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1 Introduction

When a firm invests in R&D, the investment may cause a positive spillover that benefits

its competitors, and the size of the spillover can affect whether a research joint venture

(RJV) or non-cooperative R&D investment (NC) yields higher welfare. The early literature

on RJVs shows that increasing the spillover increases welfare under an RJV.1 Starting with

d’Aspremont and Jacquemin (1988), the theoretical literature has compared the benefits of

RJVs and NC for identical firms in a duopoly that choose cost reducing R&D investment

in the presence of a spillover.2 Moreover, in comparing the benefits of RJVs versus NC,

this literature has also tried to identify the circumstances under which RJVs generate more

aggregate R&D investment than under NC. The main goal of this paper is to determine how

an initial cost asymmetry affects the welfare comparisons of RJVs versus NC in the presence

of a spillover. We extend the literature initiated by d’Aspremont and Jacquemin (1988) by

introducing an initial cost asymmetry and by adopting the Leahy and Neary (2007) focus

on welfare differences to compare RJVs to non-cooperative R&D investment.

The introduction of a cost asymmetry is motivated by the empirical literature that doc-

uments the presence of cost differences among firms within an industry.3 Yet the impact

of such intra-industry cost heterogeneity on R&D investments and its welfare implications

cannot be analyzed with the current theoretical models, as they assume firms always have

identical costs. In addition, with asymmetric initial production costs, the traditional rank-

ings of RJVs and NC based on aggregate R&D investment will no longer coincide with

broader welfare rankings.

1See De Bondt (1996) for a survey of the early literature on spillovers in innovative activities.
2López-Pueyo et al. (2008) finds evidence that cost reducing R&D investment of one firm causes spillover

benefits to other firms in the same industry. Examples of such spillovers occur in the food, textiles, chemical
products, plastic products, and machinery industries.

3Olley and Pakes (1996) find evidence of heterogeneity in productivity in the telecommunication industry.
Roberts and Tybout (1996) and Pavcnik (2002) also find evidence of this same heterogeneity in a sample of
production plants in Colombia and Chile, respectively. There is empirical evidence of an association between
firm heterogeneity and RJV formation. Majewski and Williamson (2002) document that the presence of
asymmetries between firms causes complementarities, which motivate heterogenous firms to form a RJV.
Moreover, Röller, Siebert, and Tombak (2007) provide evidence that links firms’ asymmetries and RJV
formation. Namely, RJVs are usually formed between firms with similar initial marginal costs.
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In our model, we endow one firm with a larger marginal cost of production and analyze the

equilibrium effects when the magnitude of this initial asymmetry is close to zero. Following

Kamien and Zang (2000), we assume that the exogenous spillover parameter considered by

d’Aspremont and Jacquemin (1988) is the maximum possible fraction of R&D investment

that spills over from one firm to the other. The actual spillover is endogenously determined

by each firm’s investment in absorptive capacity, where absorptive capacity captures the idea

that a firm learns from a competitor’s R&D only if the firm also conducts R&D.4

Our analysis focuses primarily on small initial cost asymmetries. We then discuss how

several extensions to our model affect our results.5 We find that when the rate at which

absorptive capacity is built is high, an increase of the initial cost asymmetry reduces the

critical spillover value and encourages RJV formation.6 This occurs for two reasons. First

under NC, when the competitor builds absorptive capacity at a high rate, the incentive for

a firm to limit the spillover benefits of its own R&D investment increases, and aggregate

equilibrium R&D investment is reduced. Second, the benefits that the competitor derives

from the positive externality under a RJV are internalized by the firms. Thus, when the

rate of absorptive capacity acquisition is high, an increase in the initial cost asymmetry will

favor RJVs and lead to a reduction in the welfare-based critical spillover value. The effect

4RJV and NC regimes under which firms conduct cost reducing R&D investment with spillovers have
been studied since d’Apremont and Jacquemin (1988). In their model, d’Apremont and Jacquemin assume
that identical firms choose their R&D investment and then they compete in a final good market. In addition
to analyzing the effects of R&D spillovers, Kamien, Müller, and Zang (1992) and Amir, Evstigneev, and
Wooders (2003) also consider endogenous information sharing. A key extension to this set up introduces
endogenous spillovers (Kamien, Müller, and Zang (1992) and Kamien and Zang (2000)). More recently, the
focused changed to demand conditions under which endogenizing the spillover effect drives up the incentives
to invest in R&D (Grünfeld (2003)), the determination of R&D appropriability through the firm’s choice of
R&D approaches (Wiethaus (2005)), and distinguishing R&D investment oriented towards inventive activities
and R&D investment aimed to learn from others (Hammerschmidt (2009)). Until Leahy and Neary (2007)
this early literature studied the normative implications of identical firms R&D investment by focusing on
aggregate R&D investment. However, Leahy and Neary use a model with symmetric costs to compare RJVs
with NC in terms of welfare differences.

5Salant and Shaffer (1999) show that ex ante identical firms may choose to invest different amounts in a
RJV. We note that their application to RJVs does not include absorptive capacity. In our model, asymmetric
R&D investments do not arise.

6This positive link between firms’ initial cost asymmetries and RJV formation is in contrast to the finding
in Röller, Siebert, and Tombak (2007) who show that initial firm asymmetries create a disincentive for firms
to form a RJV. This difference arises because their model includes no R&D spillover effects.
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is reversed when the rate at which absorptive capacity is built is low.

Also, our analysis identifies the key channels through which cost asymmetries affect wel-

fare comparisons between a RJV and NC, thereby providing a useful framework for empirical

work. We show that in the presence of a small cost asymmetry and sufficiently large de-

mand, equilibrium welfare under a RJV is increasing in the exogenous spillover parameter

while equilibrium welfare under NC can be non-monotonic.7 Under a RJV, as the exoge-

nous spillover parameter increases, R&D investment increases, implying that equilibrium

welfare under a RJV necessarily increases because the direct marginal cost reduction effect

of the spillover is reinforced by more R&D investment thereby increasing aggregate produc-

tion. Under NC, as the exogenous spillover parameter increases, R&D investment decreases

and results in less equilibrium marginal cost reduction which reduces aggregate production.

However, an increase of the exogenous spillover parameter also directly reduces the marginal

cost of production and hence increases aggregate production, because holding R&D invest-

ment fixed, larger spillovers allow each firm to take more advantage of the competitor’s

R&D investment. Thus, the direct marginal cost reduction effect increases welfare while the

decrease in R&D investment increases the marginal cost of production thereby decreasing

welfare. When the exogenous spillover parameter is small, the direct marginal cost reduction

effect dominates and NC welfare is increasing in the spillover parameter. However, when

the exogenous spillover parameter is large, the R&D investment effect dominates and NC

welfare is decreasing in the the spillover parameter.

The rest of the paper is organized as follows. In section 2, the model is introduced. Then

in section 3, the main effects of a cost asymmetry on welfare are analyzed. Finally in section

4, we discuss the results and conclude.

7Our analytic results formalize Leahy and Neary’s (2007) numerical examples, in which non-monotonic
equilibrium welfare under NC can arise even with symmetric production costs.
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2 The Model

We build upon the model pioneered by d’Aspremont and Jacquemin (1988), and used more

recently by Leahy and Neary (2007) and Hammerschmidt (2009), in which two firms compete

in a two-stage game. In the first stage the two firms (i, j ∈ {1, 2} and i 6= j) simultaneously

choose R&D investment. We will consider two scenarios: NC in which the firms choose

their R&D investments non-cooperatively and RJV in which the firms choose their R&D

investments to maximize industry profits. Then, in the second stage, the firms engage in

Cournot competition in the market for an homogeneous product. The solution concept we

use in both scenarios is subgame perfection.

The inverse demand function is p = a − q1 − q2, where a > 0 is a demand parameter

that determines its size, and qi is the quantity produced by firm i ∈ {1, 2}. Each firm

has a constant return to scale production function, which renders a total cost of production

Ci = ciqi, where ci is firm i’s unit cost of production. We introduce an initial cost asymmetry

by assuming in the absence of any R&D investment that c2 − c1 = ε, where ε ≥ 0. Thus

ε represents the magnitude of the initial cost advantage that firm 1 has over firm 2.8 Each

firm i is able to reduce its initial unit cost of production through the cost reduction function

f (zi). Including the cost-reducing effects of each firm’s R&D investment we can write

c1 = c − f (z1) and c2 = c + ε − f (z2), where zi = xi + γ (xi) θxj is firm i ’s effective

investment in R&D. Note that larger values of ε imply higher average production costs in the

market. Firm i can reduce its marginal production cost directly by investing xi ≥ 0 in R&D,

and through an endogenously determined spillover effect γ (xi) θxj. This term has three

components. The first component is firm j ’s R&D investment, xj. The second component

is the exogenous spillover parameter, θ ∈ [0, 1]. It represents the maximum fraction of

firm j ’s R&D investment, xj, that can spill over to firm i. The third component is firm i ’s

absorptive capacity γ (xi) : R+ → [0, 1]. It determines firm i’s ability to take advantage of the

maximum spillover, θxj, from firm j ’s R&D investment by incorporating it into its effective

8We consider alternative ways to formulate an initial cost asymmetry in section 3.5.
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R&D investment, zi. The absorptive capacity function γ (xi) is strictly increasing, strictly

concave, and continuously differentiable. It is also assumed that the cost reduction function

f (zi) : R+ → [0, s] is strictly increasing, strictly concave, and continuously differentiable.

The number s is the maximum possible level of cost reduction and 0 < s < c.

Leahy and Neary (2007) consider a specification of the endogenous spillover term that

encompasses some special cases considered in the literature, such as Kamien and Zang (2000).

