

2
v′′(c),

where π(c) := λ[Q1(C∗1)− q(c)−K] + µ0 − ρl0− (ρ− r)c and µ(c) = (rc+ µ0). Note
that, for c ≥ B1, we have q′(c) = q′′(c) = 0. Hence, for c = B1, the HJB equation
implies

q(B1) =
λ[Q1(C∗1)− q(c)−K] + µ0 − (ρ− r)B1

ρ
− l0 > 0.

Hence, π(0) = λ[Q1(C∗1)− q(c)−K]− ρl0 + µ0 > (ρ− r)B1 > 0. Moreover, µ(0) ≥ 0

when µ0 ≥ 0. Therefore, the model satisfies the sufficient conditions for Theorem
1 and q′′(c) = v′′(c) < 0 in a neighborhood of 0. Similar to other models in this
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literature, the firm possesses forward-looking rents when the the cash flows it ex-
pects from capital injections, λ[Q1(C∗1) − q(c) −K], and investment profits, µ0, are
sufficiently large.

O.1.2 MODELS OF DYNAMIC CONTRACTING

Several models in the continuous-time contracting literature extended the frame-
work of DeMarzo and Sannikov (2006). Here, I focus on two strands of literature.
First, I study the model in DeMarzo et al. (2012), which combines elements of De-
Marzo and Sannikov (2006) and Bolton et al. (2011) by including investments in
a contracting model. I then consider contracting models by Feng and Westerfield
(2021), Piskorski and Westerfield (2016), and Szydlowski (2019), who incorporate
risk choices by the principal.3 Similar to section 4.2, the principal earns forward-
looking rents and becomes endogenously risk averse near termination when the
project managed by the agent is sufficiently profitable.

O.1.2.1 DEMARZO ET AL. (2012)

In DeMarzo et al. (2012), Kt is the stock of capital and wtKt is the agent’s continu-
ation value at time t. The principal’s value function is given by Ktp(wt), where p
solves

rp(w) = max
i∈R,η≥λ

{
m− c(i) + (i− δ)p(w) + (γ − (i− δ))wp′(w) +

1

2
η2σ2p′′(w)λ2

}
for w ∈ (0, w̄), p(0) = l ≥ 0, p′(w̄) = −1, and p′′(w̄) = 0. The value w̄ represents a
payout boundary and p(w) = p(w̄) − (w − w̄) for all w > w̄. The authors assume
p(0) = l < p(w∗), where w∗ := arg maxw p(w).4

Using a linear transformation like in (5), I define q(w) := p(w) − l + w, which
solves

rq(w) = max
i∈R,η≥λ

{
π(w, η, i) + (i− δ)q(w) + µ(w, η, i)q′(w) +

1

2
η2σ2q′′(w)

}
3Also Rivera (2020) models risk choices and his model satisfies conditions (C1) and (C2) im-

plying risk aversion near termination. However, in Rivera (2020), risk-shifting takes the form of
exposure to jump risk and it therefore differs from the volatility of a state variable.

4DeMarzo et al. (2012) use the notation µ instead of m. I changed notation to distinguish this
parameter from the drift of the state variable.
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where π(w, η, i) := m− c(i) + (i− δ− r)l− (γ − r)w and µ(w, η, i) := (γ − (i− δ))w.
I want to show π(·, ·, ·) and µ(·, ·, ·) satisfy conditions (C1’), (C2’), and (C3’). The
principal can always pay wtKt to the agent and earn the outside option lKt. Hence,
p(w) > l−w for allw ∈ (0, w̄) and condition (C1’) is satisfied. Moreover, µ(0, η, i) =

0. To fully establish the conditions, it is sufficient to prove an i ∈ R exists such that
π(0, η, i) > 0.

Because q′(w̄) = 0 and q′′(w̄) = 0, the HJB equation for w = w̄ implies

q(w̄) =
m− c(i(w̄))− (γ − r)w̄

r + δ − i(w̄)
− l

As discussed in section 4.1 for Bolton et al. (2011), parameters must satisfy m −
c(i(w̄))− (γ − r)w̄ ≥ 0 and r + δ − i(w̄) > 0. Therefore,

π(0, η, i(w̄)) = m− c(i(w̄))− (r + δ − i(w̄))l > (γ − r)w̄ ≥ 0.

Hence, the model satisfies (C1’), (C2’), and (C3’) and Theorems 1’ and 2’ apply.
For these results to hold, the project profitability, m, must be sufficiently large.

O.1.2.2 FENG AND WESTERFIELD (2021)

In Feng and Westerfield (2021), the principal’s value function solves

rF (W ) = max
K≥0,a∈(

¯
a,ā)

{
f(K)m(a)− rK + F ′(W )γW

+
1

2

[
λ

f ′(K)
· 1

m(a)−m′(a)a

]2

f(K)2a2F ′′(W )

}
for W ∈ [0, W̄ ), with F (0) = L ≥ 0, F ′(W̄ ) = −1, F ′′(W̄ ) = 0. The value W̄
represents a payout threshold such that F (W ) = F (W̄ ) + (W − W̄ ) for all W ≥ W̄ .
The function f satisfies f(0) = 0, f ′(K) > 0, and f ′′(K) < 0 for all K and the Inada
conditions; that is, limK→0 f

′(K) = +∞ and limK→+∞ f
′(K) = 0. The function m

satisfies m′′(a) < 0 and m(a) > 0 for all a ∈ (
¯
a, ā), with

¯
a > 0.5

I change variables and define η := f(K) and, hence, K = f−1(η). I also apply a

5Compared to the original paper, I changed notation to remain consistent with the notation of
the general model of the present paper. In particular, Feng and Westerfield (2021) use σ instead of
a and µ(·) instead of m(·).
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linear transformation q(W ) := F (W )− L+W so that the HJB equation becomes

rq(W ) = max
η≥0,a∈(

¯
a,ā)

