Complex Analysis Outline 1

Ting Gong

October 5, 2018

1. We the field of complex numbers, \mathbb{C} , such that if $z \in \mathbb{C}$, then $z = a + ib, a, b \in \mathbb{R}$. And we discussed the properties of z.

2. Because z = a + ib, we could denote z to be in a plane, with coordinate (a, b). Thus complex numbers follows some of the rules of \mathbb{R}^2 . For example, the triangle inequality.

3. Consider the polar representation of z. We define (r, θ) , thus, we have $z = r \cos \theta + ir \sin \theta$. Thus, we define $cis\theta = cos\theta + i \sin\theta$. And from there, we could define roots of unity, and we discovered a homomorphism from addition of θ to multiplication of z.

4. Next, we defined a line in \mathbb{C} . $L = \left\{ z : Im\left(\frac{z-a}{b}\right) = 0 \right\}$ 5. We finally defined the metrics in \mathbb{C} . By stereographic projection, we could map the \mathbb{C} to \mathbb{R}^3 , and then

we define metrics to be the distance in \mathbb{R}^3 . Naturally, we could derive the metrics on \mathbb{C} from there.