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Abstract

This review focuses on research into the hormonal control of behaviors in amphibians that was conducted prior to the 21st century. Most

advances in this field come from studies of a limited number of species and investigations into the hormonal mechanisms that regulate

reproductive behaviors in male frogs and salamanders. From this earlier research, we highlight five main generalizations or conclusions. (1)

Based on studies of vocalization behaviors in anurans, testicular androgens induce developmental changes in cartilage and muscles fibers in

the larynx and thereby masculinize peripheral structures that influence the properties of advertisement calls by males. (2) Gonadal steroid

hormones act to enhance reproductive behaviors in adult amphibians, but causal relationships are not as well established in amphibians as in

birds and mammals. Research into the relationships between testicular androgens and male behaviors, mainly using castration/steroid

treatment studies, generally supports the conclusion that androgens are necessary but not sufficient to enhance male behaviors. (3) Prolactin

acts synergistically with androgens and induces reproductive development, sexual behaviors, and pheromone production. This interaction

between prolactin and gonadal steroids helps to explain why androgens alone sometimes fail to stimulate amphibian behaviors. (4) Vasotocin

also plays an important role and enhances specific types of behaviors in amphibians (frog calling, receptivity in female frogs, amplectic

clasping in newts, and non-clasping courtship behaviors). Gonadal steroids typically act to maintain behavioral responses to vasotocin.

Vasotocin modulates behavioral responses, at least in part, by acting within the brain on sensory pathways that detect sexual stimuli and on

motor pathways that control behavioral responses. (5) Corticosterone acts as a potent and rapid suppressor of reproductive behaviors during

periods of acute stress. These rapid stress-induced changes in behaviors use non-genomic mechanisms and membrane-associated

corticosterone receptors.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

In his ‘‘unauthorized’’ autobiography (published recently

by his son), the endocrinologist Lancelot Hogben provides

an early defense of the use of experimental model systems

in biological sciences (Hogben and Hogben, 1998). Hogben

asserts: ‘‘In many fields of experimental biology, advance in

the understanding of a function takes place on a wider front

and at a greater tempo if one can find the animal uniquely

fitted for study. For example, the expansion of genetics was

spectacular when the Columbia School was able to exploit
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the many advantages of the fruit fly, Drosophila. . .For my

purpose, the South African clawed toad, Xenopus laevis,

proved to be a godsend. . .’’ (p. 101). Hogben discovered

melanocyte stimulating hormone using Xenopus as a source

and a bioassay. The profound conservation of the hormones

themselves—and the variety of uses to which they are put

by different organisms—insured that his discoveries were of

both general and particular interest. These advantages hold

as well for the behavioral neuroendocrinologist. The use of

anurans in behavioral endocrinology has a long and

distinguished history; publications appeared as early as the

late 1800s (Steinach, 1894) and continued at steady rate

through the 1990s (the period covered by this review: e.g.,

Berk, 1939; Russell, 1954; Dodd, 1960; Palka and Gorb-
48 (2005) 373 – 383
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man, 1973; Lofts, 1974; see also papers cited here). For

urodeles (salamanders and newts), research on the neuro-

endocrine control of behaviors has been greatly helped by

early neuroanatomists, such as J.B. Johnston and C. Judson

Herrick, and the development of several species (Cynops

pyrrhogaster, Taricha granulosa, and Triturus carnifex) as

research models. This review describes some contributions

gleaned from study of amphibians, focusing on the

hormonal control of vocal behaviors and of clasping in

anurans (frogs and toads) and the hormonal control of

clasping and non-clasping behaviors in urodeles (primarily

newts).

Hormonal control of vocal behaviors

Frogs and toads typically use a few stereotyped vocal-

izations to communicate with conspecifics. The most

studied vocal behaviors are the ‘‘advertisement calls’’

produced by males to attract females and, in some species,

maintain territories, and the ‘‘release calls’’ emitted by males

and sexually unreceptive females when clasped by other

individuals. Hormones regulate many aspects of vocal

behaviors in anurans, ranging from the development of

calling structures and neural circuitry to the modulation of

call characteristics.

Effects of hormones on development of vocalization

structures

The development of central nervous system and laryng-

eal structures involved in production of anuran vocalizations

has been investigated only in Xenopus laevis. Androgens

play a pivotal role in masculinization of this species.

