
tMANS - the Multi-Scale Agent-Based Networked Simulation for the
Study of Multi-Scale, Multi-Level Biological and Social Phenomena

Matthias Scheutz (*), Greg Madey (*), and Sunny Boyd (**)
(*) Department of Computer Science

(**) Department of Biology
University of Notre Dame

Notre Dame, IN 46556, USA

We propose a multi-scale agent-based framework
towards understanding and modeling multi-scale
interdependent behavioral phenomena. This framework
combines the ideas of agent-based modeling with that of
hierarchies or levels of organization found in nature and
allows for multiple levels in the model to interact at
various time scales. We first summarize our rationale for
pursuing agent-based models (rather than equation-based
models) and then describe the proposed multi-level,
multi-scale agent-based modeling framework formally,
followed briefly by a discussion of how biological
phenomena at different levels could be modeled in the
framework. We list some of the requirements and
desirable properties for a software simulation tool that
can implement such multi-scale, multi-level models,
briefly pointing to work in progress on the development
of our “tMANS” tool (“the Multi-scale Agent-based
Network System”).

Keywords: multi-scale, multi-level, agent-based, distributed
heterogeneous processing, collaboratory

INTRODUCTION
The functioning and behavior of complex, multi-cellular
organisms can be analyzed at various levels, from the neuro-
chemical level of molecular functions within and among
neurons, to the level of neural pathways and neural networks,
to the level of individual behavior based on sensory and
motor capabilities, to the dynamics resulting from
interactions among individuals. Each of these levels focuses
on unique aspects of behavior, and computational models for
the various levels comprising specific states that are defined
at these levels.

While such models often can explain causal intra-
level relationships, they are not well-suited to answer
questions regarding inter-level relations. And while multiple
models (for different levels) can be used to detect
correlations, possibly even causal dependencies, among
state variables at different levels, they do not allow for causal
explanations, i.e., the determination of causal chains that
explain why a particular higher-level behavior occurs given a
low-level configuration, or why organisms always end up in
particular low-level configurations after certain high-level
exchanges. These questions can only be answered by a multi-

scale, multi-level approach that takes the effects among and
interactions between levels into account.

 We propose a multi-scale agent-based framework
towards understanding and modeling multi-scale
interdependent behavioral phenomena. This framework
combines the ideas of agent-based modeling with that of
hierarchies or levels of organization found in nature and
allows for multiple levels in the model to interact at various
time scales. After summarizingour rationale for pursuing
agent-based models (rather than equation-based models), we
describe the proposed framework more formally, followed
briefly by a discussion of how particular biological
phenomena at different levels could be modeled in the
framework. We list some of the requirements and desirable
properties for a software simulation tool that can implement
such multi-scale, multi-level models, briefly pointing to work
in progress on the development of our “tMANS” tool (“the
Multi-scale Agent-based Networked Simulation”).

WHY AGENT-BASED SIMULATIONS?
The central idea of agent-based models is to view some of the
entities in the model domain as agents that can act
independently in the environment based on their inputs.
Consequently, the changes over time modeled in an agent-
based system are the state changes of each agent, which are
given by rules, and the effects of the agents' actions. This is
different from “equation-based models”, where the changes
over time are given by difference or differential equations
that relate different state variables.

Both approaches have their advantages and
disadvantages. Agent-based models allow for extreme
heterogeneity (both in agent attributes and behaviors) and
more flexible modeling of the spatial environments of the
agents, while equation-based models are often capable of
characterizing the bulk or average properties of very large
systems.

Many of the differences between the two modeling
paradigms (e.g., their theoretical approach or their particular
mathematical formulation) vanish in actual implementations,
where continuous differential equations have to be discretized
to be implementable on standard von Neumann computers.
Yet, one fundamental difference remains: while equation-
based models presuppose a mathematically precise
formulation of the various relationships among all state

variables (in terms of equations)—otherwise one cannot even
meaningfully speak of an equation-based model—agent-
based models only presuppose laws that guide the behavior of
individual agents, but do not require knowledge of how these
agent states themselves might be related. Consequently,
agent-based models may be applicable (i.e., they can be
formulated and investigated) even if the precise relationships
(i.e., dependence and determination) among state variables
are unknown. As such, agent-based models can actually help
discover the equations and the formally precise relationships
among state variables of agents if they are not known. In
fact, this is exactly the reason why many agent-based models
have been and are proposed.

