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1. Abstract

In abstract algebra, Galois theory has been a useful tool to connect field
theory and group theory. With Galois theory, a lot of important theorems
and applications could be proved, such as the Fundamental Theorem of
Algebra, the proof to no formula for a polynomial equation higher than fifth
power. This paper is going to present Galois Theory from scratch, and the
goal of this paper is to venture into Infinite Galois Theory and explore the
p-closure of a field.

2. Galois Theory from Scratch

This section introduces Galois Theory from scratch. Some knowledge in
field theory and group theory are assumed.
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2.1. Splitting Field.

Definition 2.1. The field extension of a field F is a field E that contains
the field F .

Definition 2.2. Let E and F be fields, and F ⊆ E. The degree of E over
F is the dimension of E of F -vector field, written as [E : F ].

Definition 2.3. We say a field extension being finite if [E : F ] <∞.

Remark 2.4. We call a field E being a field extension of F generated over
F by α, and it is written as F (α). And we call α as the adjunction of F.

Proposition 2.5. (Tower Rule) Let F ⊆ E ⊆ K be fields. Then

[K : F ] = [K : E][E : F ]

Proof. Assume [K : E] = n, and [E : F ] = m. It suffices to prove [K : F ] =
mn. Pick {α1, α2...αn} be a basis over E, and {β1, β2...βm} be a basis over F.
Take a ∈ K, ∃xi, such that a = x1α1+x2α2+ ...+xnαn. As xi ∈ E, we have
∀i, xi = yi1β1 + yi2β2... + yimβm. Thus, we have a =

∑n
i=1

∑m
j=1 yijβjαi.

Now we want to prove linear independency. We notice that the set of β’s
are linearly independent. Thus, we have

∑n
i=1

∑m
j=1 yijαi = 0. And we

notice that the set of α’s are linearly independent. Therefore, we proved
[K : F ] = mn. ut

Definition 2.6. An element α is algebraic over a field F , if there exists a
polynomial f(α) = 0 over field F . Otherwise, α is said to be trancendental.

Definition 2.7. A field extension E over F is called an algebraic exten-
sion if all elements on E are algebraic over F , otherwise E is said to be a
trancendental extension.

Definition 2.8. A polynomial over F is called a minimal polynomial of an
algebraic element α if f(α) has the smallest degree among all the possible
polynomials that have α as a root.

Definition 2.9. A field extension E over F is called a simple extension if
∃α ∈ E, such that E = F (α)

Proposition 2.10. The following statements are equivalent:
(i)A field extension E/F is finite
(ii)E is algebraic and finitely generated over F

Proof. (i)⇒ (ii) Assume that field extension E/F is finite. We could assume
that [E : F ] = n. Thus, we could pick a basis over F being {α1, α2...αn} such
that this basis generates field E. Thus, it is clear that E is finitely generated.
Now, assume a ∈ E. As we know that [E : F ] = n, we know that the set
{1, a, a2, a3...an} is linearly dependent. Therefore, we have the polynomial
f(x) =

∑n
i=0 xia

i. And it is easy to verify that when f(a) = 0, due to linear
dependency, we have a nonzero x, which gives us the polynomial.
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(i) ⇐ (ii) As E is finitely generated and algebraic over F , we could
let E = F (α1, α2..., αn). By the tower rule, we have [E : F ] = [F (α1) :
F ]...[F (α1, α2..., αn) : F (α1, α2..., αn−1)]. It is clear that the degree of E/F
is finite as all the α’s are algebraic. ut

Definition 2.11. Let E/F be a field extension, and p be a polynomial that
p ∈ F [X]. The polynomial p splits the field E, if

p = a(x− α1)(x− α2)...(x− αn)

where a ∈ F , and α1, α2, ...αn ∈ E.

Definition 2.12. We call the field E, split by a polynomial p, and is gen-
erated by roots of p, a splitting field of p, a.k.a

E = F (α1, α2, ..αn)

Now, we are going to look at some properties of splitting fields.