Synthesis of testosterone and dihydrotestosterone in X.

laevis begins around stage 47 in tadpole development,

before substantial gonad differentiation can be observed

(Kang et al., 1995), but sex differences in circulating

androgen concentrations are not obvious until early adult-

hood (about 1 year post-metamorphosis). Within this period,

the male larynx develops more muscle fibers (Sassoon and

Kelley, 1986; Marin et al., 1990) and a preponderance of

fast-twitch fibers (Sassoon et al., 1987; Tobias et al., 1991a;

Catz et al., 1995). Sex differences in numbers of vocal

motor neuron numbers begin before metamorphosis and are

due to less ontogenetic cell death in males (Kelley and

Dennison, 1990; Kay et al., 1999). Castration of males or

treatment with the anti-androgens flutamide and hydroxy-

flutamide prevents these dimorphisms and androgen treat-

ment enhances the masculinization of the female X. laevis

larynx (Sassoon and Kelley, 1986; Tobias et al., 1991b; Kay

et al., 1999). Although serum androgen levels are not

sexually dimorphic during the period of most rapid

masculinization, androgen receptor levels in the larynx are

greater in males; regulation of receptor levels participates in

sexual differentiation of the vocal organ (Kelley et al., 1989;

Fischer and Kelley, 1991; Kang et al., 1995). The

masculinization of the X. laevis larynx requires androgen,
but other hormones, namely thyroid hormones and prolac-

tin, have critical roles as well (Cohen and Kelley, 1996;

Robertson and Kelley, 1996; for a review, see Kelley, 1996).

In X. laevis, the laryngeal neuromuscular synapse is

feminized by estrogens during early adulthood (Tobias and

Kelley, 1995; Tobias et al., 1998a). The changes produced

by estrogen are reversible while those due to androgen are

usually irreversible.

Hormonal control of advertisement calling

While castration will often result in the cessation of

advertisement calling (see below), cause and effect

relationships between the display of advertisement calls

and plasma androgen levels in natural populations have not

been resolved. Several studies found a positive correlation

between calling and plasma testosterone levels (Townsend

and Moger, 1987; Marler and Ryan, 1996; Harvey et al.,

1997; Solis and Penna, 1997), and at least one study found

the opposite, namely that calling males have lower

androgen levels (Rana catesbeiana; Mendonca et al.,

1985). Other studies revealed positive correlations between

androgen levels and vocalization effort (Emerson and

Hess, 1996) and evidence that exposure of male frogs to

vocalizations of chorusing males results in significantly

higher plasma androgens in those males, compared to

males that heard only tones or no sound (Brzoska and

Obert, 1980). Whether these correlations reflect androgen

control of calling, calling influence on androgens, or both

remains to be resolved and may reflect species-specific

mechanisms.

Advertisement calling can be abolished by castration of

adults (X. laevis; Rana pipiens, Hyla cinerea, Hyla versi-

color) (Palka and Gorbman, 1973; Kelley and Pfaff, 1976;

Wetzel and Kelley, 1983; Penna et al., 1992). Only in X.

laevis, however, has androgen replacement therapy been

shown to restore calling in castrated males (Wetzel and

Kelley, 1983). In intact females, androgen treatment can

induce advertisement call-like vocalizations (Penna et al.,

1992). Sites in the central nervous system pathway

controlling vocalization in anurans and the larynx are major

androgen target tissues, suggesting that androgens might

modulate calling by acting centrally (Kelley and Tobias,

1999). Strong evidence for this relationship is lacking,

however, for all anurans except X. laevis.

The neuropeptide arginine vasotocin has been implicated

in the control of advertisement calling in several amphibian

species. Vasotocin administration facilitates the display of

advertisement calling in R. catesbeiana, H. cinerea, H.

versicolor, Acris crepitans, and Bufo cognatus (Penna et al.,

1992; Boyd, 1994a; Marler et al., 1995; Propper and Dixon,

1997; Chu et al., 1998; Tito et al., 1999).