Our formulation of the endogenous spillover differs from that found in Leahy and Neary

(2007) in two ways. First the Leahy and Neary formulation uses a parameter that represents

the difficulty of absorbing the rival’s R&D investment. This absorbing difficulty parameter

in Leahy and Neary (2007) is equivalent to 1− θ. Second, the model presented here allows

for an additional dimension of absorptive capacity acquisition related to the rate at which

absorptive capacity is built. This new dimension is introduced in section 3.3 through a

parameter λ by adopting Hammerschmidt’s (2009) absorptive capacity function

γ (xi) = (xi/1 + xi)
λ for λ ∈ [0, 1]. With Hammerschimdt’s function lower values of λ

correspond to a more concave function, which means that initial R&D investments will

allow a firm to acquire absorptive capacity more quickly.

Together these model components imply that firm i earns a profit of

πi(qi, qj, xi, xj, θ, ε) = p(qi+qj)qi−ci(xi, xj, θ, ε)qi−xi. The solution of the second stage prob-

lem corresponds to a standard Cournot game. We denote firm i ’s subgame equilibrium pro-

duction quantity by qi (xi, xj, θ, ε) where q1 (xi, xj, θ, ε) = 1/3 (a− c+ ε+ 2f (z1)− f (z2))

and q2 (xi, xj, θ, ε) = 1/3 (a− c− 2ε+ 2f (z2)− f (z1)), and firm i ’s second-stage indirect

profit function by

Πi(xi, xj, θ, ε) = p (qi (xi, xj, θ, ε) + qj (xj, xi, θ, ε)) qi (xi, xj, θ, ε)

− ci(xi, xj, θ, ε)qi (xi, xj, θ, ε)− xi.

Notice that a larger initial cost asymmetry increases firm 1’s output and decreases firm 2’s

output in every subgame defined by x1 and x2. The subgame equilibrium quantities also
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reveal that an increase in one firm’s effective R&D investment increases its subgame equi-

librium quantity more than it decreases its competitor’s quantity. With the linear demand

specification Πi(xi, xj, θ, ε) = q2i (xi, xj, θ, ε)− xi so that changes in θ affect Πi only through

changes in firm i’s output.

The NC case is defined by the reduced form non-cooperative game

GRNC ≡ {X1, X2; Π1,Π2}, where for all i firm i ’s strategy space is Xi = {xi : xiεR+}.

We assume that a unique, stable, pure strategy equilibrium to GRNC for each (θ, ε) exists,

and we refer to it as (x∗1 (θ, ε) , x∗2 (θ, ε)), where for all i 6= j, xBRi (xj, θ, ε) = arg max
xi≥0

Πi and

x∗i (θ, ε) = xBRi
(
x∗j (θ, ε) , θ, ε

)
. Because Πi = q2i − xi in every subgame defined by (x1, x2)

the subgame perfect equilibrium R&D investment levels are defined by 2qi∂qi/∂xi = 1 for

i = 1, 2.

The RJV case is defined by the reduced form cooperative problem

max
x1,x2≥0

Π1 + Π2 = p (q1 (x1, x2, θ, ε) + q2 (x2, x1, θ, ε)) (q1 (x1, x2, θ, ε) + q2 (x1, x2, θ, ε))

− (C1 + C2)− (x1 + x2) (1)

A solution to (1) is (x∗c1 , x
∗c
2 ). Since qi (xi, xj, θ, ε) is bounded and continuous in (xi, xj, θ, ε),

a solution to (1) for each (θ, ε) exists, and we assume it is unique.

The non-cooperative equilibrium production and the cooperative production decisions

are q∗i (θ, ε) = qi
(
x∗i (θ, ε) , x∗j (θ, ε) , θ, ε

)
and q∗ci (θ, ε) = qi

(
x∗ci (θ, ε) , x∗cj (θ, ε) , θ, ε

)
respec-

tively. To simplify notation we use x∗i = x∗i (θ, ε) , x∗ci = x∗ci (θ, ε), q∗i = q∗i (θ, ε), and

q∗ci = q∗ci (θ, ε) when convenient. We denote equilibrium firm profits by Π∗i (θ, ε) = Πi(x
∗
i , x
∗
j , θ, ε)

and Π∗ci (θ, ε) = Πi(x
∗c
i , x

∗c
j , θ, ε). Aggregate R&D investment is defined by X = x1 + x2.

Welfare is defined by W = CS(Q) + πi(q1, q2, x1, x2, θ, ε) + π2(q2, q1, x2, x1, θ, ε), where ag-

gregate production Q is defined by Q = q1 + q2, and consumer surplus CS (Q) is defined

by CS(Q) =
Q∫
0

p (t) dt − p (Q)Q. Evaluating the aggregate R&D investment and welfare

functions in the non-cooperative and cooperative equilibria yields the respective equilib-
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rium aggregate R&D investment and welfare levels: X∗ = x∗1 + x∗2, X
∗c = x∗c1 + x∗c2 ,

W ∗ = CS (Q∗) + Π∗1 + Π∗2 and W ∗c = CS (Q∗c) + Π∗c1 + Π∗c2 , where Q∗ = q∗1 + q∗2 and

Q∗c = q∗c1 + q∗c2 .9

Finally, we define the set of welfare-based critical spillover values as

Θ∗ (ε) = {θ ∈ [0, 1]|W ∗ (θ, ε) = W ∗c (θ, ε)} . Given an initial cost asymmetry ε, this set of

spillover values contains all the spillover values θ ∈ [0, 1] for which equilibrium welfare under

a RJV is equal to equilibrium welfare under NC. At this stage of the development of the

model we define Θ∗ (ε) as a set to allow for multiple welfare-based critical spillover values.

Proposition 3 provides sufficient conditions under which there exists a unique critical spillover

value. In order to compare our results to the previous literature we can also define the set of

investment-based critical spillover values Θ′ (ε) = {θ ∈ [0, 1]|X∗ (θ, ε) = X∗c (θ, ε)}. Lemma

1 shows that in the absence of any cost asymmetry these two sets are identical when demand

is sufficiently large.

Lemma 1 There exists a > 0 such that for all a > a and θ ∈ Θ∗ (0), x∗ (θ, 0) = x∗c (θ, 0)

and Θ′ (0) = Θ∗ (0).

Our reading of the literature suggests that RJVs and NC are compared in terms of

aggregate R&D investment because the first papers in the literature also had a specific focus

on R&D investment. Lemma 1 shows that in absence of any cost asymmetry, adopting a

welfare approach would imply the same critical spillover values as would an aggregate R&D

investment approach. However, this is not generally true in the presence of an initial cost

asymmetry, so in the rest of the paper we will consider welfare differences between RJVs

and NC.

9The assumptions on inverse demand, production costs, the cost reduction function, and the absorptive
capacity function, ensure that the equilibrium values of X,Πi, CS, Q, and W are continuous and differen-
tiable.
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3 R&D Investment and Welfare

Three sets of results are presented in this section all focusing on initial cost asymmetries

close to zero. First, we show how welfare changes when the spillover parameter θ changes in

the presence of a small asymmetry. Second, we show how welfare changes when ε changes.

Third, we show that if a critical spillover value exists, then it is unique and we show how it

changes with the size of ε. All proofs are in the Appendix. We then discuss these effects for

larger cost asymmetries.

3.1 Marginal welfare effect of the exogenous spillover θ

Since d’Aspremont and Jacquemin (1988), the literature has acknowledged that the welfare

differences between a RJV and NC depends on the magnitude of the spillover parameter θ.

Using the fact that Πi = q2i − xi, direct calculation of ∂W ∗/∂θ and ∂W ∗c/∂θ yields10

∂W ∗

∂θ
=

{
CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂x1
+ 2q∗2

∂q2
∂x1

}
∂x∗1
∂θ

+

{
CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂x2
+ 2q∗1

∂q1
∂x2

}
∂x∗2
∂θ

+ CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂θ
+ 2q∗1

∂q1
∂θ

+ 2q∗2
∂q2
∂θ

(2)

and

∂W ∗c

∂θ
=

{
CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂x1
+ 2q∗c2

∂q2
∂x1

}
∂x∗c1
∂θ

+

{
CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂x2
+ 2q∗c1

∂q1
∂x2

}
∂x∗c2
∂θ

+ CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂θ
+ 2q∗c1

∂q1
∂θ

+ 2q∗c2
∂q2
∂θ

.

(3)

The first two terms in (2) and (3) account for the indirect welfare effect of θ through R&D

investment decisions. The third line in both equations accounts for the indirect effect of θ

through changes in consumer surplus and firm profits caused by changes in output. Writing

10All derivatives are evaluated at
(
q∗i , q

∗
j , x
∗
i , x
∗
j , θ, ε

)
or
(
q∗ci , q

∗c
j , x

∗c
i , x

∗c
j , θ, ε

)
9



the output effect of θ on W ∗ and W ∗c in more detail yields

(
q∗2
3
− 5q∗1

3

)
· ∂c1
∂θ

+

(
q∗1
3
− 5q∗2

3

)
· ∂c2
∂θ

(4)

and (
q∗c2
3
− 5q∗c1

3

)
· ∂c1
∂θ

+

(
q∗c1
3
− 5q∗c2

3

)
· ∂c2
∂θ

(5)

where ∂ci/∂θ = −f ′(zi)γ(xi)xj < 0. Expression (4) is the welfare effect under NC from a

change in θ through its effect on firm output, which is generated by a change in both firms’

marginal cost of production. As θ increases, holding x1 and x2 fixed, each firm experiences

a reduction in its marginal cost of production. With lower marginal production costs, both

firms increase their second-stage output decisions, which increases consumer surplus and

firm profits. An analogous interpretation holds for (5).11 Substituting (4) and (5) into (2)

and (3) respectively shows that a change in θ affects welfare through two channels: R&D

investment and marginal cost. Proposition 1 shows how equilibrium welfare changes with

respect to the exogenous spillover parameter. For the NC case these welfare changes depend

on the elasticity of R&D investment with respect to θ which we define as

ηxi,θ = − (θ/xi (θ, 0)) · ∂xi (θ, 0)/∂θ.