{
π(W, η, a) + q′(W )µ(W, η, a) +

1

2
σ(W, η, a)2η2q′′(W )

}
,

where π(W, η, a) := ηm(a) − rf−1(η) − rL − (γ − r)W , µ(W, η, a) := γW , and
σ(W, η, a) :=

[
λ

f ′(f−1(η))
· a
m(a)−m′(a)a

]
. I want to show this model can be mapped

into the framework of Section 3.2 with ω = ν = 0 and with
¯
η = 0. Note the func-

tion σ(W, η, a) satisfies the assumption of section 3.2. In particular σ(W, η, a) > 0 if
η > 0 and ση(W, η, a) > 0.

By the Inada conditions, an η > exists such that ηm(a) − rf−1(η) > 0. Let
π∗ := maxη≥0,a∈[

¯
a,ā]{ηm(a)−rf−1(η)} be the first-best cash flow. Because liquidation

is inefficient, L < π∗/r. Therefore, η and a exist such that π(0, a, η) > 0. Moreover,
µ(0, a, η) = 0.

Hence, the model satisfies the conditions (C1’) and (C2’). In particular, the
project is sufficiently profitable that the principal possesses forward-looking rents
near termination and thus becomes risk averse endogenously by the first part of
Lemma 2’. In particular, either she sets η(0) = 0 or, if she does not, her value
function is concave.

In Corollary 10, the authors show that, if L > 0, then the principal does not
minimize risk and sets η(0) > 0 at the termination threshold. However, as they
note in Section 6, the principal may minimize risk η at termination if L = 0. I
want to show that, for the function f(K) = 2K

1
2 Feng and Westerfield (2021) use

in their numerical results, setting L = 0 implies condition (C3’) hold. In this case,
µη(0, a, η) = 0 = 2µ(0, a, η) and

2π(0, a, η) = 2ηm(a)− 2r(η/2)2 > −2r(η/2)2 = ηπη(0, a, η)

and the second part of Lemma 1’ applies to establish η(0) = 0.
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O.1.2.3 PISKORSKI AND WESTERFIELD (2016)

In Piskorski and Westerfield (2016), given the agent’s continuation value V , the
principal’s value function F (V ) solves

rF (V ) = max
η∈[0,1]

{
m− θ

V − VF
(1− η) + γV F ′(V ) +

1

2
η2σ2F ′′(V )

}
for V ∈ (VR, VC), where VC is a payout boundary such that F (V ) = F (VC)−(V −VC)

for all V ≥ VC and where F (V ) = L > 0 if η(VR) > 0 and rF (VR) = m − θ
VR−VF

+

γVRF
′(VR) if η(VR) = 0. Parameters satisfy γ > r > 0, m > 0, VR > VF ≥ 0, θ > 0,

and σ > 0.
Property 5 and Theorem 4 in Piskorski and Westerfield (2016) provide a suffi-

cient condition for the principal to set η(VR) = 0. In particular, they imply that, if
L ≤ 1

r

(
m− θ

VR−VF
− γVR

)
, then η(VR) = 0.6 I want to show this parameter restric-

tion is equivalent to condition (C3), which is required for Lemma 1 to hold in this
model.

Like in the models I discussed above, I apply a linear transformation and define
q(V ) := F (V )− L+ (V − VR) and the HJB equation becomes

rq(V ) = max
η∈[0,1]

{
π(V, η) + µ(V, η)F ′(V ) +

1

2
η2σ2F ′′(V )

}
,

where π(V, η) := m− θ
V−VF

(1− η) + rV − r(L+ VR)− γV and µ(V, η) := γV .
For the contract to be optimal, F (V ) > L − (V − VR) for V > VR and, hence,

q(V ) > 0 for V > VR, thus satisfying condition (C1). Moreover, because µ(VR, η) =

γVR > 0, the function µ(·, ·) satisfies the conditions in (C2) and (C3) with strict
inequalities.

For π(·, ·) to satisfy condition (C2) and (C3), we must have

rL ≤
(
m− θ

VR − VF
− γVR

)
+

θ

VR − VF
η

2
∀η ∈ [0, 1],

which thus implies L ≤ 1
r

(
m− θ

VR−VF
− γVR

)
is sufficient for η(VR) = 0, as also

shown in Piskorski and Westerfield (2016). Note this condition requires the flow

6Piskorski and Westerfield (2016) also obtain a necessary and sufficient condition for the princi-
pal to set η(VR) = 0, but the condition is not derived in closed form.
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payoff generated by the project, m, to be sufficiently large to generate forward-
looking rents and risk aversion, like in previous models of dynamic contracting.

O.1.2.4 SZYDLOWSKI (2019)

In Szydlowski (2019), the principal’s value function solves the HJB equation

rJ(W ) = max
(η1,...,ηN )∈{0,1}N

{
N∑
i=1

ηimi +

(
γW + h

N∑
i=1

ηi

)
J ′(W ) +

1

2
J ′′(W )

N∑
i=1

ηiψi

}
,

for W ∈ [0, W̄ ], with J(0) = l and J ′(W̄ ) = −1 and J ′′(W̄ ) = 0. The parameters
satisfy γ > r > 0, h > 0, and l ∈ [0, l̄) where, similar to previous models, l̄ <
maxW≥0 J(W ), ensuring termination is inefficient.

One can immediately verify that (C1) and (C2) hold using steps similar to
those I used in the contracting models discussed above. However, unlike previ-
ous models, in Szydlowski (2019) the principal chooses from discrete projects with
different volatility, rather than from a continuum of values for risk exposure.