We believe that agent-based models will be able to
play out this forte even more in the domains, where multiple
levels of organization and different temporo-spatial scales
have to be integrated in an effort to investigate inter-level
interactions, causal dependencies, and bottom-up vs. top-
down constraints. What is needed is a way to extend the
standard agent-based approach to allow for the simultaneous
definition of different levels and temporo-spatial scales of
organization, which can mutually influence each other,
without imposing a theoretical commitment on the model
designer on how upper-level entities relate to lower-level
entities. The reason is that multi-scale modelers often do not
want to, do not need to, or should not have to take a stances
about the theoretical relationship among the entities they use
in their models. Hence, an approach that forces them to be
reductionist will apriori limit the modeling endeavor to a
subclass of possible models. Rather, a modeling framework
should be neutral on the question whether and how upper
levels can be reduced to lower levels. Philosophers of
science use the notion of “supervenience” here (e.g., see [Kim
1996]) to allow for dependence relation between upper and
lower levels that may or may not be reductive. Roughly, the
supervenience of entities at level i+1 over entities at level i
means that changes in states of i+1-level entities are always
accompanied by states changes of i-level entities (i.e., no
change can occur at an upper level without a change at a
lower level). However, the upper level changes may or may
not be systematically related to lower level changes (if they
are, the upper level entities and their properties may be
reducible to lower level entities and their properties, if they
are not, the upper level entities and their properties “emerge”
from the lower level entities and their properties).

A MULTISCALE AGENT-BASED SIMULATION
FRAMEWORK
We propose to generalize the idea of agent-based models to
hierarchies of such models, where each level in the hierarchy
is intended to model a different spatio-temporal scale.
Different types of environments will be defined for each level
together with the kinds of agents that populate them. Each
agent (at each level) consists of a body and a control system.
The body of a higher-level agent contains lower-level
environments, thus connecting levels in a mereological (i.e.,
part-whole) manner (analogous to spatio-temporal levels

as they are investigated by the special sciences such as
physics, chemistry, biology, etc.). In the following, we will
briefly sketch the theoretical framework (for space reasons, it
is not possible to provide details here, e.g., such as the exact
formal definitions of the respective update functions).

Different from most agent-based approaches, we do
not take agents to be the basic entities, but rather “bodies”
and “control systems” for three main reasons: (1) a notion of
spatial extension of the physical representation of an agent
might be crucial to capturing an understanding a particular
phenomenon (independent of the level of description), (2)
different control systems can control the same body and vice
versa, (3) an explicit notion of agent body will allow us to
connect multiple spatio-temporal scales in a natural way.

A body B = <SB,GB,IntB,EB,UB> consists of sensors
SB, a geometry description GB of its shape, internal states IntB

(e.g., energy sources), effectors EB, and a mapping UB from
sensors, geometry, and internal states to effectors, geometry,
and internal states (e.g., UB could be given by a set of
differential equations or difference equations).

A controller C = <InC,CompC,OutC,UC> has input
InC, output OutC, and computational states CompC and a
mapping UC from input and internal to output and internal
states (e.g., the mapping could be specified via condition-
action rules or feedback equations from control theory).

An agent A=<BodyA,ContA,PercA,ActA,UA> then
consists of a BodyA, a controller ContA, and two mappings
PercA and ActA connecting them, which map sensory and
internal bodily states to controller inputs and controller
outputs to internal bodily states and effector states,
respectively.

An environment E=<ExtE,AgentsE,LocE,UE> consists
of external environmental states ExtE, a set AgentsE of
possible agents for the environment, LocE the set of functions
from AgentsE to unique environmental states in
ExtE (the “agents' locations”), and the environmental update
functions UE which maps environmental states, a set of agents
and their locations to new environmental states, a (possibly
new) set of agents and updated agent locations.

Based on the mappings UA defined for all agents in
the environment, their computational and bodily states, and
the environmental state at time t, it is then possible to
determine the next state of the whole environment. Note that
this definition of the environmental update encompasses
many specific changes that can occur in agent-based models
in one update step: (1) agent can cease to exist or come into
existence (e.g., the set AgentsE' could be a subset or superset
of AgentsE, or it could be in no containment relation to it), (2)
action may be blocked by the environment (e.g., an agent's
attempt to move forward even though there is wall in front),
and (3) agent properties change based on environmental
properties.