Theorem 2.13. (The existence of splitting fields) Let F be a field, and
p ∈ F [X]. There is a splitting field E for all p. Moreover, if deg(p) = n,
then [E : F ] ≤ n!.

Proof. We will do this proof by using induction. Base case, deg(p) = 1.
This case is trivial, let p = X − α, we have α ∈ F , thus we take E = F ,
and indeed, [E : F ] = 1 ≤ 1. Assume that this theorem holds for all n ≥ 1.
Consider case deg(p) = n + 1. We let f be a degree n polynomial, and
p = (X − α1)f . Assume K is the splitting field of f . Then, it is obvious
to us that we could simply pick E = K(α1) as our splitting field over p.
Indeed, all the roots are in this field. Also, [E : F ] = [E : K][K : F ], and
therefore, we have [E : K] = [E : K][K : F ] ≤ n ∗ (n− 1)! = n!. ut

Definition 2.14. Assume E and K are field extensions of F . Then we call
the mapping ϕ : E → K, such that ϕ(a) = a, ∀a ∈ F , an F-homomorphism.
If the mapping is bijective, then we call it F-isomorphism.

Theorem 2.15. (Uniqueness of Splitting field) Let p ∈ F [X] be a polyno-
mial, and E, K be the splitting field of p. Then E ∼= K.

Proof. Since E is a splitting field of p, then the roots of p, α1, ...αn ∈ E.
Therefore, assume E = F (α1, α2, ..αn). We know that p1, being the minimal
polynomial of α1, splits K, as p splits K. Therefore, we could find ϕ1 :
F [α1]→ K. Now, consider the minimal polynomial p2 α2 over F [α1]. This
yields a homomorphism ϕ2 : F [α1, α2] → K. Repeating this process until
we get the map from E to K. Also, it is clear that the number of mappings
are at most [E : F ], as f has only [E : F ] distinct roots. Therefore, E ∼= K.

ut

Definition 2.16. Let p ∈ E[X] be an arbitrary polynomial, the field E is
algebraically closed if E contains all the roots of p.
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Definition 2.17. Let E/F be a field extension, E is algebraically closed
and E is algebraic over F . Then E is the algebraic closure of F .

We hope that C is the algebraic closure of R, which we shall prove in the
later sections as the Fundamental Theorem of Algebra.

2.2. Galois Extension.

Definition 2.18. Assume F is a field, let p ∈ F [x], E is the splitting field
of p over F . If p does not have repeated roots, then p is said to be separable
over F .

Definition 2.19. Let F be a field, the formal differentiation is a F-linear
map, D : F [X]→ F [X], such that Xn 7→ nXn−1.

Notice that such F-linear map works on any field.

Definition 2.20. Let E/F be a field extension. If α ∈ E, and the minimal
polynomial of α is separable over F , then α is separable over F .

Definition 2.21. Let E/F be a field extension, and ∀α ∈ E, α is separable
over F , then E is separable over F .

Proposition 2.22. Let F be a field, l ∈ F [X] is irreducible, then
(i) If characteristics of F is 0, then l is separable,
(ii) If the characteristics of F is prime, say p, then l is not separable iff

l ∈ F [Xp]

Proof. (i) Assume F is a field with characteristic 0, and l ∈ F [X]. Assume
l is not separable, then there is a repeated root, thus gcd(l, l′) 6= 1. As
l is irreducible, we have gcd(l, l′) = l. However, we know that deg(l′) =
deg(l)− 1. Thus l - l′. Contradiction. Thus l is separable.

(ii) Let F be a field with characteristic p this time, and by the same
reason, gcd(l, l′) = l iff l′ = 0, which is equivalent to l ∈ F [Xp]. ut

Definition 2.23. Let E/F be a field extension, E is a normal extension
over F if ∀α ∈ F , α splits E.

Definition 2.24. Let G be a group of automorphisms of E,

Inv(G) = {α ∈ E|σ(α) = α}

Then, Inv(G) is called a fixed field of G

Definition 2.25. Let E/F be a field extension, Gal(E/F ) is the Galois
group if Gal(E/F ) is the set of all F-automorphism of E.