Neurons that synthesize vasotocin and neurons that

express vasotocin receptors are strategically located

throughout vocal control neural circuitry. The distribution

of vasotocin cells and fibers is well described for several

anurans, primarily Ranid and Pipid frogs (Conway and



Fig. 1. Effects of AVT or saline on the percent of male gray tree frogs (Hyla

versicolor) that give advertisement, aggressive or release calls 90 min after

treatment. Baseline values taken before intraperitoneal injections. No

saline-injected males gave advertisement or aggressive calls. Representative

oscillograms of the three call types are located above the bars (adapted from

Tito et al., 1999).
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Gainer, 1987; Boyd, 1994b, 1997; Boyd et al., 1992;

Gonzalez and Smeets, 1992; Gonzalez et al., 1995;

Mathieson, 1996; Marler et al., 1999). For anuran amphib-

ians, the brain distribution of vasotocin receptors has only

been described for R. catesbeiana (Boyd, 1997). Concen-

trations of vasotocin are higher in the amygdala and

pretrigeminal nucleus of male R. catesbeiana than in

females (Boyd, 1994c; Boyd et al., 1992). Vasotocin

concentrations are also sexually dimorphic in the nucleus

accumbens of A. crepitens and vasotocin in this area is

negatively correlated with calling behavior (Marler et al.,

1999). Vasotocin receptor concentrations are sexually

dimorphic and sensitive to steroid hormone manipulations

in the R. catesbeiana vocalization pathway, notably the

pretrigeminal nucleus and amygdala (Boyd, 1997). There-

fore, one mechanism hypothesized to explain the actions of

steroid hormones on vocalization in anurans is that

androgens and estrogens regulate vasotocin peptide or

receptor concentrations in critical brain areas.

Hormonal control of release calling

Sexually unreceptive male and female anurans of most

species produce a ‘‘release call’’ (Bogert, 1960; Martin,

1972). Sex steroid hormones may influence release calls by

exerting effects on laryngeal muscles and associated tissues.

Sexual differences in laryngeal mass are found in many

species (e.g., Sassoon and Kelley, 1986; McClelland and

Wilczynski, 1989b; McClelland et al., 1996, 1997; Boyd et

al., 1999). The dominant frequency of the release call

differs significantly between sexes in many species

(Walkowiak, 1988; McClelland and Wilczynski, 1989a), a

character that may reflect sex differences in laryngeal

structure (McClelland and Wilczynski, 1989b; McClelland

et al., 1996). Males and females also produce release calls

that differ in temporal characteristics (e.g., call rate, inter-

pulse interval) associated with sexual and seasonal differ-

ences in plasma sex steroids (Walkowiak, 1988; McClel-

land and Wilczynski, 1989a; Boyd, 1992). Although

ovariectomy can increase release calling in X. laevis

(Kelley, 1982), neither ovariectomy nor ovarian steroid

treatments altered release calling rates in R. pipiens

(Diakow et al., 1978). Thus, there is scant direct evidence

for involvement of gonadal steroid hormones in the control

of release calling.

Vasotocin also alters release calling in some anurans but

the pattern varies with the sex and species of the animal. In

female R. catesbeiana and R. pipiens, vasotocin admin-

istration decreases release calling (Diakow, 1978; Boyd,

1992). In males, vasotocin administration has been show to

increase, decrease, or not effect release call rates (Boyd,

1992; Raimondi and Diakow, 1981; Tito et al., 1999)

depending on the frog species. In addition to vasotocin,

prostaglandin E2 and prolactin also are linked to the

suppression of releasing calling in sexually receptive

females (Diakow and Nemiroff, 1981; Weintraub et al.,

1985; Boyd, 1992).
Hormonal control of other call types

The hormonal control of aggression-specific vocaliza-

tions has been investigated in a few cases. In H. versicolor,

which produce distinct aggressive calls during interactions

between two males, vasotocin administration enhances

aggressive calling (Tito et al., 1999) (Fig. 1). The peptide

also influences other territorial behaviors in male H.

versicolor and Eleutherodactylus coqui (Semsar et al.,

1998; Klomberg and Marler, 2000). On the other hand, in

A. crepitans, vasotocin increases overall levels of calling but

alters call characteristics in a direction typical for a less

aggressive male (Marler et al., 1995).