A standard agent-based model M =<E,InitE>
consists of an environment E and an initial state InitE of that
environment.

While the above is only one of many possible
formal characterization of standard agent-based models, it
permits a generalization to multi-scale models (not easily
achieved in other formalisms) by considering hierarchies of
environments E1,E2,..,En, where each Ei is an environment
defined for a spatio-temporal level i: A multi-scale agent-
based model M can then be defined as M =<En,InitE>, where
En is a well-founded set of environments Ei (with initial states
given by Initi each defined for a spatio-temporal level i
(0<i<n+1) such that the following condition holds:

∀ E i , E i1 , Ai1∈Agents E i1
: E i⊆ Intern B

where InternB is the set of internal states of body of agent
An+1 (i.e., the i-level environment is part of the body of the
i+1-level agent).

The bodily update UBi+1 is consequently based on the
environmental update UBi and possibly additional factors.
Hence, the theoretical approach leaves open whether a model
is reductive in that all higher-level properties (i.e., states of
the higher-level entities) are fully determined and reducible
to lower-level properties, as it is possible to add additional
states at each level that are not modeled in terms of lower-
level states. Moreover, it is possible to introduce higher-level
states for “emergent phenomena” and construct models to
investigate behaviors that are typically characterized as
“emergent” without having to solve the current widely
debated foundational questions connected to “emergence”
(e.g., how to theoretically define and formally construe the
notion of emergence (e.g., see [Wimsatt 1997]).

From a theoretical view, the proposed framework is
similar to other approaches that describe systems to be
modeled in terms of system states and state transitions (e.g.,
discrete event systems [Zeigler 2003]). Yet, the proposed
framework differs from common approaches in at least two
respects: (1) it combines hierarchical models of agents and
environments (by explicitly incorporating models of
environments as part of a higher-level agents), and (2) it does
not make any assumptions about the cardinality of the set of
states at any level nor about whether time should be modeled
in terms of intervals (e.g., between events) or in terms of
periodic updates at a particular update frequencies (both
options are possible at different levels). Note that the exact
differences of the proposed models to models in other
formalisms will depend on the details of the model (e.g., it
might be possible to translate a multi-scale agent-based
model into Pi-calculus if agents are treated as control
processes without bodies and physical interactions).

From a practical point of view, we believe that the
proposed framework will allow for and foster collaborations
between researchers from different fields or different
subfields within a field who otherwise would not interact
much due to their difference in (1) domains, (2) explanatory
aims, and (3) modeling approaches.

In the domain of cognitive science and economics,
for example, it will be possible to investigate the decision-

theoretic principles underlying group behaviors and the
cognitive mechanisms that give rise to them (e.g., when
people need to make decisions in time-critical situations,
where the outcome affects the whole group and are thus
subject to group pressure).

Figure 1: A four-level biological model used for the study of
the effects of low-level synaptic and neuro-chemical

processes on social interactions in bull frogs.

In the domain of biology, for example, it will be
possible to integrate individual-based neural models of
behavior (as proposed by neuroscientists) with population
dynamics (as proposed by ecologists). In the simplest case, a
two-level approach can investigate the neural effects of
behavior in the context of a group of individuals. In such a
setup, individuals are higher-level agents that consists of
“neural environments”, in which neurons (i.e., the lower-level
agents) reside. It is then possible to investigate the effects of
particular neural circuits, which give rise to individual
behavior, on a group of individuals (e.g., the effects of
repeated vocalizations on conspecifics).

Conversely, it is also possible to study the effects of
group pressures on neural systems (e.g., the evolutionary
adaptation of neural circuits that deal with alarm calls).

Figure 1 shows a specific biological model intended
to span four levels of organization in bullfrogs: the low
neuro-chemical level of synaptic interactions, to the level of
neurons and neural network control, the level of organs and
organization of body parts and bodies of animals, to the level
of social interactions among animals. For each level the
figure lists the employed “simulation agents” and their
environment at that level as well as ways in which levels are
connected by virtue of external environmental states.
For the sample model shown in Figure 1, the underlying
biological question to be addressed is the mechanism of
control of vertebrate social behavior. Complex interactions
at multiple scales ranging from movement of individual
molecules to social interactions among members of a

population ultimately determine the display of behaviors.
Causal relationships across levels are poorly understood.
This has implications for our understanding of basic
behavioral processes, as well as perturbations critical to
animal and human health.