Definition 2.26. Let E/F be a field extension, If F = Inv(Gal(E/F )),
then we say E is a Galois extension of F .

Proposition 2.27. If E is a splitting field of a separable polynomial f ∈
F [X], then Gal(E/F ) has order [E : F ]
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Proof. Let f = (x−a1)(x−a2)...(x−an). We know this is legal because E is
the splitting field of f , and f is separable. Therefore, we find f has deg(f) =
n distinct roots in E. Now, we examine the number of F-automorphisms.
We write E = F [a1, a2...an]. Then consider the minimal polynomial of a1
divides f , and deg(f1) = [F [a1] : F ]. Establish σ : E → E. It is clear that
there are deg(f1) = [F [a1] : F ] F-automorphisms. And then consider the
minimal polynomial of a2 over F [a1]. And clearly, by the same procedure
above, we have deg(f2) = [F [a2, a1] : F [a1]] F-automorphisms. By doing the
same procedure, and by the tower rule, we get exactly n F-automorphisms.

ut

Lemma 2.28. Let σ : E → K be an F-homomorphism, let α ∈ E be
algebraic over F. Let f ∈ F [X], and f(α) = 0, then f(σ(α)) = 0.

Proof. Let f(x) = a0 + a1x+ ...+ anx
n. Then we have

f(σ(α)) = a0 + a1σ(α) + ...+ anσ(an)

= a0 + a1σ(α) + ...+ anσ(a)n

= σ(a0) + σ(a1)σ(α) + ...+ σ(an)σ(a)n

= σ(f(α)) = σ(0)

= 0

ut

Remark 2.29. From the above lemma, we notice that σ in fact permutates
the roots in the polynomial; and it is not hard to observe the isomorphism
between the minimal polynomial of α and σ(α). Thus, we call the homo-
morphism σ embedding, and the permutated roots conjugates of α.

Theorem 2.30. Let E/F be a field extension, the following statements are
equivalent:

(i) E/F is a Galois extension
(ii) E/F is separable and normal
(iii) Assume E = F (α1, α2, ..., αn), p be the minimal polynomial of αi

over F (∀i), then p is separable and splits E.

Proof. (i)⇒ (ii) Assume E/F is Galois, then we assume F = inv(Gal(E/F )),
a ∈ E, a1, a2...an be conjugates of a, and {σ(a) : σ ∈ Gal(E/F )} be the
embeddings. By the lemma above, we find and each σ(a) is a root of a
polynomial of a, say f(a) = (x− a)(x− a1)...(x− an). And it is clear that
the coefficients of f are in F (as σ also permutates f). Thus the minimal
polynomial of a divides f(x). Thus, the minimal polynomial splits over E,
and it does not have repeated roots. Thus E is separable and normal.

(ii)⇒ (iii) Assume E/F is separable and normal, then we could pick that
E = F (α1, α2, ..., αn). As E is normal, we know that p splits E, and as E
is separable, we know that p is separable.
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(iii) ⇒ (i) Since E = F (α1, α2, ..., αn), and p is separable, we have some
extension K being a Galois extension of F , such that we define φ : E →
K, and the number of such F-homomorphism to be [E : F ]. We know
it is legal, by (i)→(ii). Assume E ⊆ K. We want to show τ : σE →
φ is an isomorphism. We already know the injection, as we claimed the
homomorphism φ. Thus we want to show the surjection. And by the lemma
above, we find that if α is a root, φ(α) is also a root of p. Therefore, we
know φ(α) ∈ E. And E is generated by α, we know φ(E) ∈ E. Thus, we
have the surjection. Thus, we know that E is bijective to K, meaning E is
Galois over F . ut

2.3. Fundamental Theorem of Galois Theory.

Theorem 2.31. (Fundamental Theorem of Galois Theory) Let E/F be a
finite Galois extension. Let G = Gal(E/F ), and let H be a subgroup of G