Hormonal control of phonotaxis

Females of many anuran species move toward the

advertisement calls of conspecific males at the time of

ovulation. Positive phonotaxis and ability to discriminate

calls appear to co-vary with the narrow time period directly

around ovulation. Phonotaxis has been enhanced by

injections with various types of hormones including hCG

(Schmidt, 1985; Picker, 1983), combined treatment with

progesterone, prostaglandin F2a and vasotocin treatment

(Schmidt, 1985), or treatment with vasotocin (Boyd, 1994a).

Careful studies of changes in steroids, peptides, and

prostaglandins associated with changes in phonotaxis would

provide new insight into normal mechanisms for hormonal

control of phonotaxis in female anurans.

Amplectic clasping behavior in male anuran amphibians

Male frogs and toads typically clasp females for long

periods. Despite the prolonged, obvious, and important

nature of amplexus, we know very little about its hormonal

control in most anurans. Display of clasping is positively
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correlated with plasma androgen at a general seasonal level

(Siboulet, 1981; Licht et al., 1983; Rastogi et al., 1986;

Delgado et al., 1989; Itoh and Ishii, 1990; Itoh et al., 1990;

Kao et al., 1993; Huang et al., 1997). Clasping and

circulating androgens are sometimes correlated in an

individual and sometimes not. Male Rana esculenta, Bufo

marinus, Bufo mauritanicus, E. coqui, and Scaphiopus

couchii sacrificed in amplexus had significantly higher

plasma testosterone than males not in amplexus (Siboulet,

1981; Townsend and Moger, 1987; Orchinik et al., 1988;

Harvey et al., 1997; Gobbetti and Zerani, 1999). This

relation was not, however, observed in Bufo japonicus, R.

catesbeiana, or R. pipiens (Wada et al., 1976; Licht et al.,

1983; Mendonca et al., 1985; Itoh and Ishii, 1990). Because

the performance of amplexus behavior can cause significant

increases in plasma gonadotropins, differences in plasma

androgens between claspers and non-claspers may be the

result—rather than the cause—of the behavior (Ishii and

Itoh, 1992).

A direct relation between circulating androgens and

clasping behavior has been demonstrated only in X. laevis

(Kelley and Pfaff, 1976). Castrated males stop clasping, and

clasping can be reinstated with either testosterone or DHT

(but not estradiol) implants. Ovariectomized female X.

laevis could be induced to clasp with testosterone treatment.

Clasping also disappears upon castration in R. pipiens but

androgen treatment was not effective in restoring clasping in

that species (Palka and Gorbman, 1973). Androgens are

probably required for display of robust clasping behavior,

but may not be sufficient in all species.

Clasping behavior of anurans is also influenced by

chemical messengers other than gonadal steroids. Two

peptide hormones have been found to enhance amplectic

clasping behavior in anurans-GnRH (Propper and Dixon,

1997) and thyrotropin-releasing hormone (Taylor and Boyd,

1991). Injections of hCG also can enhance amplectic

clasping in male X. laevis, but its site and mechanism of

action are unknown (Kelley and Pfaff, 1976).

Amplectic clasping behavior in caudate amphibians

Of the 500+ species of caudate amphibians (i.e.,

urodeles, salamanders) in the world, research into the

hormonal control of behaviors has been mainly restricted

to three species of newts in the family Salamandridae—

North American rough-skinned newt (T. granulosa), Japa-

nese fire-bellied newt (C. pyrrhogaster), and Italian crested

newt (T. carnifex).

Activation of amplectic clasping behaviors by hormones

Amplectic clasping behaviors are used during the court-

ship and mating sequences by species of Taricha, but not by

newts in Cynops or Triturus genera. In T. granulosa,

amplexus involves a male initiating courtship by embracing

a female in amplexus and gripping her firmly with his fore

and hind legs.
Evidence that testicular steroids regulate amplectic

clasping behaviors in T. granulosa comes from the positive

correlation between plasma testosterone levels and seasonal

changes in male sexual activity. But the seasonal steroid

profiles are complex. In T. granulosa, testes secrete both

testosterone and DHT (Moore et al., 1979b), but only

testosterone shows marked increases in concentration prior

to and into the breeding season (Moore et al., 2000; Specker

and Moore, 1980). Males have higher plasma concentrations

of testosterone than females, and in males the plasma

testosterone concentrations reach peak levels prior to the

onset of the breeding season and then decline rapidly to near

undetectable levels before the breeding season ends

(Deviche et al., 1990). Female Taricha have higher plasma

17h-estradiol than males, whereas males and females have

similar amounts of plasma DHT (Moore et al., 2000).