We thus propose to use a simplified amphibian
model system where a wealth of experimental data exist (e.g.,
[Boyd 1994,1997], [Hollis and Boyd, 2003], [Hollis et al.
2004]). Neurochemical, cellular, and behavioral processes in
amphibians are nonetheless typical of vertebrates so the
multi-level model will be broadly useful. At the lowest level,
the model includes representatives from each of the three
primary classes of chemical messengers: (1) fast-acting
neurotransmitters, (2) peptides, and (3) steroids. At the next
level, individual neurons integrate this chemical input and
ultimately produce action potentials. Groups of neurons then
perform specific functions, such as pattern generation (for the
species-typical vocalization of the animal) and control of
muscles in the larynx for production of sound. At the level of
the individual organism, a variety of internal and external
stimuli influence behavior. Our model focuses on vocal
behavior, which is a common component of social
interactions from humans to fish. We thus incorporate
auditory input and internal physiological stimuli (such as
gonadal androgen production) into the model at this level.
Finally, at the level of social behavior, individual animals
interact with each other. The peptide chemical messengers
we model are specifically known to alter spacing between
conspecifics. The mechanism for these effects is unknown,
however. We expect the model to make novel predictions
about the relationships between these neurochemicals and
their effects on behavior. Model development should thus
lead to new understanding of social behavior that would not
otherwise have been achieved.

IMPLEMENTATION PLATFORM
Agent-based models are intrinsically discrete—for agents are
discrete entities in the simulation with discrete update rules
that determine their state transitions and actions.
Consequently, it is fairly straightforward to map them onto
distributed computational architectures, which is particularly
desirable for multi-scale simulations, where higher-level
agents consists of large numbers of lower-level agents. In the
following, we provide a brief overview of our proposed
“tMANS” system, the Multi-scale Agent-based Networked
Simulation, which is currently under development and
consists of seven major components:

• the open-source distributed component-based virtual
machine for agent-based simulations called ADE together
with its distributed multi-user graphical interface
(http://www.nd.edu/~airolab/software/)

• the open-source agent-based simulation and
experimentation environment SWAGES
(http://www.nd.edu/~airolab/software/)

• the open-source agent-based NOM simulation
environment (http://www.nd.edu/~nom/)

• a database server based on the open-source MYSQL
server (http://www.mysql.com)

• a statistics server based on the open-source R system
(http://www.r-project.org/)

• a visualization server based on JFreeChart
• the open-source webserver JIGSAW

(http://www.w3.org/Jigsaw/)

Figure 2. The proposed setup of tMANS for the biological
model described in Figure 1. The lower part shows the

hardware infrastructure, the upper part the distribution of
agents over tMANS simulation components.

All parts of tMANS are implemented in JAVA and are thus
platform-independent (to the extent that JAVA runtime
environments exist for a given platform).

ADE
ADE is a distributed agent architecture development
environment for virtual and robotics agents [Scheutz 2005,
Andronache and Scheutz 2005, Andronache and Scheutz
2004a]. As such it allows for a very fine-grained level of
distribution, namely the level of components of an agent
architecture, which is much finer than possible in common
multi-agent systems (such as JADE, RETSINA,
AGENTFACTORY and others), of agent-based simulation
environments (such as SWARM, REPAST, STARLOGO,
EVO, SIMPACK, and others).

While this level of granularity is not critical to most
common agent-based simulations as they typically deal with
simple agents, which do not need to be distributed to speed
up their computations, multi-scale models as proposed in this

paper consists of agents that recursively contain complete
environments with agents. Consequently, part of a complex
agent's control system deals with components that are
themselves agent-based models (which may or may not
contain further agent-based models). As such, the
distribution of architectural components may become
necessary to avoid computational overload of processors or
lengthy simulation runs.

Consider, for example, the two-tier model of individual-
based neural networks within a simulation of population
dynamics (mentioned in the previous section). In such as
setup, each agent might consist of thousands of neurons and
their connections (in addition to sensors, effectors, and other
bodily components). Hence, it might be beneficial to run the
low-level neural network environment (with all the neural
agents) of each high-level agent on a separate CPU (or host),
while the remaining components of a high-level agent
(together with the high-level environment) are run together on
one CPU (or host).