(i) There is a one-to-one and onto relation between intermediate fields of
E/F , say K, and subgroups of G, with K 7→ Gal(E/K) and H 7→ inv(H)

(ii) If K 7→ H, then [E : K] = |H| and [K : F ] = [G : H].
(iii) H is a normal subgroup of G, iff K is Galois over F . And in this

case, Gal(K/F ) ∼= G/H

Proof. (i) Assume K is a subfield of E but containing F . As E is Ga-
lois over F , we know E is normal and separable over F , and thus we
know that E is normal and separable over K. So E is Galois over K.
Therefore, K = inv(Gal(E/K). Assume H to be a subgroup of G, then
H = Gal(K/inv(H)).

(ii)As E/F is Galois, we know that [E : F ] = |G|. Also, if K 7→ H, we
know that E/K is Galois, thus [E : K] = |H|. Therefore, by the tower rule,
we have [K : F ] = |G|/|H| = [G : H]

(iii)(⇒) Assume that H is a normal group of G, and let K = inv(H).
Take a ∈ K, let b be a conjugate of a in E. Thus, we could find an embedding
σ such that σ(a) = b. Next, we define τ ∈ H such that τ(b) = b. Indeed,
we have τ(b) = σ(σ−1τσ(a)), and we know that H is normal, thus τ(b) =
σ(a) = b. As E/F is Galois, we know that a splits E, and furthermore,
b ∈ inv(H) = K, we know that a actually splits K. Thus, K is normal
over F by former proposition. And thus, with E/F being separable, K is a
subfield of E, thus K/F is separable, meaning K/F is Galois.

(⇐) Let K be Galois over F . Thus, K/F is normal. Let φ : G →
Gal(K/F ). Thus, we could find kerφ = {σ ∈ K|σL = i} = Gal(K/F) = H.
Thus, H is normal in G, as kernels are normal subgroups. And by the first
isomorphism theorem, we get Gal(K/F ) ∼= G/H. ut

3. Applications for finite Galois Theory

In this section, we are going to talk about the applications of Galois The-
ory. The examples we are going to discuss include: Fundamental Theorem
of Algebra, and solubility of quintic equations.



GALOIS GROUPS AND P-CLOSURE OF A FIELD 7

3.1. Fundamental Theorem of Algebra.

Definition 3.1. Let E be a field extension of F , then the normal closure of
E/F , L, is the minimal field extension over E that is also a normal extension
over F

Remark 3.2. In order to prove the next theorem, let us state some facts
first:

(i) If f(x) has odd degree, then f has a root in R. And this implies that
R doesn’t have odd degree extension.

(ii) Every positive real number has a real square root.
(iii) Every complex number has a complex square root. This implies that

there is no field extension E over C, such that [E : C] = 2

Besides, we assume the knowledge of Sylow Theorems for the next theo-
rem.

Theorem 3.3. (Fundamental Theorem of Algebra) The field C is the alge-
braic closure of R
Proof. Let F/C to be a field extension. Let N be a normal closure of F/R.
Then, it suffices to show that C = N to prove the statement. By main
theorem, we know that if G = Gal(N/R), then

|G| = [N : R] = [N : C][C : R] = 2[N : C]

. Therefore, we know the order of G is even. Thus, we let H to be a 2-Sylow
subgroup of G, and let K to be the fixed field of H. Then, [G : H] = [K : R]
are odd. But by the fact (i) stated above, we realize that K = R. And
now we realize that [F : R] = 2[F : C] are powers of 2. Thus, assume
[F : C] > 1, we could find a field extension, L, such that [L : C] = 2, which
is a contradiction to fact (iii). Thus, we know that N = C. ut

3.2. Solubility of Equations.

Definition 3.4. Let ζ ∈ F , ζn = 1, then we call ζ to be an nth roots of
unity.

Remark 3.5. If ζ is a nth root of unity, and all the ζ’s form a group with
respect to multiplication, then we call ζ a primitive nth roots of unity. And
we could observe an isomorphism between the multiplication group and the
Z/nZ× groups.