To investigate where testicular steroids might act to

regulate male behaviors, the anatomical distributions of

intracellular androgen (AR) and estrogen receptors (ER)

were studied in T. granulosa using immunocytochemistry

with anti-AR or anti-ER serum (Davis and Moore, 1996).

AR-ir-labeled cells were found in the olfactory bulbs,

habenula, pineal body, preoptic area, hypothalamus, cer-

ebellum, and motor nuclei in the medulla. In addition, ER-

ir-labeled cells were seen in the lateral septum, amygdala

dorsolateralis, pallium, preoptic area, hypothalamus, and

dorsal tegmentum. The only brain areas found to have both

AR and ER immunoreactivity are the dorsal hypothalamus

and ventral infundibulum. This distribution of AR and ER

indicates that sex steroid receptors are located in brain areas

that control sensory processing, neuroendocrine functions,

and motor output—all possible substrates in the brain

where sex steroid hormones might act to control reproduc-

tive behaviors, as reported earlier in Xenopus (Kelley,

1980).

As in most other vertebrates, castration of male Taricha

eliminates amplectic clasping behavior, and implants of

androgens (testosterone or testosterone plus DHT) to

castrated newts maintain this behavior (Deviche and Moore,

1988; Moore, 1978). Outside the breeding season, however,

androgen administration to intact or castrated males fails to

stimulate amplectic-clasping behaviors (Deviche and

Moore, 1988; Moore et al., 1978b). Thus, testicular

androgens are necessary, but not sufficient, for activating

reproductive behaviors in male Taricha. It is this observa-

tion that supports the notion that non-testicular hormones

become elevated during the breeding season and function in

combination with testicular steroids to enhance male

reproductive behaviors in amphibians.

One non-testicular hormone that controls amplectic

clasping behavior in Taricha is vasotocin. In T. granulosa,

vasotocin injections into males increases the incidence of

amplectic clasping behaviors, when tested just prior to or

towards the end of the breeding season when sexual activity

is below maximum (Moore and Miller, 1983; Moore and

Zoeller, 1979). Conversely, injections of vasotocin antago-



Fig. 2. Sexual dimorphism in the numbers of vasotocin neurons in the

anterior preoptic area of T. granulosa (redrawn from Moore et al., 2000).
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nists or anti-vasotocin serum reduce the incidence of

amplectic clasping (Moore and Miller, 1983).

Studies using immunocytochemistry and in situ hybrid-

ization histochemistry show that in T. granulosa there are

about 20 populations of vasotocin-containing neurons in the

forebrain and midbrain (Lowry et al., 1997), many of which

are conserved across diverse vertebrate taxa (Goodson and

Bass, 2001; Moore and Lowry, 1998; Smeets and Gonzalez,

2001). Vasotocin-containing neurons of greatest interest to

discussions of reproductive behaviors are in the medial

pallium, amygdala dorsolateralis, bed nucleus of the stria

terminalis, anterior preoptic areas, ventral medial hypothal-

amus, and optic tectum.

Other studies using microdissection and radioimmuno-

assay procedures reveal that vasotocin content in specific

sites in the brain correlates with the males’ reproductive and

behavioral status. In male T. granulosa, vasotocin concen-

trations in the optic tectum change seasonally and are

highest during the breeding season (Zoeller and Moore,

1986). Vasotocin concentrations are higher in sexually

responsive than in unresponsive males in the dorsal preoptic

area, optic tectum, ventral infundibulum, and cerebrospinal

fluid (Zoeller and Moore, 1988). Thus, there is evidence that

vasotocin administration can activate amplectic clasping and

that males showing amplectic clasping behaviors have

higher vasotocin concentrations in specific brain areas.