The ADE virtual machine allows for such separations by
virtue of system configurations, where each components in
the system (e.g., the low-level agents, the low-level
environments, the high-level agents, etc.) are associated
either with a particular host or a set of hosts together with a
set of constraints that determine where these components can
instantiate and run. These configurations can be dynamically
altered (e.g., based on availability of computational
resources) and components can be moved from one host to
another, should a reconfiguration of a running system be
required (e.g., to achieve load balancing).

ADE also provides a distributed graphical user interface,
which allows multiple users to define, start, test, modify, and
terminate a distributed simulation. Effectively, each GUI
instance connects to a registry server, which contains
information about all existing instances of the ADE virtual
machine. It gathers information about all existing
components from all ADE virtual machines and displays
them in a common workspace. The components can then be
inspected and modified even while a simulation is running.

ADE has already been used successfully in several
agent-based projects [e.g., Scheutz and Andronache 2004b].

SWAGES
SWAGES consists of two major components: (1) an artificial
life simulation environment together with a set of agent
models for 2D and 3D simulations, and (2) an
experimentation server that can schedule, supervise, and run
simulations on remote hosts. Both components consist of
various subcomponents, each of which will be made
available within the ADE environment (and can thus be
arbitrarily distributed). That way the existing functionality of
SWAGES will be preserved, while allowing users to access
the functionality within the ADE graphical user environment
(in addition to the web-based access, which is currently
available).

The SIMWORLD simulation environment used by
SWAGES is a general purpose 2D or 3D discrete or
continuous environment that allows for continuous space,
discrete time simulations. Agents can either be defined and
run internally or alternatively they can exist external to the
environment, in which case they will either have to connect
via sockets or, if SIMWORLD is run within ADE, they can
use ADE message passing mechanisms to connect. In the
context of tMANS, this means that i-level agents (which are
ADE components) will connect to the specific i-level
SIMWORLD instance (another ADE component), in which
they reside. Updates in higher-level SIMWORLD instances
will thus involve updates in multiple lower-level
SIMWORLD instances, which will be distributed over a
network of hosts so as to minimize the update interval.

The experimentation server effectively provides a grid
environment (e.g., in the sense of CONDOR and other grid
engines) by virtue of maintaining a list of possibly
heterogeneous hosts that can be used for simulations,
updating their state, and starting simulations on them.
Moreover, the experimentation server monitors the progress
of simulations and is able to restart them if they should have
terminated prematurely. Different from CONDOR (or SUN's
grid engine), SWAGES does not require any demon to run on
participating hosts, but rather uses standard secure shell
connections to those hosts to check availability and to start
simulations. This allows for easy maintenance of the
simulation grid and, furthermore, facilitates the dynamic
formation of heterogeneous ad-hoc clusters of computers that
can be used for simulations (e.g., a set of computers might
become available only from midnight to 8 a.m.).

Taking again the two-tier example of neural individual
based-models in the context of population-based models of
behavior, each neural network is run in a separate
SIMWORLD instance together with all the neuron agents.
Hence, for networks with n neurons at least n+1 ADE
components will be required to run on each host. Moreover,
for k higher-level agents at least k+1 ADE components are
needed for the higher-level environment also running in
SIMWORLD. Hence, the overall update cycle of the high-
level environment is given by the update times of the lower-
level environments, the communication overhead and time
lag across the network connection, the computational
overhead in ADE, and most importantly the distribution of
the simulation over multiple hosts. If k is smaller than n and
assuming that the high-level updates are not significantly
more expensive than the lower-level updates, k+1 hosts
would allow for an effective distribution of the computation
(more complex distribution schemes are, of course, possible).

NOM
The NOM (Natural Organic Matter) server is a web-based
collaboratory (a collaborative laboratory) designed and used
to support environmental scientists studying the complex
properties and behaviors of microorganisms and organic
molecules in the soil [Xiang, et al 2004, Huang et al. 2005,
Huang, Xiang, and Madey, 2004]. It does this by providing a

centralized cluster of simulation servers and web-based
collaboration services. Scientists do not need to download,
build, and install the applications or related software on their
own computers, which can be a tedious task. Scientists can
share the expensive computational resources, such as large-
scale databases and specialized data mining tools, which may
not be readily available to small research groups. Deployment
of the simulators on the Web promotes their use as a
collaboratory for geographically separated scientists and
engineers. In order to support collaborative work, the NOM
collaboratory is built using the Sun Java 2 Enterprise Edition
(J2EE) and relational database technologies. The NOM
collaboratory includes Web-based simulators, data analysis
packages, simulation configurations, and communication
tools such as discussion board and chat room. Scientists can
access these Web-based simulators through a Web browser.
They choose a particular simulation program and provide the
input parameters that are then stored in the remote database.
After they submit their configuration, simulations are invoked
at a remote computer. When simulations are finished, users
are notified by Email. They then can access the data output
from the referred site. These data results not only include the
raw data but also the graphic results that are generated by the
data analysis packages using statistical and data mining
technologies. The built-in functionalities of the NOM
collaboratory allow scientists to share all their simulation
results, data, and information with others.