Definition 3.6. If ζ is a root of unity, then we call the field extension,
F (ζ)/F to be a cyclotomic extension

Definition 3.7. The nth cyclotomic polynomial is defined as

Φn(x) =
∏

i∈Z/nZ×

(x− ζi)

Theorem 3.8. Let n > 0, Φn(x) is irreducible in Q[X]. Prove the iso-
mophism: Gal(Q[ζ]/Q) ∼= (Z/nZ)×, where ζ is mth root of unity.
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Proof. Consider the function Φn(x). Given that it is irreducible, we have
the roots of Φn(x) forms the primitive roots of unity. Therefore, we could
observe that these roots of unity forms one orbit on the Galois group. By
the order of this polynomial, we know that there are the same number of
elements as in (Z/nZ)×. Therefore, we could assign injection, and clearly it
is also surjection. ut

Definition 3.9. Let E/F be a Galois extension. E/F is cyclic if Gal(E/F )
is cyclic.

Theorem 3.10. Let F be a field, and α 6= 0. Let n ∈ N, and let E be a
splitting field over xn − α. Then the followings are true:

(a) E contains a nth root of unity, say ζ
(b) E/F (ζ) is cyclic.
(c) [E : F (ζ)]|n
(d) [E : F (ζ)] = n iff xn − α is irreducible in F (ζ)[X].

Proof. (a) Firstly, we check if xn−α has distinct roots by taking a derivative.
We get ntn−1. Then we notice there is no common roots. Thus, xn − α has
distinct roots. Next, we notice that the roots x1x

−1
1 , x2x

−1
1 ...xnx

−1
1 is the

roots of unity. Thus, we know that ζ must be one of them.
(b) By the line of thought in (a), WLOG, we could write the roots as

a set {x1, x1ζ, x1ζ2...x1ζn−1}, and also, we know that E is a splitting field
over xn − α. Therefore, we have E = F (x1, ..., xn) = F (ζ, x1). Consider
Gal(F (ζ, x1)/F (ζ)). The automorphisms will map x1 to one of the other
root, ζkx1. Therefore, define injective φ : Gal(F (ζ, x1)/F (ζ)) → Z/nZ. It
is clear that it is a homomorphism corresponding to k’s. Thus, we could
conclude that Gal(F (ζ, x1)/F (ζ)) is a cyclic group.

(c) Since φ : Gal(F (ζ, x1)/F (ζ)) → Z/nZ is a homomorphism, we know
that it has order as a factor of n. Thus we get the statement.

(d) (⇒) Assume that [E : F (ζ)] = n, then φ : Gal(F (ζ, x1)/F (ζ)) →
Z/nZ is in fact a isomorphism, since it is one-to-one with the same order.
Therefore, we know that the roots are primitive and thus the equation are
irreducible.

(⇐) By a statement we showed, we know that if xn−α is irriducible, then
it has distinct roots in E. Therefore, it will be a primitive roots of unity,
which we could deduce that [E : F (ζ)] = n ut

Definition 3.11. Let F be a field contains a primitive nth roots of unity,
and E/F is a Galois extension, if E is the splitting field of xn − α and
[E : F ] = n, then we call E/F a Kummer extension.

Proposition 3.12. Let F be a field contains a primitive nth roots of unity,
and E/F is a cyclic extension with [E : F ] = n, then E/F is a Kummer
extension.
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Proof. Firstly, pick a generator φ. Therefore, we could write an element
β ∈ E to be written as a linear combination of ζφ(α), such that

β = α+ ζφ(a) + ...+ ζn−1φn−1(α)

Next, notice that

φ(β) = φ(α) + ζφ2(a) + ...+ ζn−1φn(α)

Thus, with φn−1(α) = α being the identity map, we have ζβ = φ(β). There-
fore, we could find βn to be fixed, meaning that βn ∈ F . Therefore, we
know that K(β) is the splitting field of xn − k. And we also have the n
power of φ to be distinct in automorphism of F (β). Therefore, we know
that n = [E : F ] ≥ F (β)/F = n. Therefore, by Artin’s Lemma, we have
E = F (β). Therefore, we know that E is a splitting field of xn − k, thus
E/F is Kummer. ut

Definition 3.13. A field extension E/F is radical if there is an field exten-
sion K/E, such that

F ⊆ Kn ⊆ Kn−1... ⊆ K1 ⊆ K
where ∀i, Ei+1/Ei is either a cyclotomic extension or Kummer extension.