Proposition 1 There exists ε > 0, such that for all 0 ≤ ε < ε

∂W ∗c (θ, ε)

∂θ
> 0 (6)

and if 2γ′ (xi)xi − γ (xi) < 0 for all xi, there exists a > 0, such that for all a > a

∂W ∗ (θ, ε)

∂θ
≥ 0 if ηxi,θ ≤

2

3
(7)

11It is easy to show that there exists ε such that (4) and (5) are strictly positive for all ε < ε.
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and

∂W ∗ (θ, ε)

∂θ
< 0 if ηxi,θ >

2

3
. (8)

Proposition 1 establishes the sign of the change in total welfare with respect to a change in θ

for the RJV and NC cases when the initial cost asymmetry is small. Proposition 1 shows that

equilibrium welfare is monotonically increasing under a RJV for all θ, and increasing for small

θ under NC. This result formalizes and extends Leahy and Neary’s (2007) numeric example

for the symmetric case. Equilibrium welfare under a RJV is monotonically increasing because

joint profit maximization implies that R&D investment increases as θ increases. Therefore

the welfare effect through R&D investment of an increase in θ reinforces the positive welfare

effect through marginal cost reduction. The technical condition on the absorptive capacity

function in the second half of the proposition ensures that absorptive capacity is not built too

quickly. This upper bound on the rate at which absorptive capacity can be built, guarantees

that each dollar of R&D investment benefits the competitor enough to reduce the incentive

to invest in R&D under NC. This investment disincentive induces a countervailing welfare

effect through the R&D channel that offsets the welfare effects through the marginal cost

channel. Moreover, if R&D investment is sufficiently elastic, the increase in θ reduces R&D

investment enough to offset its welfare-increasing effect through the reduction in marginal

costs.

If the technical condition on γ (·) is violated for some xi, the method of proof used

suggests that it may be more likely that ∂W ∗ (θ, ε)/∂θ ≥ 0 for all θ as in (7). Consider

however the limiting case in which lim
xi→∞

γ′ (xi)xi =∞. This limiting case approximates the

d’Apremont and Jacquemin (1988) model. Since the sign of ∂W ∗ (θ, ε)/∂θ still depends on

the elasticity implicit in (7) and (8), we conjecture that the technical condition on γ (·) is

not necessary.
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3.2 Marginal welfare effect of the cost advantage ε

Direct calculation of ∂W ∗/∂ε and ∂W ∗c/∂ε implies

∂W ∗

∂ε
=

{
CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂x1
+ 2q∗2

∂q2
∂x1

}
∂x∗1
∂ε

+

{
CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂x2
+ 2q∗1

∂q1
∂x2

}
∂x∗2
∂ε

+ CS ′ (q∗1 + q∗2) · ∂(q1 + q2)

∂ε
+ 2q∗1

∂q1
∂ε

+ 2q∗2
∂q2
∂ε

(9)

and

∂W ∗c

∂ε
=

{
CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂x1
+ 2q∗c2

∂q2
∂x1

}
∂x∗c1
∂ε

+

{
CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂x2
+ 2q∗c1

∂q1
∂x2

}
∂x∗cc2

∂ε

+ CS ′ (q∗c1 + q∗c2 ) · ∂(q1 + q2)

∂ε
+ 2q∗c1

∂q1
∂ε

+ 2q∗c2
∂q2
∂ε

.

(10)

The first two terms in (9) and (10) account for the indirect welfare effect of ε through R&D

investment decisions. The third line in both equations accounts for the direct effect through

changes in consumer surplus and firm profits caused by changes in output. Performing an

analogous decomposition of the output effect to that in (4) and (5) implies that the output

effect under NC equals q∗1/3− 5q∗2 and under a RJV equals q∗c1 /3− 5q∗c2 . For ε close to zero,

both terms are strictly negative. An increase in ε also reduces welfare through the R&D

effect. Proposition 2 thus shows that welfare decreases since an increase in ε increases firm

2’s initial cost disadvantage.

Proposition 2 There exists ε > 0, such that for all 0 ≤ ε < ε, ∂W ∗ (θ, ε) /∂ε < 0 and

∂W ∗c (θ, ε) /∂ε < 0 for all θ.

Proposition 2 follows from the fact that the welfare effects through R&D investment and

marginal costs are all decreasing. This occurs for two reasons. First, fixing firm 1’s unit

cost of production, as firm 2’s unit cost of production increases, R&D investment decreases,
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yielding less cost reduction and welfare. Second, an increase in ε directly reduces firm 2’s

production by more than firm 1’s production increase in the second stage also inducing a

decrease of welfare.

3.3 The welfare ranking of RJV and non-cooperative R&D invest-

ment

In this section we study how the size of the initial cost asymmetry affects the difference

in welfare between a RJV and NC when the initial cost asymmetry is small. Proposition

3 provides sufficient conditions for the critical spillover value to be unique when it exists.

Then, we establish how a change in ε affects the critical spillover value when the initial

cost asymmetry ε is small and demand is sufficiently large. Finally, using Hammerschmidt’s

(2009) absorptive capacity function, we show how the rate at which absorptive capacity is

built plays a key role in determining how a change in the cost asymmetry affects the critical

spillover value.

Proposition 3 Suppose Θ∗ (ε) 6= ∅, and 2γ′ (xi)xi − γ (xi) < 0 for all xi. Then there

exists a, ε > 0 such that for all 0 ≤ ε < ε and a > a, θ∗ (ε) is the unique critical spillover

value. Moreover, for 0 ≤ θ < θ∗ (ε), W ∗ (θ, ε) > W ∗c (θ, ε), and for θ∗ (ε) ≤ θ ≤ 1,

W ∗ (θ, ε) ≤ W ∗c (θ, ε).

Define Λθ (θ, ε) = ∂W ∗ (θ, ε)/∂θ − ∂W ∗c (θ, ε) /∂θ where Λθ (θ, ε) measures the effect of

a change in θ on the welfare difference under NC and a RJV. The proof of Proposition 3

shows, if, when the initial cost asymmetry is small there exists a critical spillover value θ∗ (ε),

then equilibrium welfare under NC crosses equilibrium welfare under a RJV from above, i.e.

Λθ (θ∗ (ε) , ε) < 0. Then Proposition 1 directly implies that W ∗ and W ∗c cross at most once.

Suppose that for some ε , W ∗c (0, ε) > W ∗ (0, ε). Under the conditions in Proposition 3,

there cannot exist a critical spillover value since W ∗c (θ, ε) > W ∗ (θ, ε) for all θ. Therefore a

necessary condition for Θ∗ (ε) 6= ∅ is W ∗ (0, ε) > W ∗c (0, ε). As a result W ∗ (θ, ε) > W ∗c (θ, ε)

13



for θ < θ∗ (ε) and W ∗ (θ, ε) ≤ W ∗c (θ, ε) for θ ≥ θ∗ (ε). Figure 1 presents a graphical

representation of Propositions 1 and 3 based on Hammerschimdt’s (2009) example, in which

firm i ’s cost reduction function is f (zi) = s (zi/1 + zi)
ρ, its absorptive capacity function is

γ (xi) = (xi/1 + xi)
λ, a = 1.5, c = 0.25, s = 0.125, ρ = 0.47, and λ = 0.005. γ (·) satisfies

the technical condition of Proposition 1 for all λ ∈
[
0, 1

2

)
.12 Consistent with Proposition 1,

the example shows that equilibrium welfare under a RJV (W ∗c) is monotonically increasing

in θ and that equilibrium welfare under NC (W ∗) is increasing for low values of θ.

Figure 1 also confirms that W ∗ can be decreasing for larger values of θ. Consistent with

Proposition 3, this example shows that for θ > θ∗(ε), a RJV provides higher welfare than

under NC, and when θ < θ∗(ε) the reverse is true.

Figure 1: Welfare based critical spillover.

To understand how a change in ε affects the critical spillover value, define

Λε (θ, ε) = ∂W ∗ (θ, ε)/∂ε− ∂W ∗c (θ, ε)/∂ε. Then direct calculation yields

∂θ∗ (ε)/∂ε = −Λε (θ∗ (ε) , ε)/Λθ (θ∗ (ε) , ε). Under the conditions of Proposition 3,

sign (∂θ∗ (ε)/∂ε) = sign (Λε (θ∗ (0) , 0)) for ε close to zero. That is, when the cost asymmetry

12The functional forms for f and γ imply that for ε = 0 the firms’ R&D investments are symmetric under
a RJV.
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is small, the change in the welfare difference with respect to ε between a RJV and NC

determines the direction of the change of the welfare-based critical spillover as ε changes.

By Proposition 2, equilibrium welfare in both the NC and RJV cases (the solid and the

dashed lines, as function of θ, in Figure 1 respectively) shift down as ε increases. Thus,

the magnitude of the reduction in equilibrium welfare under a RJV with respect to an

increase in the initial cost asymmetry, relative to the non-cooperative R&D investment case

determines whether the critical spillover value θ∗ (ε) decreases, stays at the initial level, or

increases. If θ∗ (ε) is decreasing, i.e. the welfare loss due to an increase in ε is less under a

RJV than under non-cooperative R&D investment, and a RJV will generate higher welfare

than non-cooperative R&D investment for a larger set of exogenous spillovers. This result

is contrary to the claim in Röller, Siebert, and Tombak (2007) that an increase in an initial

cost asymmetry must discourage RJV formation. If θ∗(ε) is increasing, welfare will be larger

under a RJV for a smaller set of exogenous spillovers. Direct calculation of Λε (θ∗ (0) , 0)

shows that both outcomes are possible.