Castration/steroid replacement studies in Taricha show

that the induction of courtship behavior by vasotocin is

androgen dependent, and that there is a slow post-castration

decline in vasotocin responses unless the castrates are

treated with androgens (testosterone or DHT) (Zoeller and

Moore, 1982; Moore et al., 1992). This effect of androgens

on courtship can be explained, at least in part, if androgens

control the activity of vasotocin receptors in behaviorally

important brain areas. Castration decreases the density of
3H-vasopressin binding in the amygdala, but not in other

brain areas (Boyd and Moore, 1990a). Sexual dimorphism

in vasotocin neurons also suggests androgens modulate the

activity of this system. Male Taricha have greater numbers

of vasotocin neurons than females in the bed nucleus stria

terminalis, amygdala, and anterior preoptic area (Moore et

al., 2000), three brain areas associated with male behaviors

(Fig. 2). These observations are consistent with the

hypothesis that testicular steroids influence amplectic

clasping by site- and sex-specific control of the vaso-

tocinergic system in Taricha.

It is not known whether vasotocin exerts its effects by

modulating the animals’ central state of sexual motivation or

by modulating sensorimotor processing of sexually relevant

stimuli (for a review, see Rose and Moore, 2002). This latter

explanation is supported by experiments in Taricha showing

that vasotocin administration can increase responses to

specific olfactory, visual, and tactile sexual stimuli (Rose et

al., 1995; Thompson and Moore, 2000). In experiments with

olfactory stimuli, vasotocin-injected males show increases

in appetitive responses to sex-related olfactory information
(female sex pheromones), but not to food-related olfactory

information (earth worm odors). In tests with visual sexual

stimuli, vasotocin administration increases male newts’

behavioral responses to sex-related visual information

(sexually mature female newts viewed through clear glass)

(Thompson and Moore, 2000). Lastly, vasotocin admin-

istration enhances neuronal responses to clasp-triggering

tactile stimulation of the cloacal region in male newts (Rose

et al., 1995) (Fig. 3A). These studies suggest that vasotocin

enhances responses to sexual stimuli by three different

sensory modalities (olfactory, visual, and tactile) and that, at

least in part, vasotocin functions by modulating sensorimo-

tor processing of specific sexual stimuli.

Suppression of amplectic clasping behaviors by hormones

Although frequently overlooked, the suppression of

behaviors by hormones is important because an animal’s

behavioral state depends on the balance between stimula-

tory and inhibitory chemical messengers. Inhibitory chem-

ical messengers have important biological consequences

when animals must suppress courtship and mating displays

to avoid life-threatening conditions. For example, when

wild animals perceive potential predators, survival might

depend on switching from conspicuous courtship displays

to seeking shelter or fleeing predators. This type of rapid

shift in behavioral state requires neuroendocrine mecha-

nisms that can rapidly and selectively suppress specific

behaviors. In T. granulosa, three types of chemical

messengers have been shown to inhibit amplectic-clasping

behaviors—corticosterone (Moore and Miller, 1984),

GABA (Boyd and Moore, 1990b), and kappa opioid

receptor agonists (Deviche and Moore, 1987).

In male T. granulosa, amplectic-clasping behaviors can

be suppressed rapidly by corticosterone or by exposing

males to conditions (stressors) that stimulate corticosterone

secretion (Moore and Miller, 1984; Moore and Zoeller,

1985). The inhibitory effect of corticosterone on amplexus



Fig. 3. Responses by medullary neurons (integrated unit firing) to clasp-

triggering tactile stimulation (solid bars) before and after hormone treatment

to male T. granulosa. Panel A shows that vasotocin treatment can enhance

neuronal responses to somatosensory stimulation (redrawn from Rose et al.,

1995). Panel B shows that corticosterone treatment can suppress neuronal

responses to somatosensory stimulation (redrawn from Rose et al., 1998).
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is very robust and occurs rapidly, within a time frame of a

few minutes following corticosterone injection (Orchinik et

al., 1991). Corticosterone administration also rapidly sup-

presses the activity of specific medullary neurons associated

with clasp-triggering tactile stimulation (Rose et al., 1998;

Rose and Moore, 1999; Rose et al., 1993a,b) (Fig. 3B).

These responses to corticosterone are too rapid to be

working through traditional genomic mechanisms and,

instead, work through non-genomic mechanisms with a

novel membrane corticosteroid receptor (Orchinik et al.,

1991; Moore and Evans, 1999). Ligand-binding assays

revealed that the membrane-associated corticosterone recep-

tor (mCR) occurs in T. granulosa brain tissue and that it is

pharmacologically distinguishable from intracellular gluco-

corticoid (iGR) and mineralocorticoid (iMR) receptors.