Although the risk-choice problem in Szydlowski (2019) cannot be directly
mapped into my framework, Proposition 3 in Szydlowski (2019) can be seen as
a special case of my Theorem 2. In Proposition 3 of Szydlowski (2019), the author
assumes l → 0 and shows a project with volatility ψ = ε, with ε > 0 sufficiently
small, becomes optimal near the termination threshold. Under l → 0, condition
(C3) holds for πi(W, η) := ηmi and µi(W, ηi) := γW/N + hηi for η ∈ [ε, η̄].7 There-
fore, as W approaches the termination threshold, a project with minimal volatility
is optimal for the principal. In this case, l→ 0, the principal earns forward-looking
rents and becomes risk averse near termination if projects have a positive prof-
itability mi.

O.1.3 MODELS OF DELEGATION AND LEARNING

Finally, I consider models of hedge-fund delegation by Lan et al. (2013) and
Panageas and Westerfield (2009) and models of delegation with learning about
the manager’s skill by Moreira (2019) and Kuvalekar and Lipnowski (2020). I also

7Note that, in Szydlowski (2019)’s HJB equation, the flow payoff and the drift are given by∑N
i=1 π

i(W, ηi) and
∑N

i=1 µ
i(W, ηi), respectively.
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discuss the model by Panageas and Westerfield (2009), which is a special case of
Drechsler (2014). As discussed in section 4.3, in these models forward-looking
rents originate from the present value of the fees collected by the manager for as
long as she is not terminated.

O.1.3.1 LAN ET AL. (2013)

In a numerical calibration of their model, Lan et al. (2013) find a hedge fund man-
ager becomes endogenously risk averse and reduces risk near termination. I show
their model satisfies the assumption of Theorem 1’. The value function of a fund
manager with high-water mark Ht and assets under management wtHt is Htf(wt)

where f solves

(β − g + δ + λ)f(w) = max
η∈[0,η̄]

{
cw + (ηα + r − g − c)wf ′(w) +

1

2
η2σ2w2f ′′(w)

}
for w ∈ (b, 1) with b > 0, f(w) = 0 for w < b, and f(1) = (k + 1)f ′(1) − k. In the
calibration, β, g, λ, r, c, σ, and η̄ are strictly positive, α ≥ 0, δ ≥ 0, β + δ + λ > g,
η̄α + r ≥ g + c and ŵ > 0. Without loss of generality, I restricted η ≥ 0 because the
present value of expected compensation increases with w and, hence, αf ′(w) ≥ 0.

Thus, we can immediately verify that π(b, η) := cb > 0 and µ(b, η̄) := (η̄α+r−g−
c)b > 0, thus satisfying conditions (C1’) and (C2’). The first part of Lemma 1 thus
implies the manager is risk averse near termination. However, condition (C3’)
does not necessarily hold. If (r − g − c) < 0, as in Figure 1 in Lan et al. (2013), the
condition ηµη(b, η) > 2µ(b, η) fails for some η. In particular, it fails for sufficiently
small and positive η. In this case, the manager reduces risk near termination, but
she does not minimize. Lan et al. (2013) illustrate this result in Figure 1. If, instead,
parameters satisfied (r − g − c) > 0, one could use the second part of Lemma 1 to
show the manager minimizes risk near termination.

O.1.3.2 MOREIRA (2019)

Moreira (2019) studies a model of delegation to an intermediary whose skill is
private information. Investors learn by observing the performance of the interme-
diary and, in a version of the model, the intermediary’s portfolio as well. The au-
thor finds a skilled intermediary becomes risk averse near termination. I show his
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model can be mapped into the framework of section 3.1. Although Moreira (2019)
incorporates tail risk, to streamline the presentation, I consider a model with no
tail risk.

The continuation value of a skilled intermediary with log-likelihood ratio pt is
V (pt;S), where V solves

ρV (p;S) = max
X∈Ω

{
mX ′µS + C(p) + Vp(p;S)XI(p;S)′µS

(
X − 1

2
XI(p;S)

)′
µS

+
1

2
Vpp(p;S)(XI(p;S)′µS)2

}
for p > 0, with V (0, S) = 0. The quantity C(p) is non-negative and represents the
equilibrium compensation of the manager. The vector XI(p;S) ∈ RM , with M ≥ 1,
represents the equilibrium strategy of the manager, and µS ∈ RM . Moreover, an
Xµ ∈ RM exists such that X ′µµS = maxX X

′µS > 0. Finally, Ω := {X ∈ RM :=

X ′ΣX = 1}, where Σ is a positive definite matrix and M ≥ 1.
First, Moreira (2019) considers the case in which holdings are observable and,

hence, X replaces XI(p;S) in the HJB equation. In this case, π(p,X;S) := mX ′µS +

C(p) and µ(p, x;S) := 1
2
(X ′µS)2. Thus, we immediately obtain π(0, Xµ; p) > 0

and µ(0, Xµ; p) > 0, showing this version of the model satisfies the conditions for
Theorem 1.

Then, Moreira (2019) assumes holdings cannot be observed. In this case,
π(p,X;S) := mX ′µS + C(p) and µ(p, x;S) := XI(p;S)′µS

(
X − 1

2
XI(p;S)

)′
µS .

In equilibrium, we must have XI(p;S)′µS ≥ 0 for p > 0, otherwise investors
would terminate the fund. Given this observation, we obtain once again that
π(0, Xµ; p) > 0 and µ(0, Xµ; p) > 0. Hence, also this version of the model satis-
fies the conditions for Theorem 1.