Figure 2 shows how the rate at which absorptive capacity is built can influence the

direction of the change of θ∗ (ε) with respect to ε.13 Increasing ε reduces θ∗ (ε) when λ < λs

and increases θ∗ (ε) when λ > λs. When firms can build absorptive capacity at a high

rate (λ < λS), introducing an initial cost asymmetry by giving firm 1 a cost advantage,

reduces the welfare under a RJV less than under NC. Under NC a higher rate of absorptive

capacity acquisition reduces a firm’s incentive to invest in R&D since its competitor can build

absorptive capacity with very little R&D investment. This reduced incentive results in lower

equilibrium R&D investment and, therefore, less equilibrium welfare. However, under a RJV

a higher rate of absorptive capacity acquisition (lower λ) allows the firms to internalize the

spillover benefits at a lower cost, thereby reducing the welfare losses from an increase in the

initial cost asymmetry. These effects work in the opposite direction when λ increases and

absorptive capacity is built more slowly.

13Decreases in λ make γ (·) more concave since −γ′′ (x)/γ′ (x) is decreasing in λ.
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Figure 2: Difference between the welfare-based critical spillover values for the cases with
cost asymmetry θ∗ (0.001) and without a cost asymmetry θ∗ (0) and the ability to build
absorptive capacity λ.

3.4 Large initial cost asymmetries

Allowing for large initial cost asymmetries does not appear to be amenable to analytic

evaluation. We can however consider the effect of ε in the context of the above example. If

the initial cost asymmetry is above 0.2, the cost difference is drastic since firm 2 will not

operate and firm 1 will be the monopolist. With such a drastic initial cost difference, the issue

of comparing RJV and NC becomes moot. Without an active spillover mechanism, welfare

falls due to lower aggregate R&D investment, less aggregate cost reduction (firm 2’s cost are

unaffected), and lower production due to firm 1’s ability to exploit its market power. For

values of ε below 0.2, the cost difference is non-drastic. We find that the qualitative features

and implications of Propositions 1 through 3 still hold. Also, the qualitative behavior of

aggregate R&D investment with respect to ε and θ in the RJV and NC cases is the same

as in the small asymmetry case. Individual and aggregate R&D investment continue to

be decreasing in ε. However, we also find that each firm’s R&D investment can be non-

monotonic in θ, as opposed to the increasing behavior they exhibit in the small asymmetry

case. For large enough ε firm 1’s R&D investment decision can be decreasing for large θ, and

firm 2’s R&D investment can be decreasing for small values of θ. Finally, our simulations

suggest that moving from symmetry to a large ε reduces welfare under a RJV by less than
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welfare under NC, regardless of the rate at which absorptive capacity is built. That is, when

the initial cost asymmetry is large (but non-drastic), assuming symmetry in production costs

underestimates the range of values of θ for which a RJV generates higher equilibrium welfare

than under NC.

3.5 Alternative cost asymmetry formulations

In this section we consider a more general cost asymmetry formulation in which

c1 = c−αε−f(z1) and c2 = c+(1−α)ε−f(z2) for 0 ≤ α ≤ 0.5. Our main model corresponds

to α = 0 while α = 0.5 implies that changes in ε do not change the initial average industry

marginal production cost. One can also consider initial cost asymmetries that imply lower

average initial costs with this model by allowing for negative values of ε. With this more

general formulation, the welfare changes in Propositions 1 and 3 are qualitatively the same

as in the main model because these propositions describe welfare properties for ε close to

zero.

With regard to Proposition 2, for the case in which α = 0 and ε < 0, it remains the

case that ∂W ∗/∂ε and ∂W ∗c/∂ε are both negative for ε close to zero. For the case in

which α = 0.5 (and ε > 0 ), the signs of ∂W ∗/∂ε and ∂W ∗c/∂ε are indeterminate. This

indeterminancy arises because the effect of ε on welfare through aggregate R&D investment

and through the marginal cost of production is zero in the limit as ε→ 0.14 Thus, we can no

longer use these channels to sign the marginal welfare changes. However, numerical analysis

indicates that if the initial cost asymmetry is smaller than 0.005, then both W ∗ and W ∗c are

increasing in ε when α = 0.5.

With regard to the effect of λ on θ∗(ε), note that the positive slope of the curve in Figure 2

implies that dθ∗(ε)/dε is increasing in λ. This continues to be true in our more general model

for α ∈ [0, 0.5] although the implications of an initial negative cost shock (ε > 0) and an

14∂W ∗(θ, ε)/∂ε = Γ(θ, ε) + 2(q∗1 − q∗2) and ∂W ∗c(θ, ε)/∂ε = Γc(θ, ε) + 2(q∗c1 − q∗c2 ). The functions Γ(θ, ε)
and Γc(θ, ε) are the welfare effects of R&D investment under NC and RJV in (9) and (10) respectively. The
term 2(q∗1 − q∗2) is the welfare effect of a small change of ε through the marginal cost channel under NC.
Analogous analysis and interpretation hold for 2(q∗c1 − q∗c2 ) in the RJV case.
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initial positive cost shock (ε < 0) are somewhat different. With an initial negative cost shock

(as would occur when firms in an industry are affected differentially by increased regulatory

costs), the relative welfare benefits of RJVs increase when firms can build absorptive capacity

at a higher rate (low λ ). Under NC, the lower-cost firm is discouraged from investing in R&D

as doing so works to reduce its competitor’s cost disadvantage. As λ increases, aggregate

R&D investment increases under NC and decreases under RJV, thus moderating the relative

welfare benefits of an RJV and causing θ∗(ε) to increase.

With an initial positive cost shock (as would occur when firms in an industry are affected

differentially by decreased regulatory costs), an increase in λ causes θ∗(ε) to fall faster or

increase less slowly. While an increase in ε > 0 causes W ∗c(θ, ε) to shift down along W ∗(θ, ε),

a decrease in ε < 0 causes W ∗c(θ, ε) to shift up along W ∗(θ, ε). The latter shift will generate

a smaller change in NC welfare due to the concavity of W ∗ with respect to θ (Proposition

1), and thus necessitate a smaller value of θ∗(ε). This result again favors the formation of

RJVs.

4 Conclusion

The literature on strategic R&D investment following the seminal work of d’Aspremont and

Jacquemin (1988), and advanced by Kamien and Zang (2000) to include endogenous spillover

effects, has looked at the effect of spillovers on aggregate R&D investment in a symmetric

framework. The predominant focus has been to compare non-cooperative R&D investment

with RJVs based on aggregate R&D investment. However, the empirical literature supports

the existence of production cost asymmetries among firms, and comparisons based on aggre-

gate R&D investment are equivalent to welfare-based comparisons only under symmetry. In

this paper, we extend this work by introducing a cost asymmetry and by evaluating the effect

of the magnitude of this cost asymmetry and the exogenous spillover in terms of welfare.

This paper presents four key theoretical results for a small initial cost asymmetry. First,
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we show that in the presence of an initial cost asymmetry it is no longer sufficient to compare

RJVs and NC solely in terms of aggregate R&D investment. With an initial cost asymmetry,

the critical spillover value is determined by direct marginal cost differences in addition to

differences in aggregate R&D investment, whereas with symmetric costs the critical spillover

value can be determined exclusively by comparing aggregate R&D investment levels. Second,

the effect of a change in the size of the initial cost asymmetry on the critical spillover value is

ambiguous because the change in the critical spillover value is shown to depend on the rate at

which a firm can build absorptive capacity. When an increase of the initial cost asymmetry

reduces welfare under NC and RJV, then for firms with a high rate of building absorptive

capacity, an increase of the cost asymmetry reinforces the welfare reduction under NC and

weakens the welfare reduction under a RJV. Contrary to the analysis in Röller, Siebert,

and Tombak (2007), an increase of the initial cost asymmetry can promote RJV formation.

These effects reverse for firms with low rate of building absorptive capacity. Third, with

small initial cost asymmetries, welfare is monotonically increasing in the exogenous spillover

parameter under a RJV, whereas under NC welfare can be non-monotonic in the size of

the exogenous spillover parameter increases. This occurs because, while an increase of the

exogenous spillover parameter directly reduces marginal costs thereby increasing aggregate

production and welfare under a RJV and under NC, the effect through the R&D investment

channel increases welfare under a RJV and reduces welfare under NC. Finally, fixing the

unit cost of production of the low-cost firm, as the high-cost firm becomes less productive,

equilibrium welfare decreases because of lower R&D investment, higher production costs,

and less aggregate production.

These results expand our understanding about when RJVs provide higher welfare than

non-cooperative R&D investment in a model that can incorporate the empirical reality that

firms in an industry exhibit heterogeneous costs. In particular, our model provides an insight

about how the interaction between each firms’ ability to learn from its competitor’s R&D and

firm heterogeneity affect welfare differences between a RJV and NC. Moreover, our analysis
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shows that introducing an initial cost asymmetry generates richer welfare differences between

a RJV and NC. Therefore the criteria commonly used to compare RJVs and NC, which solely

focuses on aggregate R&D investment, and relies on the absence of initial cost asymmetries

can be misleading for policy purposes.
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5 Appendix

5.1 Proof of Lemma 1

First, we show that ε = 0, implies that R&D investments are equal among firms. Firm i’s

FOC in GRNC is 2qi (xi, xj, θ, ε) · ∂qi (xi, xj, θ, ε)/∂xi = 1, where i 6= j. Then the subgame

perfect investment levels are described by

2q1 (x1, x2, θ, ε)
∂q1
∂x1

(x1, x2, θ, ε) = 1 (11)

and

2q2 (x2, x1, θ, ε)
∂q2
∂x2

(x2, x1, θ, ε) = 1. (12)

Given the demand and costs assumptions,

q1 (x1, x2, θ, ε) =
1

3
(a− c+ ε+ 2f (z1)− f (z2))

and

q2 (x2, x1, θ, ε) =
1

3
(a− c− 2ε+ 2f (z2)− f (z1)) .

When ε = 0, (11) and (12) are symmetric. Therefore x∗1 (θ, 0) = x∗2 (θ, 0) = x∗ (θ, 0) .