Similarly, in Ambystoma tigrinum the mCR in the neuronal

membranes is pharmacologically distinguishable from 3H-

CORT-binding sites in plasma (steroid-hormone-binding

globulins) and cytosolic fractions (iGR) (Orchinik et al.,

2000). Other studies show that this mCR fits the model for

being in the G-protein-coupled receptor family (Orchinik et

al., 1992; Evans et al., 2000a). Furthermore, because there is

concordance between the potencies of corticosteroids to

suppress amplectic clasping behavior and the potencies of

the same corticosteroids to bind to compete for 3H-CORT-

binding sites, the mCR apparently is the receptor that

inhibits amplectic-clasping behaviors (Orchinik et al.,

1991). The exact molecular structure of this mCR has not

yet been identified, although it contains characteristics
reminiscent of kappa opioid-like receptors (Evans et al.,

2000b).

Non-clasping behaviors in caudate amphibians

Control of non-clasping reproductive behaviors by

hormones

Courtship behaviors in male Cynops and Triturus do not

include amplectic clasping, and instead males attract

sexually active females with pheromones and use blocking

and tail-vibration behaviors during sexual interactions. In

Taricha and other species, the seasonal onset of reproduc-

tive behaviors occurs when testicular steroids are elevated.

This generalization holds for many urodeles, including

species not in Salamandridae—Ambystoma opacum, A.

tigrinum, and Hynobius nigrescens (Hasumi et al., 1993;

Houck et al., 1996). In male C. pyrrhogaster, plasma T

concentrations peak in February near the onset of the

breeding season and then decline to minimum levels by

April. Plasma DHT concentrations, in contrast, fluctuate

seasonally with peaks occurring in May, February, and

September (Imai et al., 1985; Tanaka and Takikawa, 1983).

Male Triturus have measurable levels of testosterone, DHT,

progesterone, and 17h-estradiol in plasma, and as the

breeding season progresses plasma concentrations of tes-

tosterone decline and 17h-estradiol rise (Gobbetti et al.,

1991). In T. carnifex and C. pyrrhogaster, surgical removal

of testes reduces androgen levels and male courtship

behaviors; whereas androgen implants (especially testoster-

one) in castrated males maintain male reproductive behav-

iors (Andreoletti et al., 1983; Malacarne and Giacoma,

1980; Toyoda et al., 1993).

When these males perform courtship behaviors, testos-

terone concentrations decrease and estradiol concentrations

increase (Zerani et al., 1992). To explain the declining

testosterone levels, Gobbetti et al. (1991) propose that as the

breeding season progresses, plasma prostaglandin F2 alpha

concentrations increase and induce changes in aromatase

activity that favor the conversion of testosterone to 17h-
estradiol. In Plethodon jordani, high levels of plasma

testosterone concentrations coincide with the season when

courtship and mating occur (Fall). In another Plethodon,

Desmognathus ochrophaeus, both testosterone and DHT

concentrations are elevated during the fall and spring

breeding seasons (Woodley, 1994). These studies demon-

strate that male urodeles have detectable levels of the major

gonadal steroids (testosterone, DHT, 17h-estradiol, and

progesterone). The consistent feature in the steroid profiles

is the peak in plasma testosterone levels near the onset of the

breeding season.

Prolactin is also important for the expression of

androgen-dependent courtship behaviors in newts (Ki-

kuyama et al., 2000). Blocking PRL secretion with

ergocryptine injections (Giorgio et al., 1982) or blocking

endogenous PRL activity with anti-PRL serum (Toyoda et

al., 1996) can suppress courtship behaviors in sexually
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active newts. Conversely, courtship behaviors in sexually

inactive males can be induced by PRL administration that is

combined with gonadotropin injections in intact males or

androgen implants in castrated males (Toyoda et al., 1993).

Plasma PRL concentrations reach peak levels at the onset of

the breeding season (Mosconi et al., 1994; Toyoda et al.,

1996), adding further evidence that PRL plays an important

role as an activator of male courtship behaviors in Cynops

and Triturus. Comparable studies have not been reported for

other urodeles, including Taricha.