Definition 3.14. If f(X) ∈ F [X], then f is solvable by radicals if there is
a radical extension E/F such that f splits over E

Definition 3.15. A finite group G is soluble if ∃ a sequence of normal
subgroups,

1 = Gk �Gk−1 � ...�G1 �G0 = G

With Gi/Gi+1 abelian

Definition 3.16. A finite field extension E/F is soluble if there is a field
extension K/E such that K/F is Galois and Gal(K/F ) is soluble.

Remark 3.17. We could observe from the above definitions, that if E/F
be a Galois extension, then E/F is solvable iff Gal(E/F ) is soluble. This
proof is basically by definition, and to prove the left to right direction, one
only need the fundamental theorem of Galois Theory, since Gal(E/F ) is a
intermediate field extension.

Definition 3.18. The derived series {Gm} of G is defined as

G0 = G

Gi+1 = (Gi)′

Where we have
...Gk−1 � ...�G1 �G0 = G

With Gi/Gi+1 abelian

Remark 3.19. Notice several properties of the derived series.
(i) G is soluble iff ∃k such that Gk = 1
(ii)If H is a subgroup of G, then G is soluble if H is soluble.
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Lemma 3.20. Let H be a subgroup of G. Then G is soluble iff H and G/H
are soluble.

Proof. (⇒)Let H � G. It is clear that if G is soluble, then H is soluble.
Now, consider G/H.

(G/H)′ = G′H/H ⊆ G/H
Repeat this process m times, we will find a subset being 1, meaning that
G/H is soluble.

(⇐)LetH andG/H be soluble, we haveHk = 1, and (G/H)s = GsH/H =
1. Therefore, we have Gs ⊆ H. Therefore, we have Gk+s = 1, thus G is
soluble. ut

Proposition 3.21. Let F be a field whose characteristics is 0. Then, E/F
is a radical extension iff it is soluble.

Proof. (⇒) Let E/F be a radical extension. Then there is an field extension
K/E, such that F ⊆ Kn ⊆ Kn−1... ⊆ K1 ⊆ K where ∀i, Ei+1/Ei is either
a cyclotomic extension or Kummer extension. Therefore, ∀i, Ei+1/Ei is
Galois. Thus, K/F is Galois. Moreover, we could set Gi = Gal(Ki/F ).
With Ei/F being cyclotomic or Kummer, we know that it is also abelian.
Therefore, E/F is soluble.

(⇐) Assume E/F is soluble. Then, we know there is a field extension
K/E so that K/F is Galois, and Gal(K/F ) is soluble. Therefore, we let
Gi = Gal(Ki/F ). Thus, we find that in order for the quotient groupGi/Gi+1

to be abelian, Gi/Gi+1 has to be cyclic, therefore, it needs to be either
cyclotomic or Kummer. ut

Corollary 3.22. Sn(n ≥ 5) is not soluble, which implies quintic equation
is not solvable.

4. Infinite Galois Theory

In this section, we let K be an infinite degree field extension over F , a.k.a.
[K : F ] =∞

4.1. Topological Groups.

Definition 4.1. A set G is a topological group if it satisfies the following
conditions:

(i) G is a group
(ii) G is a topological space
(iii) the map ρ : G×G→ G, with a, b ∈ G, (a, b) 7→ ab is continuous.
(iv) the map ρ : G→ G, with a ∈ G, a 7→ a−1 is continuous.