Analogously x∗c1 (θ, 0) = x∗c2 (θ, 0) = x∗c (θ, 0) . Now we show that if θ ∈ Θ′ (0), then

θ ∈ Θ∗ (0). Suppose θ ∈ Θ′ (0), then X∗ (θ, 0) = 2x∗ (θ, 0) and X∗c (θ, 0) = 2x∗c (θ, 0).

By the definition of Θ′ (ε), θ ∈ Θ′ (0) implies x∗ (θ, 0) = x∗c (θ, 0). Substituting x∗ (θ, 0),

x∗c (θ, 0), and θ into (11) and (12) and into the definitions of CS, Πi, and W yields

W ∗ (θ, 0) = W ∗c (θ, 0). Next we prove that if θ ∈ Θ∗ (0), then θ ∈ Θ′ (0). By the defi-

nition of Θ∗ (ε), θ ∈ Θ∗ (0) implies W ∗ (θ, 0) = W ∗c (θ, 0). By the definition of W ∗ and W ∗c,

W ∗ (θ, 0)−W ∗c (θ, 0) = W (x∗, x∗, θ, 0)−W (x∗c, x∗c, θ, 0) where x∗ = x∗ (θ, 0) and

x∗c = x∗c (θ, 0). Define Ŵ (x, θ, 0) = W (x, x, θ, 0) and q (x, θ, 0) = qi (x, x, θ, 0). Without

loss of generality assume x∗ ≥ x∗c then W ∗ (θ, 0) −W ∗c (θ, 0) =
∫ x∗(θ,0)
t=x∗c(θ,0)

∂Ŵ (t, θ, 0)/∂xdt.
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If ∂Ŵ (t, θ∗ (0) , 0)/∂x > 0 for all t, then W ∗ (θ, 0) = W ∗c (θ, 0) if, and only if,

x∗ (θ, 0) = x∗c (θ, 0). To show this is true for A sufficiently large, note that

∂Ŵ/∂x = 8q (x, θ, 0) ∂q (x, θ, 0)/∂x− 2. Direct calculation yields

∂q (x, θ, 0)/∂x = f ′ (z) (1 + γ′ (x) θx+ γ (x) θ) > 0 and q (x, θ, 0) = 1
3

(a− c− f (z)). Be-

cause q (x, θ, 0) is linear and increasing in a, then there exists a > 0 such that

∂Ŵ
∂x

(t, θ∗ (0)∗ , 0) > 0 for all t . Then x∗ (θ, 0) = x∗c (θ, 0) and θ ∈ Θ′ (0) . �

5.2 Proof of Proposition 1

Lemmas 2, 3, and 4 provide the key steps for the proof of (7) and (8). Lemma 2 states that,

in the limit as ε → 0, the firms’ strategies and equilibrium decisions converge in both the

non-cooperative R&D investment and RJV cases. Lemma 3 states that when the initial cost

asymmetry is small, θ affects the equilibrium R&D investment level under NC in the same

direction as it affects the incentives to invest in the symmetric case. Lemma 4 states that,

for large enough demand and an absorptive capacity function that does not build absorptive

capacity too quickly, an increase in θ necessarily reduces the incentives to invest under NC.

The rest of the proof refers to the change in equilibrium welfare under a RJV and only uses

implications from the maximization of joint profits.

Lemma 2 For all i and j,

1.lim
ε→0

(x∗i (θ, ε) , qi (xi, xj, θ, ε)) = (x∗ (θ, 0) , qi (xi, xj, θ, 0)),

2.lim
ε→0

(x∗ci (θ, ε) , qi (xi, xj, θ, ε)) = (x∗c (θ, 0) , qi (xi, xj, θ, 0)),

3.lim
ε→0

x∗i (θ, ε) = x∗ (θ, 0) and lim
ε→0

q∗i
(
x∗i (θ, ε) , x∗j (θ, ε) , θ, ε

)
= q∗ (θ), and

4.lim
ε→0

x∗ci (θ, ε) = x∗c (θ, 0) and lim
ε→0

q∗ci
(
x∗ci (θ, ε) , x∗cj (θ, ε) , θ, ε

)
= q∗c (θ) .

Proof: The proof follows directly from the fact that qi (xi, xj, θ, ε) and ∂qi (xi, xj, θ, ε)/∂xi

are continuous in xi, xj, θ and ε, that x∗1 (θ, 0) = x∗2 (θ, 0), and that x∗c1 (θ, 0) = x∗c2 (θ, 0) . �

Lemma 3 For any stable equilibrium of GRNC, for all i 6= j ∈ {1, 2}, there exists ε such

that for all 0 ≤ ε < ε
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sign

(
∂x∗i (θ, ε)

∂θ

)
= sign

(
∂2Πi

(
x∗i , x

∗
j , θ, 0

)
∂xi∂θ

)
(13)

and

sign

(
∂x∗ci (θ, ε)

∂θ

)
= sign

(
∂2Πi

(
x∗ci , x

∗c
j , θ, 0

)
∂xi∂θ

+
∂2Πj

(
x∗cj , x

∗c
i , θ, 0

)
∂xi∂θ

)
. (14)

Proof: To prove (13), totally differentiating (11) and (12) yields

∂x∗i
∂θ

=

∣∣∣∣∣∣∣
−
(
∂qi
∂θ

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂θ

)
∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

−
(
∂qj
∂θ

∂qj
∂xj

+ q∗j
∂2qj
∂xj∂θ

) (
∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(
∂q1
∂x1

)2
+ q∗1

∂2q1
∂x21

∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

∂qj
∂xj

∂qj
∂xi

+ q∗j
∂2qj
∂xi∂xj

(
∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

∣∣∣∣∣∣∣
. (15)

The stability condition for the equilibria of GRNC at each (θ, ε) implies the denominator of

(15) is strictly positive. Thus,

sign

(
∂x∗i (θ, ε)

∂θ

)
= sign

[
−
(
∂qi
∂θ

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂θ

)((
∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

)
+
(
∂qj
∂θ

∂qj
∂xj

+ q∗j
∂2qj
∂xj∂θ

)(
∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

)]
(16)

where the right-hand side of (16) is the sign of the numerator of (15). The continu-

ity of qi (xi, xj, θ, ε), ∂qi (xi, xj, θ, ε)/∂xj, ∂qi (xi, xj, θ, ε)/∂θ, ∂
2qi (xi, xj, θ, ε)/∂xi∂xj and

∂2qi (xi, xj, θ, ε)/∂xi∂θ in (xi, xj, θ, ε) for all i and j implies, that the numerator (15) is con-

tinuous. Taking the limit as ε → 0 of the right-hand side of (16), Lemma 2 and continuity

of the numerator of (15) imply that there exists ε > 0 such that for 0 < ε < ε,
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sign

(
∂x∗i (θ, ε)

∂θ

)
= sign

[(
−
((

∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

)
+
(
∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

))
·
(
∂qi
∂θ

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂θ

)]
(17)

where each term on the right-hand side of (17) is evaluated at (θ, 0). The stability condition

for the equilibrium of GRNC at (θ, 0) has the form A2 −B2 > 0, where

A =

(∂qi (x∗i (θ, 0) , x∗j (θ, 0) , θ, 0
)

∂xi

)2

+ q∗i
∂2qi

(
x∗i (θ, 0) , x∗j (θ, 0) , θ, 0

)
∂x2i

 ,

B =

(
∂qi
(
x∗i (θ, 0) , x∗j (θ, 0) , θ, 0

)
∂xj

∂qi
(
x∗i (θ, 0) , x∗j (θ, 0) , θ, 0

)
∂xi

+q∗i
∂2qi

(
x∗i (θ, 0) , x∗j (θ, 0) , θ, 0

)
∂xi∂xj

)
,

and −A + B is the term in the square brackets on the right-hand side of (17). The SONC

of firm i ’s profit maximization problem for (θ, 0) is equivalent to A < 0. If B > 0, then

−A > B . If B < 0, then −A > B. Therefore −A + B > 0 and the right-hand side of (17)

is equal to sign (∂qi/∂θ · ∂qi/∂xi + q∗i · ∂2qi/∂xi∂θ) evaluated at (θ, 0), which can also be

written as sign
(
∂Πi

(
x∗i , x

∗
j , θ, 0

)
/∂xi∂θ

)
for all i 6= j. To prove (14), totally differentiating

the FOC of (1) yields

∂x∗ci
∂θ

=
M11M22 −M12M21

∆11∆22 −∆12∆21

(18)

where

M11 = −
(
∂qi
∂θ

∂qi
∂xi

+ q∗ci
∂2qi
∂xi∂θ

+
∂qj
∂θ

∂qj
∂xi

+ q∗cj
∂2qj
∂xi∂θ

)
,

M12 = ∆12 =
∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

+
∂qj
∂xi

∂qj
∂xj

+ q∗cj
∂2qj
∂xi∂xj

,
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M21 = −
(
∂qi
∂θ

∂qi
∂xj

+ q∗ci
∂2qi
∂xj∂θ

+
∂qj
∂θ

∂qj
∂xj

+ q∗cj
∂2qj
∂xj∂θ

)
,

M22 = ∆22 =

(
∂qi
∂xj

)2

+ q∗ci
∂2qi
∂x2j

+

(
∂qj
∂xj

)2

+ q∗cj
∂2qj
∂x2j

,

∆11 =

(
∂qi
∂xi

)2

+ q∗ci
∂2qi
∂x2i

+

(
∂qj
∂xi

)2

+ q∗cj
∂2qj
∂x2i

,

and

∆21 =
∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

+
∂qj
∂xi

∂qj
∂xj

+ q∗cj
∂2qj
∂xi∂xj

.