O.1.3.3 KUVALEKAR AND LIPNOWSKI (2020)

In Kuvalekar and Lipnowski (2020), a worker with reputation p has continuation
value v(p) which is a solution of

rv(p) = max
η∈[

¯
η,η̄]

{
1 +

1

2
v′′(p)η2p2(1− p)2

}
.
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in p ∈ (p̂, 1), where p̂ represents the upper boundary of a probation region. The
parameter r is a positive constant. At p̂, the continuation value is v(p̂) < 1/r. To
map this model to the framework of section 3.1, I define q(p) := v(p)− v(p̂), which
solves

rq(p) = max
η∈[

¯
η,η̄]

{
1− rv(p̂) +

1

2
v′′(p)η2p2(1− p)2

}
.

One can then immediately verify that π(p, η) := 1 − rv(p̂) and µ(p, η) := 0 satisfy
condition (C1), (C2), and (C3) and, hence, Theorems 1 and 2 apply in a right-
neighborhood the probation threshold p̂.

O.1.3.4 PANAGEAS AND WESTERFIELD (2009)

As noted by Drechsler (2014), the model in Panageas and Westerfield (2009) is a
special case with C = g = 0. However, condition (C3’) does not hold in Panageas
and Westerfield (2009) because, with C = 0, we have ηπη(0, η) = 2π(0, η) = 0

and ηµη(0, η) = 2µ(0, η) = 0 for any η ∈ R. In fact, Panageas and Westerfield
(2009) find the manager does not fully de-risk near termination. In particular, the
manager maintains a constant risk exposure. In this case, (10) and η(0)2 > 0 are
satisfied and, according to the first part of Lemma 1, the manager is risk averse near
termination with a concave value function. By contrast, Drechsler (2014) assumes
C > 0 so that, when (10) or, equivalently, (11) holds, 0 = ηπη(C, η) < 2π(C, η) and
ηµη(C, η) ≤ 2µ(C, η), thus satisfying also condition (C3).

O.2 APPLICATION: RISK AVERSION WITH EARLY REG-

ULATORY INTERVENTION

I now consider a variation of the default model of section 5. I let equity holders
be decision-makers, and I thus eliminate the distinction between ownership and
control that has characterized the model so far. However, a regulator imposes early
termination in a model otherwise analogous to the one in section 5. I then study
how such regulatory intervention generates endogenous risk aversion in levered
financial institutions.

In particular, a regulator imposes a threshold R such that, if assets fall below
that threshold, she takes control of the firm and shareholders receive an outside

12



option that I normalize to zero.8 This threshold may be thought of as a minimum
capital requirement when the face value of liabilities is constant.

With this variation of the model, I provide a tractable framework to study cap-
ital requirements and PCA for US financial institutions (Mehran and Mollineaux,
2012). When capital requirements are violated, US regulators may impose restric-
tions on financial institutions. If the institution remains severely undercapitalized,
regulators would then take steps to orderly liquidate it. This regulation effectively
imposes an early termination threshold on the institution. In this paper, I do not
microfound why the regulator intervenes.9 Instead, I take regulatory intervention
as given and consider the investment behavior of the financial institution.

Absent any regulatory intervention, equity holders optimally default when as-
sets fall below some level, because a version of Lemma O.3 in Online Appendix
O.4.1 still applies. I denote this level by V ∗. If the regulatory threshold R is lower
than V ∗, equity holders would still default at V ∗, and the regulatory intervention
is irrelevant. I, therefore, focus on the case in which R ≥ V ∗.

In this case, the value of shareholders’ equity ER(V ) is the unique solution of
the following HJB equation:

rER(V ) = max
η∈[

¯
η,η̄]

{
δV − c− βER(V ) + E ′R(V )µηV +

1

2
E ′′R(V )η2V 2

}
,

subject to the boundary condition ER(R) = 0 and satisfying linear growth.
If δR − c > 0, the conditions of Theorems 1 and 2 are met and, hence, eq-

uity holders become endogenously risk averse and minimize risk near termina-
tion. However, as discussed in section 3.1.1, the conditions in those theorems are
sufficient, but not necessary. In Figure O.1, I show results for different values of
the termination threshold, starting from the optimal default threshold V ∗. For all
the thresholds I consider, the cash flow near termination is strictly negative; that
is, δR− c < 0.

As we see in Figure O.1(a), the concavity of equity holders’ value function and
their optimal risk exposure near termination change as the regulatory threshold

8According to the discussion in footnote 8, the solution of a model with positive outside option
O can be characterized as a solution of a model with zero outside option, but where the cost c is
increased to c+O/r.

9Capital requirements and PCA are typically justified by the regulator’s desire to avoid costly
bankruptcy and market disruption (Mehran and Mollineaux, 2012).
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(a) Equity value ER(V ) (b) Risk exposure ηR(V )

Figure O.1: Equity value and risk exposure when equity holders are decision-makers but face early
termination because of regulatory intervention. The figures show results for different regulatory
thresholds (dotted vertical lines), and the lowest one coincides with the optimal default threshold
V ∗. The parameter values are µ = 2%, δ = 4%, c = 10%, σ = 10%, η̄ = 100%,

¯
η = 75%, r = ρ = 3%.

increases. If the threshold is sufficiently close to the optimal one, the value func-
tion remains convex near termination. When the threshold is sufficiently above
the optimal one, equity holders become risk averse. Moreover, as Figure O.1(b)
indicates, for a low enough threshold, equity holders still maximize risk near ter-
mination. However, for higher thresholds, equity holders minimize risk exposure
near termination.