The tMANS database server
The tMANS database server will be based on the NOM
collaboratory, which provides the following functions:

Distributed computational resource utilization: Users can
configure and invoke their simulations through a Web
interface. Computational resources on remote servers are
allocated transparently by a job manager.

Data analysis: Users can view their simulation data,
generated by the NOM simulations, from a Web-based
interface. These data and information are represented in
various types of graphs (bar charts, pie charts, line charts)
and statistical reports by employing data query and data
mining technologies.

Information sharing: Users can share the results of their
simulation, the molecule definitions, and the simulation
configurations through web interfaces and a search engine.

Data repository: The databases are used to store the internal
data that are generated from the NOM simulators.
Additionally, external data, including publications, technical
reports, and other forms of dissemination, which are
uploaded by scientists, are also stored in the database.

Secure access: Users do not have the same level of access
privileges to all the tools in the NOM collaboratory. Some
tools, such as the “Molecule validator” and the “NOM
simulator”, can only be accessed by authorized persons.

Users have access to their own simulations, and other users
cannot access data that have not been authorized for public
usage.

The tMANS statistics server
The tMANS statistics server will be implemented as an ADE
component wrapper around the open-source statistics
software R. The server will accept a set of predefined
commands that will allow users to new create tables
dynamically from existing tables in the database (via the
database server) and perform operations that are specified in
R. The numeric or graphical output from R can then be
displayed or saved.

The tMANS visualization server
The tMANS visualization server will allow for various 2D
and 3D visualizations of database tables or statistical results
from the statistics server using Jigsaw, Jakarta Tomcat for
servlets, and the open source JFreeChart visualization
classes.

JIGSAW
The httpd webserver JIGSAW will be used as the default
interface to the tMANS system. It is particularly intended for
casual or unexperienced users who do not themselves design
agent-based models (thus do not need a direct interface to the
ADE system), but might run, configure, or adapt existing
models (e.g., by changing the initial conditions, distribution
of agents in the simulation environment, etc.). It will be
based on the current web-based interfaces to SWAGES and
NOM and will allow users to (1) setup, schedule, and run
whole sets of multi-scale agent-based simulation
experiments, and (2) view, analyze, and archive their results
using a standard web browser (e.g., Mozilla or Netscape).
Jigsaw will use the open source Jakarta Tomcat servlet
engine to provide servlet wrappers for the statistics and
visualization servers.

RELATED WORK
There are various other projects that are aimed at supporting
collaborations among scientists by providing a web-based
portal for sharing data and information across a
heterogeneous network of computers.

The ESP2N Earth Science Partners' Private Network
(http://dml.cs.ucla.edu/projects/dml_esip/) ,
for example, uses a virtual private network to allow
researchers to query a data base securely over the Internet
using the high-performance, flexible query system Conquest
 (e.g., see [Shek et al. 1996]). In addition, ESP2N employs
the semantic markup language SEML to define and capture
experiments. Such a language can have great utility in
providing a standardized format for specifying input-output
relationships and sharing them in a unified way independent
of the details of particular experiments. A similar approach
is currently considered for tMANS to allow different
components to exchange data, as currently experiments in

SIMWORLD and NOM use their own internal formats to
represent and store experimental data. However, rather than
changing the internal formats in retrospect and imposing a
general language for all tMANS components, each
component will have to implement a translator that converts
from and to the common experiment representation format.

Different from ESP2N, which does not include a
simulation environment, the JAS Sim2Web project is built
around the JAS agent-based simulation environment
(http://wf.econ.unito.it/sim2web). Sim2Web is
intended for web-based economic and financial simulations
and uses the JAS libraries for simulation and Zope for the
web-based interface and user management. JAS is a discrete-
event simulation engine. As such it is in some important
ways different from the proposed simulation framework (as
described earlier) and does not directly support the
implementation of hierarchical agent-based models.