Here the SONC of the reduced form cooperative problem in (1) at each (θ, ε) implies

that the denominator of (18) is non-negative. Moreover the continuity of qi (xi, xj, θ, ε),

∂qi (xi, xj, θ, ε)/∂xj, ∂qi (xi, xj, θ, ε)/∂θ, ∂
2qi (xi, xj, θ, ε)/∂xi∂xj and ∂2qi (xi, xj, θ, ε)/∂xi∂θ

in (xi, xj, θ, ε) for all i and j implies that the numerator of (18) is continuous. By Lemma

(2) and continuity of the numerator of (18) there exists ε > 0 such that for 0 ≤ ε < ε

sign

(
∂x∗ci (θ, ε)

∂θ

)
= sign

([
−

([(
∂qi
∂xj

)2

+ q∗ci
∂2qi
∂x2j

]
+

[(
∂qj
∂xj

)2

+ q∗cj
∂2qj
∂x2j

])

+2

(
∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

)]
·([

∂qi
∂θ

∂qi
∂xi

+ q∗ci
∂2qi
∂xi∂θ

]
+

[
∂qj
∂θ

∂qj
∂xi

+ q∗cj
∂2qj
∂xi∂θ

]))
(19)

where the right hand side of (19) is evaluated at (θ, 0). Finally the SONCs for a local

maximum of the reduced form cooperative problem (1) at (θ, 0) take the form C < 0 and

where

C =

(
∂qi
∂xj

)2

+ q∗ci
∂2qi
∂x2j

+

(
∂qj
∂xj

)2

+ q∗cj
∂2qj
∂x2j

,

D = 2

(
∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

)2

,

and −C + D is the sum of the two first lines in (19). Therefore the SONC of problem (1)

for (θ, 0) implies that if D > 0, then −C > D, and if D < 0, then −C > D. Therefore
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−C +D > 0 and the right-hand side of (19) is equal to

sign

((
∂qi
∂θ

∂qi
∂xi

+ q∗ci
∂2qi
∂xi∂θ

+
∂qj
∂θ

∂qj
∂xi

+ q∗cj
∂2qj
∂xi∂θ

))

evaluated at (θ, 0), which we can write as

sign

(
∂Πi

(
x∗ci , x

∗c
j , θ, 0

)
∂xi∂θ

+
∂Πj

(
x∗cj , x

∗c
i , θ, 0

)
∂xi∂θ

)

for all i 6= j, completing the proof of Lemma 3. �

Lemma 4 Suppose 2γ′ (xi)xi − γ (xi) < 0. Then for ε = 0, there exist a > 0 such that for

all a > a, ∂Πi

(
x∗i , x

∗
j , θ, 0

)
/∂xi∂θ < 0.

Proof: By definition γ (·) is bounded between 0 and 1, strictly increasing and strictly

concave. Therefore, if 2γ′ (xi)xi − γ (xi) < 0, then −1 ≤ 2γ′ (x)x− γ (x) ≤ 0.

Under symmetry zi = z, xi = x, and qi (x, x, θ, 0) = q (x, θ) for all i, where

q (x, θ) = φ (z) = 1
3

(a− c+ f (z)) and z = x+ γ (x) θx. Therefore

∂2Πi (x, x, θ, 0)

∂xi∂θ
=

2

9
(f ′ (z) γ (x)x) f ′ (z) [2 + θ (2γ′ (x)x− γ (x))] + q

2

3
(f ′′ (z) γ (x)x

· [2 + θ [2γ′ (x)x− γ (x)]] + f ′ (z) [2γ′ (x)x− γ (x)]) . (20)

Then −1 ≤ 2γ′ (x)x − γ (x) ≤ 0 implies that 2 + θ [2γ′ (x)x− γ (x)] > 0. Because f (z) is

concave in z and because q (x, θ) is continuous and linear in a for all (x, θ), there exists a > 0

such that for all a > a, q (x, θ) is large enough so that (20) will be negative for all (x, θ).

This completes the proof of Lemma 4. �

To complete the proof 7 of and 8 in Proposition 1, substituting the equilibrium R&D
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investment and production decisions into (2) implies that

∂W ∗

∂θ
=

{
(q∗1 + q∗2)

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x1

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x1

]
−q∗2

[(
∂q1
∂c1

∂c1
∂x1

+
∂q1
∂c2

∂c2
∂x1

)
− ∂c2
∂x1

]}
∂x∗1
∂θ

+

{
(q∗1 + q∗2)

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x2

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x2

]
−q∗1

[(
∂q2
∂c1

∂c1
∂x2

+
∂q2
∂c2

∂c2
∂x2

)
− ∂c1
∂x2

]}
∂x∗2
∂θ

+

[(
q∗1
∂q1
∂c1

+ q∗2
∂q2
∂c1

)
∂c1
∂θ

+

(
q∗1
∂q1
∂c2

+ q∗2
∂q2
∂c2

)
∂c2
∂θ

]
−
(
q∗1
∂c1
∂θ

+ q∗2
∂c2
∂θ

)
. (21)

The continuity of qi (xi, xj, θ, ε), ∂qi (xi, xjθ, ε)/∂xj, ∂qi (xi, xj, θ, ε)/∂θ,

∂2qi (xi, xj, θ, ε)/∂xi∂xj and ∂2qi (xi, xj, θ, ε)/∂xi∂θ in (xi, xj, θ, ε) for all i and j implies the

continuity of ∂W ∗/∂θ. Rearranging terms, substituting equilibrium decisions, and taking

the limit of (21) as ε→ 0, it follows from Lemma 2 that

lim
ε→0

∂W ∗ (θ, ε)/∂θ = 4q∗i f
′ (z∗i ) γ (x∗i )

[
2
3
− ηxi,θ

]
. By Lemma 3 and the assumptions on f (·)

and γ (·), there exists ε > 0 such that for 0 ≤ ε < ε, if ∂2Πi

(
x∗i , x

∗
j , θ, 0

)
/∂xi∂θ > 0, then

∂x∗i (θ, ε)/∂θ > 0, and if ∂2Πi

(
x∗i , x

∗
j , θ, 0

)
/∂xi∂θ < 0, then ∂x∗i /∂θ < 0. By Lemma 4 if

2γ′ (xi)xi − γ (xi) < 0, there exists a > a such that ∂2Πi

(
x∗i , x

∗
j , θ, 0

)
/∂xi∂θ < 0. Therefore

if 2γ′ (xi)xi−γ (xi) < 0, by the continuity of ∂W ∗ (θ, ε)/∂θ and Lemmas 3 and 4, then there

exists a, ε > 0 such that for 0 ≤ ε < ε, and a > a, (7) and (8) in Proposition 1 hold.

Now we turn to prove (6) in Proposition 1. We want to show that there exists ε > 0

such that for 0 ≤ ε < ε, ∂W ∗c (θ′, ε)/∂θ > 0. Since W ∗c = CS∗c + Π∗c1 + Π∗c2 , first we show

that there exist ε1 > 0 such that for 0 ≤ ε < ε1, Π∗c1 + Π∗c2 increases in θ, and then we show

that there exist ε2 > 0 such that for 0 ≤ ε < ε2, CS
∗ increases in θ. We can then define

ε = min {ε1, ε2}

Let
(
x∗ci (θ, 0) , x∗cj (θ, 0)

)
be the unique solution to (1) when ε = 0. In this case

x∗ci (θ, 0) = x∗cj (θ, 0) = x∗c (θ). Define the indirect joint profit function under symmetry
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by Π (x∗c (θ) , θ) = 2 (q (x∗c (θ) , θ))2 − 2x∗c (θ). Let θ′ > θ . Then by profit maximization

Π (x∗c (θ′) , θ′) > Π (x∗c (θ) , θ′). Since q (x, θ) = 1
3

(a− c+ f (x+ γ (x) θx)), f (·) increasing

implies that Π (x∗c (θ) , θ′) > Π (x∗c (θ) , θ).

Therefore Π (x∗c (θ′) , θ′) > Π (x∗c (θ) , θ). By Lemma 5 and continuity of the joint profits

Πi (xi, xj, θ, ε) + Πj (xj, xi, θ, ε) in xi, xj, θ and ε, there exists ε > 0 such that for 0 < ε < ε,

Π (x∗c (θ′) , θ′) > Π (x∗c (θ) , θ) implies

Πi

(
x∗ci (θ′, ε) , x∗cj (θ′, ε) , θ′, ε

)
+ Πj

(
x∗cj (θ′, ε) , x∗ci (θ′, ε) , θ′, ε

)
> Πi

(
x∗ci (θ, ε) , x∗cj (θ, ε) , θ, ε

)
+ Πj

(
x∗cj (θ, ε) , x∗ci (θ, ε) , θ, ε

)
.

In the symmetric case the cooperative problem is

max
x1,x2≥0

Π1 + Π2 = q21 (x1, x2, θ, 0) + q22 (x2, x1, θ, 0)− (x1 + x2) . (22)

The FOC’s of (22) are

2q1 (x1, x2, θ, 0)
∂q1 (x1, x2, θ, 0)

∂x1
+ 2q2 (x2, x1, θ, 0)

∂q2 (x1, x2, θ, 0)

∂x1
− 1 = 0 (23)

and

2q1 (x1, x2, θ, 0)
∂q1 (x1, x2, θ, 0)

∂x2
+ 2q2 (x2, x1, θ, 0)

∂q2 (x1, x2, θ, 0)

∂x2
− 1 = 0. (24)

By the definition of q1 (x1, x2, θ, ε) and q2 (x2, x1, θ, ε) , q1 (x1, x2, θ, 0) = q2 (x2, x1, θ, 0). There-

fore (23) and (24) form a symmetric system with solution x1 = x2. Therefore solving (22) is

equivalent to solving

max
x≥0

Π (x, θ) = 2q2 (x, θ)− 2x (25)

which has the unique solution x (θ) . Monotonicity of γ (·) implies that there exists an inverse

function χ (ω, θ) : R+ → R+ that maps the effective and symmetric R&D investment ω into
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R&D investment x, such that χ (ω, θ) = x. Therefore (25) can be written as

max
ω≥0

Π̃ (ω, θ) = 2φ2 (ω)− 2χ (ω, θ) . (26)

The FOC of (26) implies that

2φ (ω)
∂φ (ω)

∂ω
− ∂χ (ω, θ)

∂ω
= 0.