O.3 APPLICATION: OVERCONFIDENCE AND SLOW RISK

ADJUSTMENT

I provide an example of a model with slow risk adjustment in which T (η) is con-
stant. In this case, Theorem A.1 provides condition for the decision maker to be-
come risk averse near termination. However, the decision-maker’s optimal policy
near termination depends on parameters because T ′(·) = 0. I consider a simple
model, unrelated to a specific economic application, just to illustrate how results
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(a) Decision-maker’s continuation value u(y, η) (b) Change in risk exposure i(y, η)

Figure O.2: Continuation value of a Decision-maker and change in risk exposure as functions of the
the state variable y and current risk exposure η. The continuation value is provided as a function
of y for five distinct levels η. The change in risk exposure is represented by different colors over the
entire state space. The parameter values are r = ρ = 5%, σ = 10%, ŷ = 0.5,

¯
η = 0.03, η̄ = 0.6, β = 1,

and I = 1.

depend on parameters. In particular, the decision-maker solves

max
(it)t≥s

EPm
[∫ τ

s

e−ρ(t−s)βηtσ(y − ŷ) dt

]
∀s ≥ 0,

s.t. (A.4) and it ∈ [−I, I] ∀t ≥ s

dyt = η2
t y

2
t (1− yt)2dt+ ηtyt(1− yt)dZt

(O.1)

where τ = inft≥s{t : yt ≤ ŷ}.
The value function is characterized by the following HJB equation:

ρu(y, η) = βσ(1− ŷ)+uy(y, η)η2y2(1−y)2 +
1

2
uyy(y, η)η2y2(1−y)2 + max

i∈[−I,I]
{iuη(y, η)},

(O.2)
with boundary condition u(T (η), η) = 0 and state constraints

¯
η ≤ η ≤ η̄.

If a solution to this equation exists that is twice differentiable in y and once
differentiable in η, arguments similar to those in Lemma O.1 imply a control (it)t≥0

such that it = i(yt, ηt) = arg maxi∈[−I,I]{iuη(yt, ηt)} is an optimal control for the
decision-maker.

Instead of plotting the three-dimensional function u(y, η), in Figure O.2(a), I
show the decision-maker’s continuation value as a function of the state variable
y for five values of risk exposure η. Figure O.2(b) shows the associated optimal
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(a) Change in risk exposure i(y, η) with I = 1 (b) Change in risk exposure i(y, η) with I = 100

Figure O.3: Change in risk exposure as function of the state variable y and current risk exposure
when η̄ is large. The change in risk exposure is represented by different colors over the entire state
space. The parameter values are r = ρ = 5%, σ = 10%, ŷ = 0.5,

¯
η = 0.03, η̄ = 6, and β = 1. The

parameter I changes between the two figures.

control over the entire state space. As expected from part (I) of Proposition A.1,
the value function is increasing and concave in the state variable y near the termi-
nation threshold. Moreover, the numerical results also show the decision-maker
reduces risk exposure in the vicinity of the termination threshold. Interestingly,
the decision-maker begins reducing risk exposure at larger values of y when the
current risk exposure η is higher.

However, the result in Figure O.2(b) is not always guaranteed. Figures O.3(a)
and O.3(b) show optimal controls when η̄ = 6, instead of 0.6. In Figure O.3(a),
the parameter I is set equal to 1, like in Figure O.2. All other parameters are un-
changed. Although the value function continues to be increasing and concave near
termination by Theorem A.1(I), the decision-maker increases risk exposure near
the termination threshold. In Figure O.3(a), I increase the parameter I to 100 and
keep η̄ = 6. In this case, we observe again a reduction in risk exposure as the state
variable y approaches the termination threshold even if η̄ is large.

O.4 TECHNICAL APPENDIX

O.4.1 AUXILIARY RESULTS FOR SECTION 3

LEMMA O.1. Let (η(yt))t≥0 be admissible and let u(·) be a twice-differentiable solution
of (4). If limt→∞ E[u(yt)e

−ρt|F0] = 0, u(·) is the decision-maker’s value function and
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(η(yt))t≥0 is optimal for the decision-maker.

Proof. Consider a localizing sequence of stopping times (τn)∞n=0 such that τn → ∞
as n → ∞. Then, for any arbitrary admissible strategy (ηt)t≥0 such that ηt ∈ [

¯
η, η̄],

by the Dynkin’s formula (Øksendal, 2003, Chapter 7.4),

E[e−ρτnu(yτn)|F0]− u(y0) = E

[∫ τn

0

e−ρt
{
u′(yt)µ(yt, ηt) +

1

2
u′′(yt)η

2
t σ(yt)

2 − ρu(yt)

}
dt
∣∣∣F0

]
≤ −E

[∫ τn

0

e−ρtπ(yt, ηt) dt
∣∣∣F0

]
,

with equality if ηt = η(yt).
By assumption E[e−ρτnu(yτn)|F0] → 0 as n → 0. Taking the limit and using the

dominated convergence theorem, I obtain u(y0) ≥ E
[∫∞

0
e−ρtπ(yt, ηt) dt

∣∣F0

]
, with

equality if ηt = η(yt). Hence, (η(yt))t≥0 must be an optimal control and

u(y0) = E

[∫ ∞
0

e−ρtπ(yt, η(yt)) dt
∣∣∣F0

]
.

REMARK O.1. If a function u(·) satisfies linear growth, it also satisfies
limt→∞ E[u(yt)e

−ρt|F0] = 0. In fact,

0 ≤
∣∣∣ lim
t→∞

E[u(yt)e
−ρt|F0]

∣∣∣ ≤ lim
t→∞

E[|u(yt)|e−ρt|F0] ≤ lim
t→∞

E[e−ρt(C0µ+Cµ
1 |yt|)|F0] = 0,

where the last equality follows from Cµ
0 and Cµ

1 being constants and from Lemma
1 in Strulovici and Szydlowski (2015), which applies because of Assumption (R2).