CONCLUSION AND FUTURE WORK
We have proposed a multi-scale agent-based framework to
model phenomena at different levels of organization even if
the exact dependence and determination relations are not
known. Such models provide insights into the inter-level
dynamics of complex systems and might help scientists to
discover and formulate equation-based models for multi-scale
phenomena, which would otherwise be difficult (if not
impossible) to detect.

We are in the process of defining a detailed four-level
model for a biological domain, which spans the range from
neurochemical to social levels of organization and behavior.
To support the implementation of such model on computers
and experiments with them, we have proposed the
comprehensive simulation tool tMANS, which allows for the
definition, implementation, and experimentation with fully
distributed multi-scale agent-based models.

Current work on tMANS is focused on a tight integrating
of previous and existing platforms (as described in the
previous section) in an effort to standardize and test the
interfaces among components and verify that the overall
system design is viable and will scale to large agent-based
models. A first prototype version of tMANS is expected for
late 2005.

ACKNOWLEDGEMENTS
The material presented in this paper is based in part upon
work supported by the National Science Foundation under
grant ITR/AP-DEB 0112820 for the second and grant IBN-
0235903 for the third author.

REFERENCES
Andronache, Virgil and Scheutz, Matthias, 2005, “ADE - An

Architecture Development Environment for Virtual and
Robotic Agents”. IJAIT (forthcoming)

Andronache, Virgil and Scheutz, Matthias, 2004a,
“Integrating Theory and Practice: The Agent Architecture

Framework APOC and its Development Environment
ADE”. In Proceedings of AAMAS 2004, ACM Press.

Boyd, S.K., 1994, “Arginine vasotocin facilitation of
advertisement calling and call phonotaxis in bullfrogs.”
Hormones and Behavior 28:232-240.

Boyd, S.K., 1997, “Brain vasotocin pathways and the control
of sexual behaviors in the bullfrog”. Brain Research
Bulletin 44: 345-350.

Hollis, D.M. and Boyd, S.K., 2003, “Characterization of the
GABAA receptor in the brain of the adult male bullfrog”,
Rana catesbeiana. Brain Research 992:69-75.

Hollis, D.M., Goetz, F., Roberts, S., and Boyd, S.K., 2004,
“Acute neurosteroid modulation and subunit isolation of
the GABAA receptor in the bullfrog, Rana catesbeiana.”
Journal of Molecular Endocrinology 32:921-934.

Huang, Y., Xiang, X., Madey, G., and Cabaniss, S, 2005,
“Agent-based Scientific Simulation Using Java/Swarm,
J2EE, RDBMS and Autonomic Management Technol-
ogies”, IEEE Computing in Science & Engineering .

Huang, Y., Xiang, X., and Madey, G., 2004, “A Self
Manageable Infrastructure for Supporting Web-based
Simulations”, 37th Annual Simulation Symposium at the
Advanced Simulation Technologies Conference 2004
(ASTC'04), Arlington, VA, April 2004

Kim, Jaegwon, 1996, Philosophy of Mind. Westview Press,
Boulder and Oxford.

Scheutz, Matthias and Andronache, Virgil, 2004b,
“Architectural Mechanisms for Dynamic Changes of
Behavior Selection Strategies in Behavior-Based
Systems”. IEEE Transactions of System, Man, and
Cybernetics Part B: Cybernetics, Vol. 34, No. 6.

Scheutz, Matthias, 2005, “ADE - Steps Towards a Distributed
Development and Runtime Environment for Complex
Robotic Agent Architectures”. Applied Artificial
Intelligence (forthcoming).

Shek, E.C., Muntz, R.R., Mesrobian, E., and Ng, K., 1996,
“Scalable Exploratory Data Mining of Distributed
Geoscientific Data”, Second Intl Conference on
Knowledge Discovery and Data Mining, Portland.

Wimsatt, William C., 1997, “Aggregativity: Reductive
heuristics for finding emergence”. Philosophy of Science
64, 372-384.

Xiang, X., Huang, Y., Madey, G., Cabaniss, S., Aurthurs, L.,
and Maurice, P., 2004, “Modeling the Evolution of
Natural Organic Matter in the Environment with an
Agent-based Stochastic Approach”, Natural Resource
Modeling Journal, December 2004.

Zeigler, Bernard P., 2003, “DEVS Today: Recent Advances
in Discrete Event-Based Information Technology.”
MASCOTS.