Hence

∂ω (θ)

∂θ
=

∂χ(ω,θ)
∂ω∂θ

2

[(
∂φ(ω)
∂ω

)2
+ ∂2φ(ω)

∂ω2

]
− ∂2χ(ω,θ)

∂ω2

. (27)

The SONC of (26) implies that the denominator of (27) is non-positive and direct calculation

yields ∂2χ (ω, θ)/∂ω∂θ < 0, hence ∂ω (θ)/∂θ > 0. Moreover, by the definition of χ (ω, θ), in

equilibrium ∂χ (ω (θ) , θ)/∂θ > 0. By the definition of φ (ω) , ∂ω (θ)/∂θ > 0 implies

∂φ (ω (θ))/∂θ > 0 which is equivalent to ∂q∗c (θ, 0)/∂θ > 0. By the definition of

CS (Q), ∂q∗c (θ, 0)/∂θ > 0 is equivalent to

∂CS (Q∗c)/∂θ > 0. By Lemma 2 and the continuity of CS (Q) in xi, xj, θ and ε, there exists

ε > 0 such that for 0 < ε < ε, if ∂CS (Q∗)/∂θ > 0, then ∂CS (Q∗c)/∂θ > 0, completing the

proof. �

5.3 Proof of Proposition 2

Lemmas 2 and 5 provide the key steps of the proof. Lemma 5 states that for a small initial

cost asymmetry, aggregate investment is decreasing in ε under a RJV and under NC.

Define q (x, θ) ≡ qi (x, x, θ, 0), q∗ (θ) ≡ q (x∗ (θ, 0) , θ), and q∗c (θ) ≡ q (x∗c (θ, 0) , θ).

Lemma 5 Given the assumptions on demand, the unit cost of production, f (·), and γ (·),
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there exists ε > 0 such that for 0 ≤ ε < ε, if the equilibrium of GRNC is locally stable,

∂x∗1 (θ, ε)

∂ε
+
∂x∗2 (θ, ε)

∂ε
< 0 (28)

and

∂x∗c1 (θ, ε)

∂ε
+
∂x∗c2 (θ, ε)

∂ε
< 0. (29)

Proof: Given the assumptions on the demand and the unit cost of production direct calcu-

lation yields, in the NC case for every i 6= j,

∂x∗i (θ, ε)

∂ε
=

∣∣∣∣∣∣∣
−∂qi

∂ε
∂qi
∂xi

∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

−∂qj
∂ε

∂qj
∂xj

(
∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(
∂qi
∂xi

)2
+ q∗i

∂2qi
∂x2i

∂qi
∂xj

∂qi
∂xi

+ q∗i
∂2qi
∂xi∂xj

∂qj
∂xj

∂qj
∂xi

+ q∗j
∂2qj
∂xi∂xj

(
∂qj
∂xj

)2
+ q∗j

∂2qj
∂x2j

∣∣∣∣∣∣∣
(30)

and in the RJV case,

∂x∗ci (θ, ε)

∂ε
=
N11N22 −N12N21

D11D22 −D12D21

(31)

where

N11 = −
(
∂qi
∂ε

∂qi
∂xi

+
∂qj
∂ε

∂qj
∂xi

)
,

N12 = D12 = ∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

+
∂qj
∂xi

∂qj
∂xj

+ q∗cj
∂2qj
∂xi∂xj

,

N21 = −
(
∂qi
∂ε

∂qi
∂xj

+
∂qj
∂ε

∂qj
∂xj

)
,

N22 = D22 =
(
∂qi
∂xj

)2
+ q∗ci

∂2qi
∂x2j

+
(
∂qj
∂xj

)2
+ q∗cj

∂2qj
∂x2j

,

D11 =
(
∂qi
∂xi

)2
+ q∗ci

∂2qi
∂x2i

+
(
∂qj
∂xi

)2
+ q∗cj

∂2qj
∂x2i

, and

D21 = ∂qi
∂xi

∂qi
∂xj

+ q∗ci
∂2qi
∂xi∂xj

+
∂qj
∂xi

∂qj
∂xj

+ q∗cj
∂2qj
∂xi∂xj

.

Local stability of an equilibrium of GRNC at (θ, ε) implies that the denominator of (30) is

positive. The SONC for a local maximum of the reduced form cooperative problem implies
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that the denominator of (31) is positive. Define

Sji (θ, ε) ≡
∂qi
(
x∗i , x

∗
j , θ, ε

)
∂xj

∂q∗i
(
x∗i , x

∗
j , θ, ε

)
∂xi

+ q∗i
∂2qi

(
x∗i , x

∗
jθ, ε

)
∂xi∂xj

and

Lji (θ, ε) ≡
∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂xj

∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂xi

+ q∗ci
∂2qi

(
x∗ci , x

∗c
j , θ, ε

)
∂xi∂xj

+
∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂xj

∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂xi

+ q∗cj
∂2qj

(
x∗cj , x

∗c
i , θ, ε

)
∂xi∂xj

for all i, j ∈ {1, 2}. Then

sign

(
∂x∗i (θ, ε)

∂ε

)
= sign

(
−
∂qi
(
x∗i , x

∗
j , θ, ε

)
∂ε

∂qi
(
x∗i , x

∗
j , θ, ε

)
∂xi

Sjj (θ, ε)

+
∂qj
(
x∗j , x

∗
i , θ, ε

)
∂ε

∂qj
(
x∗j , x

∗
i , θ, ε

)
∂xj

Sji (θ, ε)

)
.

Given the SONC of the cooperative problem,

sign

(
∂x∗ci (θ, ε)

∂ε

)
= sign

(
−

[
∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂ε

∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂xi

+
∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂ε

∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂xi

]
Ljj (θ, ε)

+

[
∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂ε

∂qi
(
x∗ci , x

∗c
j , θ, ε

)
∂xj

+
∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂ε

∂qj
(
x∗cj , x

∗c
i , θ, ε

)
∂xj

]
Lji (θ, ε)

)
.

By Lemma 2, lim
ε→0

Sii = lim
ε→0

Sjj , lim
ε→0

Sji = lim
ε→0

Sij, and lim
ε→0

Lii = lim
ε→0

Ljj. The continuity of

qi (xi, xj, θ, ε), ∂qi (xi, xj, θ, ε)/∂xj, and ∂2qi (xi, xj, θ, ε)/∂xi∂xj in (xi, xj, θ, ε) for all i and

j, implies that Sji and Lji are continuous in (xi, xj, θ, ε) for all i and j. By continuity of Sii ,
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Sji , L
i
i, and Lji there exists ε > 0 such that for all 0 ≤ ε < ε,

sign

(
∂x∗1 (θ, ε)

∂ε
+
∂x∗2 (θ, ε)

∂ε

)
= sign

((
∂q1 (θ, 0)

∂ε
+
∂q2 (θ, 0)

∂ε

)
∂q1 (θ, 0)

∂x1

(
−S1

1 + S2
1

))
(32)

and

sign

(
∂x∗c1 (θ, ε)

∂ε
+
∂x∗c2 (θ, ε)

∂ε

)
= sign

([
−L1

1 + L2
1

] [∂q1 (θ, 0)

∂ε
+
∂q2 (θ, 0)

∂ε

]
·
[
∂q1 (θ, 0)

∂x2
+
∂q1 (θ, 0)

∂x1

])
. (33)

The stability condition of GRNC at each (θ, ε) implies that −S1
1 (θ, ε) + S2

1 (θ, ε) > 0 and

the SONC at each (θ, ε) of the reduced form cooperative problem implies that

−L1
1 (θ, ε) + L2

1 (θ, ε) > 0. The FOC of the individual firm problem in GRNC at each (θ, ε)

implies that ∂q1 (x∗1, x
∗
2, θ, ε)/∂x1 > 0. The FOCs of (1) at each (θ, ε) imply that

∂q1 (x∗c1 (θ, 0) , x∗c2 (θ, 0) , θ, 0)

∂x2
+
∂q1 (x∗c1 (θ, 0) , x∗c2 (θ, 0) , θ, 0)

∂x1
> 0.

Finally the demand and costs assumptions imply that

∂q1 (x∗1, x
∗
2, θ, ε)

∂ε
+
∂q2 (x∗2, x

∗
1, θ, ε)

∂ε
=
∂q1 (x∗c1 , x

∗c
2 , θ, ε)

∂ε
+
∂q2 (x∗c2 , x

∗c
1 , θ, ε)

∂ε
= −1

3

for all θ and ε. Hence the sign of the left-hand side of equations (32) and (33) are negative,

which completes the proof of Lemma 5. �

Returning now to the proof of Proposition 2, substituting equilibrium R&D investment

and production decisions into W , direct calculation of ∂W ∗/∂ε and ∂W ∗c/∂ε allows one to
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rewrite (9) and (10) as

∂W ∗

∂ε
=

{
(q∗1 + q∗2)

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x1

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x1

]
−q∗2

[(
∂q1
∂c1

∂c1
∂x1

+
∂q1
∂c2

∂c2
∂x1

)
− ∂c2
∂x1

]}
∂x∗1
∂ε

+

{
(q∗1 + q∗2)

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x2

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x2

]
−q∗1

[(
∂q2
∂c1

∂c1
∂x2

+
∂q2
∂c2

∂c2
∂x2

)
− ∂c1
∂x2

]}
∂x∗2
∂ε

+

(
q∗1
∂q∗1
∂c2

+ q∗2
∂q∗2
∂c2

)
∂c2
∂ε
− q∗2

∂c2
∂ε

(34)

and

∂W ∗c

∂ε
=

{
(q∗c1 + q∗c2 )