REMARK O.2. When η(ŷ) = 0, strict concavity does not hold in general because
the decision-maker can avoid termination and can thus maintain her rents. More-
over, u(y) may also be decreasing in a neighborhood of ŷ. Consider, for example, a
problem with π(y, η) = 1−y, µ(·, ·) = 0, σ(·) = 1, η̄ = −

¯
η = 1, and ŷ = 0. The model

thus satisfies conditions (C1), (C2), (C3) and the corresponding HJB equation is

ρu(y) = max
η∈[−1,1]

{
(1− y) + η2u′′(y)

}
.

However, one can immediately verify that η(ŷ) = 0 and that the decreasing linear
function u(y) = 1−y

ρ
is a solution.
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LEMMA O.2. The value function in problem (8) takes the form V (y,K) = Kv(y) for a
continuous function v which is the unique solution of the HJB equation (9).

Proof. Solving the FSDE (7), I obtain

Kt = K0 exp

{∫ t

0

[
g(ys, ηs, as)−

1

2
ν(ys, ηs, as)

2(ρ2+ρ′
2
)

]
ds+

∫ t

0

v(ys, ηs, as)(ρdZ
1
s + ρ′dZ2

s )

}
.

Using this expression, I write the objective function in (8) as

K0E

[∫ τ

0

Bte
−

∫ t
0 (ρ−g(ys,ηs,as))dsπ(yt, ηt, at) dt

]
, (O.3)

where (Bt)t≥0 is a density process:

Bt := exp

{∫ t

0

ν(ys, ηs, as)(ρdZ
1
s + ρ′dZ2

s )−
∫ t

0

1

2
ν(ys, ηs, as)

2(ρ2 + ρ′
2
)ds

}
.

The maximization problem (8) is equivalent to maximizing (O.3) under the
same constraints. Hence, V (y0, K0) = K0v(y0), where

v(y0) = max
(ηt)t≥0,(at)t≥0

E

[∫ τ

0

Bte
−

∫ t
0 (ρ−g(ys,ηs,as))dsπ(yt, ηt, at) dt

]
s.t. ηt ∈ [

¯
η, η̄] and at ∈ A ∀t ≥ 0,

(6).

(O.4)

I next show (9) is the HJB equation associated to problem (O.4). I define a
probability measure Q on (Ω,F∗) so that

EQ[Xt] = E[BtXt]

for any Ft-measurable random variable Xt. By Girsanov’s theorem,

dZQ
t := dZ1

t − v(yt, ηt, at)ρdt

is an increment of a Brownian motion under the measure Q. Therefore, under the
measure Q, the state variable yt evolves as

dyt = [µ(yt, ηt, at) + ηtσ(yt)ν(yt, ηt, at)ρ]dt+ ηtσ(yt)dZ
Q
t , y0 = Y0. (O.5)
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Problem (O.4) can thus be written as

v(y0) = max
(ηt)t≥0,(at)t≥0

EQ

[∫ τ

0

e−
∫ t
0 (ρ−g(ys,ηs,as))dsπ(yt, ηt, at) dt

]
s.t. ηt ∈ [

¯
η, η̄] and at ∈ A ∀t ≥ 0,

(O.5).

The HJB equation associated to this problem is (9).

REGULARITY CONDITIONS FOR SECTION 3.2. Similar to section 3.1, one could
impose regularity conditions to ensure that (8) has a solution K0v(y0) where v is
the unique classical solution of (9) satisfying v(ŷ) = 0 and linear growth. The
following regularity conditions are the counterparts of (R1), (R2), and (R3).

CONDITIONS. (Regularity Conditions with a Scaling Variable)

(R1’) The functions µ(y, η, a), σ(y, η, a), π(y, η, a), ω(y, η, a), and ν(y, η, a) are Lipschitz-
continuous in y and continuous in a for all y ∈ Y, η ∈ [

¯
η, η̄], and a ∈ A.

(R2’) The discount rate ρ is large enough that E
[∫ τ

0
e−ρtKtπ(yt, ηt, at) dt

]
< ∞ for any

y0 ∈ Y, K0 ∈ R+, and for all admissible (ηt)t≥0 and (at)t≥0 such that ηt ∈ [
¯
η, η̄] and

at ∈ A for all t ≥ 0.

(R3’)
¯
σ > 0 exists such that σ(y, η, a) ≥

¯
σ for all η ∈ [

¯
η, η̄], a ∈ A, and y ∈ Y such that

y ≥ ŷ. Moreover,
¯
η > 0.

O.4.2 AUXILIARY RESULTS FOR SECTION 5

Here, I present technical results for the model of section 5. In particular, I show the
optimal stopping rule is a threshold strategy and I characterize the Markov perfect
equilibrium using a system of differential inequalities. I start by showing equity
holders default after assets fall below a threshold, which I denote by V̂ .

LEMMA O.3. Consider the model of section 5. In any Markov-perfect equilibrium, a
V̂ > 0 exists such that D = {V ∈ R+ : V > V̂ } and, hence, τ ∗ = inf{t ≥ 0: Vt ≤ V̂ }.
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Proof. It is sufficient to prove the complement of D, which I denote as DC , is a
non-empty, bounded, and closed interval in the form [0, V̂ ].

First, I prove DC is non-empty. I proceed by contradiction. Suppose DC is
empty; then, E coincides with the equity value when τ = ∞, which I denote by
Ẽ(V ). Note

Ẽ(V ) ≤ max
(ηt)t≥0

E

[∫ ∞
0

e−rt[(1− θ)δVt − c] dt
∣∣∣F0

]
=

(1− θ)δ
r − η̄µ

V − c

r
,

and therefore, there exists a Ṽ > 0 such that Ẽ(V ) < 0 for all V ∈ [0, Ṽ ). But this
finding contradicts that τ = ∞ is optimal for the equity holders. Therefore, DC is
not empty.

