Complex Analysis Outline 1

Ting Gong

October 5, 2018

1. We the field of complex numbers, \mathbb{C}, such that if $z \in \mathbb{C}$, then $z=a+i b, a, b \in \mathbb{R}$. And we discussed the properties of z.
2. Because $z=a+i b$, we could denote z to be in a plane, with coordinate (a, b). Thus complex numbers follows some of the rules of \mathbb{R}^{2}. For example, the triangle inequality.
3. Consider the polar representation of z. We define (r, θ), thus, we have $z=r \cos \theta+i r \sin \theta$. Thus, we define $\operatorname{cis} \theta=\cos \theta+i \sin \theta$. And from there, we could define roots of unity, and we discovered a homomorphism from addition of θ to multiplication of z.
4. Next, we defined a line in \mathbb{C}. $L=\left\{z: \operatorname{Im}\left(\frac{z-a}{b}\right)=0\right\}$

5 . We finally defined the metrics in \mathbb{C}. By stereographic projection, we could map the \mathbb{C} to \mathbb{R}^{3}, and then we define metrics to be the distance in \mathbb{R}^{3}. Naturally, we could derive the metrics on \mathbb{C} from there.