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x1

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x1

]}
∂x∗c1
∂ε

+

{
(q∗c1 + q∗c2 )

[(
∂q1
∂c1

+
∂q2
∂c1

)
∂c1
∂x2

+

(
∂q1
∂c2

+
∂q2
∂c2

)
∂c2
∂x2

]}
∂x∗c2
∂ε

+

(
q∗c1
∂q1
∂c2

+ q∗c2
∂q2
∂c2

)
∂c2
∂ε
− q∗c2

∂c2
∂ε

(35)

where (34) and (35) are evaluated at (θ, ε). Define

Ti (θ, ε) ≡
{(
q∗i + q∗j

) [(∂qi
∂ci

+
∂qj
∂ci

)
∂ci
∂xi

+

(
∂qi
∂cj

+
∂qj
∂cj

)
∂cj
∂xi

]
−q∗j

[(
∂qi
∂ci

∂ci
∂xi

+
∂qi
∂cj

∂cj
∂xi

)
− ∂cj
∂xi

]}

and

T ci (θ, ε) ≡
{(
q∗ci + q∗cj

) [(∂qi
∂ci

+
∂qj
∂ci

)
∂ci
∂xi

+

(
∂qi
∂cj

+
∂qj
∂cj

)
∂cj
∂xi

]}
for i 6= j. Define

T (θ) ≡
{

(q∗ + q∗)

[(
∂qi
∂ci

+
∂qj
∂ci

)
∂ci
∂xi

+

(
∂qi
∂cj

+
∂qj
∂cj

)
∂cj
∂xi

]
−q∗

[(
∂qi
∂ci

∂ci
∂xi

+
∂qi
∂cj

∂cj
∂xi

)
− ∂cj
∂xi

]}∣∣∣∣
ε=0
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and

T c (θ) ≡
{

(q∗c + q∗c)

[(
∂q∗ci
∂ci

+
∂q∗cj
∂ci

)
∂ci
∂xi

+

(
∂q∗ci
∂cj

+
∂q∗cj
∂cj

)
∂cj
∂xi

]}∣∣∣∣
ε=0

for i 6= j, where q∗ = q∗ (θ, 0) and q∗c = q∗c (θ, 0). Then we can rewrite expressions (34) and

(35) as

∂W ∗ (θ, ε)

∂ε
= T1 (θ, ε)

∂x∗1 (θ, ε)

∂ε
+ T2 (θ, ε)

∂x∗2 (θ, ε)

∂ε(
q∗1 (θ, ε)

∂q1 (x∗1, x
∗
2, θ, ε)

∂c2
+ q∗2 (θ, ε)

∂q2 (x∗1, x
∗
2, θ, ε)

∂c2

)
∂c2
∂ε

−q∗2 (θ, ε)
∂c2
∂ε

and

∂W ∗c (θ, ε)

∂ε
= T c1 (θ, ε)

∂x∗c1 (θ, ε)

∂ε
+ T c2 (θ, ε)

∂x∗c2 (θ, ε)

∂ε(
q∗c1 (θ, ε)

∂q1 (x∗1, x
∗
2, θ, ε)

∂c2
+ q∗c2 (θ, ε)

∂q2 (x∗1, x
∗
2, θ, ε)

∂c2

)
∂c2
∂ε

−q∗c2 (θ, ε)
∂c2
∂ε

.

By the definitions of qi and c2 it follows that ∂qi (xi, xj, θ, ε)/∂cj = 1/3,

∂qi (xi, xj, θ, ε)/∂ci = −2/3, and ∂c2/∂ε = 1 for all (xi, xj, θ, ε).

By Lemma 2, lim
ε→0

Ti (θ, ε) = T (θ) and lim
ε→0

T ci (θ, ε) = T c (θ), therefore

lim
ε→0

∂W ∗ (θ, ε)

∂ε
= T (θ)

(
∂x∗1 (θ, 0)

∂ε
+
∂x∗2 (θ, 0)

∂ε

)
− 4

3
q∗ (θ, 0) (36)

and

lim
ε→0

∂W ∗c (θ, ε)

∂ε
= T c (θ)

(
∂x∗c1 (θ, 0)

∂ε
+
∂x∗c2 (θ, 0)

∂ε

)
− 4

3
q∗c (θ, 0) . (37)

The demand and cost assumptions directly imply that T (θ) and T c (θ) are strictly pos-

itive. By Lemma 5, there exists ε > 0 such that for 0 ≤ ε < ε, ∂x∗1/∂ε + ∂x∗2/∂ε < 0 and

∂x∗c1 /∂ε+ ∂x∗c2 /∂ε < 0. Therefore the right hand sides of (36) and (37) are strictly negative.
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The continuity of qi (xi, xj, θ, ε), ∂qi (xi, xj, θ, ε)/∂xj, ∂qi (xi, xj, θ, ε)/∂ε, and

∂2qi (xi, xj, θ, ε)/∂xi∂xj in (xi, xj, θ, ε) for all i and j implies the continuity of ∂W ∗ (θ, ε)/∂ε

and ∂W ∗c (θ, ε)/∂ε. Then by the continuity of ∂W ∗ (θ, ε)/∂ε and ∂W ∗c (θ, ε)/∂ε there exists

ε > 0 such that for 0 ≤ ε < ε, ∂W ∗ (θ, ε)/∂ε < 0 and ∂W ∗c (θ, ε)/∂ε < 0. �

5.4 Proof of Proposition 3

First, we show that if the conditions of Proposition 1 hold and if Θ∗ (ε) 6= ∅, there exists

a, ε > 0 such that for 0 ≤ ε < ε and a > a, Θ∗ (ε) is a singleton. Then, we show the

welfare ranking for all θ. Suppose there exists θ∗ (ε) ∈ Θ∗ (ε). By Lemma 2 and continuity

of ∂W ∗ (θ∗ (ε) , ε)/∂θ − ∂W ∗c (θ∗ (ε) , ε)/∂θ, there exist a, ε > 0 such that for 0 ≤ ε < ε and

a > a

sign

(
∂W ∗ (θ∗ (ε) , ε)

∂θ
− ∂W ∗c (θ∗ (ε) , ε)

∂θ

)
= sign

(
∂W ∗ (θ∗ (0) , 0)

∂θ
− ∂W ∗c (θ∗ (0) , 0)

∂θ

)
.

(38)

By Lemma 1, ε = 0 implies x∗i (θ∗ (0) , 0) = x∗ci (θ∗ (0) , 0) for all i. Therefore we can write15

∂W ∗ (θ∗ (0) , 0)

∂θ
− ∂W ∗c (θ∗ (0) , 0)

∂θ
= 2q∗1

(
−2

∂x∗1 (θ∗ (0) , 0)

∂θ
+

2

3

∂x∗c1 (θ∗ (0) , 0)

∂θ

)
∂c2
∂x1

+
2

3
q∗1
∂x∗c1 (θ∗ (0) , 0)

∂θ

∂c2
∂x1

. (39)

By Lemmas 3 and 4, ∂x∗1 (θ∗ (0) , 0)/∂θ < 0. If the conditions of Proposition 1 hold, by

Lemma 2, ∂x∗c1 (θ∗ (0) , 0)/∂θ > 0. By the definition of c2, ∂c2/∂x1 < 0 for all x1,x2, θ, and

ε. Therefore the right-hand side of (38) is strictly negative. Therefore if Θ∗ (ε) 6= ∅ and

the conditions in Proposition 1 hold, there exist a, ε > 0 such that for 0 < ε < ε and

a > a, the left-hand side of (39) is negative. Moreover, θ∗ (ε) ∈ Θ∗ (ε) so the conditions

in Proposition 1 imply ∂W ∗ (θ∗ (ε) , ε)/∂θ < 0 and ∂W ∗c (θ∗ (ε) , ε)/∂θ > 0. Recall that by

Proposition 1, ∂W ∗ (0, ε)/∂θ > 0 and ∂W ∗c (θ, ε)/∂θ > 0 for all θ. Then by the continuity

15Notice that ∂W ∗ (θ∗ (0) , 0)/∂θ = −4q∗ci ∂cj/∂xi∂x
∗
i /∂θ − (4/3) (q∗i ∂ci/∂θ + q∗i ∂cj/∂θ) and

∂W ∗c (θ∗ (0) , 0)/∂θ = − (4/3) q∗ci (∂ci/∂xi + ∂cj/∂xi) dx
∗c
i /dθ − (4/3) (q∗ci ∂ci/∂θ + q∗ci ∂cj/∂θ).
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of ∂W ∗ (θ, ε)/∂θ and ∂W ∗c (θ, ε)/∂θ with respect to ε there exist a, ε > 0 such that for

0 < ε < ε and a > a, if W ∗ (θ, ε) intersects W ∗c (θ, ε), it can only do it from above at

θ∗ (ε). This directly implies that W ∗ (θ, ε) > W ∗c (θ, ε) for all θ ∈ [0, θ∗ (ε)). Suppose there

exists θ̃ ∈ (θ∗ (ε) , 1] such that W ∗
(
θ̃, ε
)

= W ∗c
(
θ̃, ε
)

. The continuity of W ∗ (θ, ε) and

W ∗c (θ, ε) in (θ, ε) requires that ∂W ∗
(
θ̃, ε
)
/∂θ > ∂W ∗c

(
θ̃, ε
)
/∂θ > 0, but this contradicts

∂W ∗ (θ∗ (ε) , ε)/∂θ < 0 and ∂W ∗c (θ∗ (ε) , ε)/∂θ > 0. Therefore there is no θ̃ ∈ (θ∗ (ε)∗ , 1]

such that W ∗
(
θ̃, ε
)

= W ∗c
(
θ̃, ε
)

, which implies that θ∗ (ε) is unique.

The welfare ranking follows from the fact that for 0 < ε < ε and given a > a, if θ∗ (ε)

exists, W ∗ (θ, ε) can intersect W ∗c (θ, ε) only from above. �
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