Next, I show DC is bounded. In particular, I show DC is a subset of the bounded
interval N := {V ∈ R+ : (1 − θ)δV − c ≤ 0} =

[
0, c

(1−θ)δ

]
. To show DC ⊆ N, I

proceed by contradiction. In particular, suppose there exists V ∈ DC such that
(1− θ)δV − c > 0. Because V ∈ DC , E(V ) = 0. Given V0 = V , consider a stopping
time τ̄ = inf{t ≥ 0: (1− θ)δVt − c ≤ 0}. Then, E

[∫ τ̄
s
e−rt−s[(1− θ)δVt − c] dt

]
> 0 =

E(V ). But this result contradicts τ = 0 being optimal when V0 = V .10 Therefore,
DC must be a subset of N.

Then, I show DC is an interval. By way of contradiction, assume there exist two
sets, D1 and D2, subsets of DC , with D1 ∩D2 = ∅, V 1 = supD1 < inf D2 = V 2 and
such that [V 1, V 2]∩D 6= ∅. Then, for any V ∈ [V 1, V 2]∩D, E(V ) > 0. With V0 = V ,
define τ ′ := inf{t ≥ 0: Vt ∈ D1 ∪D2}. By the dynamic programming principle,

E(V ) = E

[∫ τ ′

0

e−rt((1− θ)δVt − c) dt+ e−rτ̃E(Vτ̃ )
∣∣∣F0

]
.

By the definition of τ ′, E(Vτ ′) = 0. Moreover, because DC ⊆ N, (1 − θ)δV − c ≤ 0

for all V ≤ V 2, and the integral in the previous expression is (weakly) negative.
This result would imply E(V ) ≤ 0, thus contradicting that V ∈ D. Therefore, DC

is an interval.
Finally, I show DC is closed. First, notice 0 ∈ DC . I then need to show V̂ :=

supDC ∈ DC . Let τ 0
V := inf{t ≥ 0 : Vt ∈ DC , V0 = V }. By the Blumenthal zero-

10Note that, by definition of a Markov equilibrium, τ = 0 is optimal for equity holders when
V0 ∈ DC .
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one law (Karatzas and Shreve, 1998, Chapter 2.7.C), either P (τ 0
Ṽ

= 0|V0 = Ṽ ) = 0

or P (τ 0
Ṽ

= 0|V0 = Ṽ ) = 1. By symmetry, the first case is impossible. Therefore,
P (τ 0

Ṽ
= 0|V0 = Ṽ ) = 1 and E(Ṽ ) = 0.

After establishing default is determined by a threshold strategy, I characterize
the Markov perfect equilibrium recursively. Consider the HJB equation associated
with the manager’s decision problem, (16) for V > V̂ , with u(V̂ ) = 0. For any
given V̂ , results in Pham (2009) and Strulovici and Szydlowski (2015) imply the
manager’s value function is the unique twice-differentiable solution of (16) for V ≥
V̂ . Next, I show the policy function η(V ) is continuous in V .

LEMMA O.4. Consider the model of section 5. Let η(V ) be the maximizer in (16). Then,
η(·) is a continuous function for V > V̂ .

Proof. By the maximum theorem, the set of maximizers of (16) is an upper-hemicontinuous
correspondence in V . I, therefore, need to show it is single-valued. For V > V̂ ,
there are two cases in which (16) has multiple maximizers: (i) u′′(V ) = 0 and
u′(V )µ = 0, or (ii) u′′(V ) > 0 and u′(V )µ(η̄ −

¯
η) + 1

2
u′′(V )s2V (η̄2 −

¯
η2) = 0.

I rule out these two cases by showing u is strictly increasing for V ≥ V̂ and that,
if µ = 0, u is strictly concave for V ≥ V̂ . If u is strictly increasing, then one can rule
out both cases when µ > 0. When µ = 0, the strict concavity of u rules out both
cases as well.

To show that u is strictly increasing, consider V 1
0 > V 0

0 ≥ V̂ . For i ∈ {0, 1}, let

lnV i,η
t = lnV i

0 +

∫ t

0

(
µηt −

1

2
η2
t

)
dt+

∫ t

0

ηt dZt, (O.6)

where I set ηt = η
(
elnV 0,η

t

)
= η

(
elnV 1,η

t +lnV 0
0 −lnV 1

0

)
= η

(
V 1,η
t

V 0
0

V 1
0

)
, which is a Marko-

vian control also for V0 = V 1
0 . In particular, it coincides with the manager’s optimal

control when V0 = V 0
0 for any given realized path (Zu)0≤u≤t of the Brownian mo-

tion.
Let τ 0 = inf{t ≥ 0 : V 0,η

t ≤ V̂ }. Note V 1,η
τ0 > V̂ . Then,

u(V 1
0 ) ≥ E

[∫ τ0

0

e−ρtθδV 1,η
t dt+ e−ρτ

0

u(V 1,η
τ0 )

]
≥ u(V 0

0 ) + E
[
e−ρτ

0

u(V 1
τ0)
]
> u(V 0

0 ).