Pheromones are used by certain salamanders as olfactory

sensory cues for species recognition, identification and

attraction of prospective mates, social interactions, and

induction of female sexual receptivity (Cedrini and Fasolo,

1970; Malacarne and Vellano, 1982; Toyoda and Kikuyama,

2000; Toyoda et al., 1994; Park and Propper, 2001;

Thompson et al., 1999; Rollmann et al., 1999). Research

with caudate amphibians helps to explain how hormones

control behaviors by controlling the production of specific

pheromones. Female-attracting pheromones, named sode-

frin and silefrin, have been identified and studied in C.

pyrrhogaster and Cynops ensicauda (Kikuyama et al.,

1995; Toyoda et al., 1994; Yamamoto et al., 2000).

Vasotocin has been shown to enhance the secretion of

sodefrin, the pheromone produced by male C. pyrrhogaster

(Kikuyama et al., 2001). In addition, PRL and testosterone

act synergistically to stimulate the synthesis of sodefrin

(Toyoda et al., 1994; Yamamoto et al., 1996; Iwata et al.,

2000b). Consistent with the above studies, plasma levels of

both PRL and testosterone are elevated in sexually active

male newts during the breeding season (Imai et al., 1985;

Tanaka and Takikawa, 1983). Thus, there is strong evidence

that the production of female-attracting pheromone by male

newts is under the control of PRL and testicular androgens.

There is evidence that vasotocin is involved in enhancing

male courtship behaviors in C. pyrrhogaster as well (Iwata

et al., 2000b). Exogenous vasotocin administration into

sexually active males increases the incidence of tail-

vibration behaviors and the production of spermatophores.

Furthermore, injections of vasotocin antagonists reduce the

incidence of tail-vibration behaviors in C. pyrrhogaster

(Iwata et al., 2000b). Interestingly, this means that vasotocin

enhances courtship behaviors in two species with very

different courtship behaviors—both amplectic clasping

behaviors and tail-vibration behaviors. Perhaps, in C.

pyrrhogaster, vasotocin increases the incidence of courtship

by enhancing the responsiveness of males to female sexual

pheromones, as is the case in T. granulosa (Thompson and

Moore, 2000).

Suppression of non-clasping courtship behaviors

Our review of literature could find no experiments that

investigated the effects of acute stress or corticosterone

administration on courtship behaviors in any urodele other

than T. granulosa. In T. carnifex, plasma corticosterone

concentrations show a seasonal peak at the onset of
breeding, and in sexually active males plasma cortico-

sterone levels appear to increase during the performance of

courtship behaviors (Zerani and Gobbetti, 1993). In A.

opacum, plasma corticosterone concentrations are higher

during the breeding season, but do not appear to increase

in males performing courtship behaviors (Houck et al.,

1996). An explanation for the apparent differences in

behavioral responses to corticosterone among urodeles is

that in T. granulosa corticosterone exerts its action

specifically on amplectic behaviors and that, even in T.

granulosa, corticosterone suppresses amplectic behaviors

in a context-specific manner (Coddington and Moore,

2003).
Summary

The above review focuses exclusively on research into

the hormonal control of behaviors in amphibians that was

performed prior to the year 2000. Findings from this

amphibian research reveal that frogs, toads, and salaman-

ders use the same repertoire of hormones and endocrine

mechanisms to modulate social behaviors as have been

found in other vertebrate taxa. This concordance in

control mechanisms among vertebrates shows that, at

least for early-evolved behaviors (as in sex and stress

behaviors), the underlying hormonal control mechanisms

are highly conserved. Amphibian models revealed for the

first time specific details about these control mechanisms

and provided the original insights that stimulated research

in other vertebrates. Examples of seminal contributions by

amphibian research to the field of behavioral neuro-

endocrinology include the following: that vasotocin-like

peptides can function as potent modulators of social

behaviors (Diakow, 1978); that androgens and estrogens

affect brain functions and behaviors by acting on neurons

in sensory, central, and motor pathways (Kelley, 1980);

that sex steroid hormones affect social behaviors, in part,

by acting on vasotocin-like peptide systems (Moore and

Zoeller, 1979); that during embryonic develop GnRH

neurons migrate from the olfactory placode to anterior

hypothalamic preoptic areas (Muske and Moore, 1988);

and that corticosterone acts during acute stress to

suppress reproductive behaviors (Moore and Miller,

1984) and does so by using non-genomic mechanisms

and membrane-associated receptors (Orchinik et al.,

1991).
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