(O.7)
Hence, u is strictly increasing for V ≥ V̂ .
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Next, I prove strict concavity when µ = 0. First, note that, from (16), ρu(V ) −
θδV ≥ 1

2
u′′(V )V 2η2 for any η ∈ [

¯
η, η̄]. Next, note

u(V ) < ũ(V ) = max
(ηt)t≥s

E

[∫ ∞
s

e−ρ(t−s)θδVt dt

]
=
θδV

ρ
,

where the first inequality follows because θδVt > 0 and τ := inf{t ≥ 0: Vt ≤ V̂ } <
∞. The equality follows because θδV/ρ is a solution of (16) with V̂ = 0 and, by
Pham (2009) and Strulovici and Szydlowski (2015), it is the unique solution of (16).
Therefore, ρu(V )− θδV < 0, and u′′(V ) < 0 for any V ≥ V̂ .

In conclusion, the maximizer of (16) is a continuous function of V .

I then define the default threshold V̂ := sup{V ≥ 0: E(V ) = 0}, where E solves
the variational inequality associated with the shareholders’ problem:

min{rE(V )−H(V,E ′(V ), E ′′(V )), E(V )} = 0, (O.8)

with

H(V,E ′(V ), E ′′(V )) = (1− θ)δV − c+ E ′(V )µη(V )V +
1

2
E ′′(V )η(V )2V 2.

By Lemma O.4, the manager’s optimal policy η(V ) is continuous in V for V ≥ V̂ . I
impose η(V ) = limV ′→V̂ η(V ′) for V ≤ V̂ , so that η(V ) is continuous for all V > 0.
Hence, the equity value is the unique continuous solution of (O.8) satisfying linear
growth (Pham, 2009, Theorem 5.2.1 and Remark 5.2.1).

A Markov-perfect equilibrium, therefore, solves a fixed-point problem. Given
the manager’s policy function η(·), the stopping time τ = inf{t ≥ 0: V ≤ V̂ }must
be optimal for the equity holders. At the same time, given the stopping time τ and
its associated default threshold V̂ , the policy function η(·) must be optimal for the
manager.

In particular, let the functions u and E solve the system given by (16) and (O.8)
with V̂ := sup{V ≥ 0: E(V ) = 0} and where η(V ) is the maximizer in (16). Let η∗t =

η(Vt) for all t ≥ 0 and τ ∗ := inf{t ≥ : Vt ≤ V̂ }. If (η∗t )t≥0 is admissible, (η∗t )t≥0 and τ ∗

constitute a Markov-perfect equilibrium. By Lemma O.1 and Remark O.1, (η∗t )t≥0
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is optimal for the manager. Moreover, τ ∗ is optimal for equity holders because

E

[∫ τ∗

0

e−ρt{(1− θ)δVt − c} dt
∣∣∣F0

]
= E(V0) = max

τ
E

[∫ τ

0

e−ρt{(1− θ)δVt − c} dt
∣∣∣F0

]
,

where the first equality follows from the dynamic programming principle and
E(Vτ∗) = 0, and the second follows because E(V0) is the equity holders’ value
function. Therefore, τ ∗ is optimal for equity holders.

Finally, the following result establishes equity holders are risk-loving in a neigh-
borhood of V̂ .

LEMMA O.5. Consider the model of section 5. An ε > 0 exists such that E is twice
differentiable in (V̂, V̂ + ε) with E ′′(V ) < 0.

Proof. I begin by showing E is twice differentiable in a right neighborhood of V̂ .
By corollary 1 and by the restriction that η(V ′) = limV→V + η(V ) for V ′ ≤ V̂ , there
exists ε′ > 0 such that η(V ) =

¯
η for V < V̂ + ε′. For a 0 < ε0 < ε1 < ε′, consider the

following variational inequality for V ∈ (V̂ + ε0, V̂ + ε1):

re(V )−H(V, e′(V ), e′′(V )) = 0,

with boundary conditions e(V̂ + ε0) = E(V̂ + ε0) and e(V̂ + ε1) = E(V̂ + ε1). It can
be immediately verified that e = E is a solution of this variational inequality and
that, by the usual arguments in Pham (2009), it is the unique continuous solution.

Because η(V ) =
¯
η for V ≤ V1, the functions (1− θ)δV − c, µη(V )V , and η(V )σV

are all twice differentiable in V and bounded in the interval (V̂ + ε0, V̂ + ε1). Clas-
sical results (Fleming and Soner, 2006, Ch. IV.4) imply e is twice differentiable in
(V̂ + ε0, V̂ + ε1). Because ε0 > 0 can be arbitrarily small, both e and E are twice
differentiable in (V̂, V̂ + ε1).

Next, I show E ′′(V ) > 0 in a right neighborhood of V̂ . By the smooth-fit princi-
ple (Pham, 2009), E(V ) = E ′(Ṽ ) = 0 and E(V )→ 0 and E ′(V )→ 0 as V → Ṽ +. By
(O.8),

rE(V )− [(1− θ)δV − c]− E ′(V )µη(V )V = +
1

2
E ′′(V )η(V )2V 2,

and hence,
lim

V→V̂ +

1

2
E ′′(V )η(V )2V 2 = lim

V→V̂ +
−[(1− θ)δV − c].
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It therefore suffices to show [(1− θ)δV̂ − c] < 0. To show this, note

E(V ) > min
(ηt)t≥0

E

[∫ ∞
0

e−rt[(1− θ)δVt − c] dt
]

s.t. ηt ∈ [
¯
η, η̄], ∀t ≥ 0,

where the strict inequality follows because DC is non-empty and, hence, τ ∗ < ∞,
and where the right-hand side of this expression is equal to (1−θ)δ

r−µ
¯
η
V − c

r
. For V = V̂ ,

it follows that 0 > (1−θ)δ
r−µ

¯
η
V̂ − c

r
and (1−θ)δṼ −c < −cµ

¯
η/r ≤ 0. Therefore,E ′′(V ) > 0

in a right neighborhood of V̂ .
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