Definition 4.2. Let G be a topological group, G is homogeneous if ∀a, b ∈
G, ∃f , being homeomorphism, such that f(a) = b

Lemma 4.3. Let G be a topological group, let a ∈ G. f(x) = xa, g(x) = ax,
ρ(x) = x−1 are homeomorphisms of G
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Proof. These properties follows from the definition of topological groups,
since these maps are clearly bijective and also they are continous. ut

Proposition 4.4. Every topological group are homogeneous.

Proof. Consider function f : x 7→ ba−1x. It is clear that it maps from a to
b, moreover, by the last lemma, it is homogeneous. ut

Proposition 4.5. Let G be a topological group, V be a neighbourhood of a,
then there exists a neighbourhood of U of e, such that V = aU

Proof. Define U := a−1V , then consider the map φ : x 7→ ax. Therefore, we
could map U to V . ut

Definition 4.6. Let U be a topological group, we say U be symmetric if
U = U−1. Where U−1 is the set of inverse elements of U

Proposition 4.7. Let G be a topological group. Then for all neighbourhood
U of a ∈ G, there is an open symmetric group V ⊂ U such that V 2 ⊂ U

Proof. Define f : x 7→ x2. This, as a polynomial is continuous. Then define
V = f−1(U), where V is a neighbourhood of e. Therefore, V 2 = f(v) =
f(f−1(U)) ⊆ U . ut

Remark 4.8. At this point, we should look at some group properties of
the topological groups which could help us dealt with Krull Topology in the
later sections.

Proposition 4.9. Let G be a topological group, and H be a subgroup of G.
Then H is also a topological group.

Proof. Since H is a subgroup of G, it already has group structure. Now, we
need to prove the continuity requirements.

Since H has group structure, we see that it also contains all the inverses
in the group. But note that these elements are also in G, thus the function
is also continuous. ut

Definition 4.10. Let G be a topological group, the topological closure of
a subset U in G is the smallest closed set in G that contains U , we denote
it as Ū

Proposition 4.11. Let G be a topological group. If H is a subgroup of G,
then H̄ is also a subgroup of G; If H is a normal subgroup of G, then H̄ is
also a normal subgroup of G.

Proof. It suffices to show that H̄ satisfies a group structure.
Consider a, b ∈ H, we could easily show that if W is a neighbourhood

of ab−1, then there are U, V containing a, b, such that UV −1 ⊂ W . Thus,
we could find x ∈ U ∩ H and y ∈ V ∩ H, such that xy−1 ∈ UV −1 ∩ H.
Therefore, we know that xy−1 ∈ H̄
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Now assume H is normal. We do the same trick, let V be a neighbourhood
of g−1ag, where a ∈ G. Then we could find U containing a such that
g−1Ug ⊆ V . Thus, we know that U ∩H 6= ∅. Thus, there is an h ∈ U ∩H
such that g−1hg ∈ V ut

Definition 4.12. A topological space is totally disconnected if its only con-
nected subspace is one point sets.

Proposition 4.13. Let G be a topological group, then G is Hausdorff iff
{e} is closed in G

Proof. (⇒) Assume G is Hausdorff, then we know that all singleton sets are
closed. Thus, {e} is closed.

(⇐) Assume {e} is closed in G. Then, we define a map f : (x, y) 7→ xy−1.
Therefore, we know this mapping is continuous. Assume e maps to {ab−1},
then {ab−1} is closed. Thus G \ {ab−1} is open. Thus, ∃U containing e,
such that U ⊆ G \ {ab−1}. Therefore, by property of continuity, we have
V,W ⊆ U containing e being open, with VW−1 ⊆ U . Therefore, we know
that ab−1 /∈ VW−1, therefore, aV ∩ bW = ∅. Thus it is Hausdorff. ut

Proposition 4.14. Let G be a compact topological group, then every sub-
groups of G has finite order.

Proof. Assume the subgroup, say, H is open. Then the cosets are open.
Thus, the cosets form a open cover of G. Now that G is compact, we know
that H has finite order. ut

Proposition 4.15. Let G be a totally disconnected topological group, then
G is Hausdorff a.k.a {x} is closed in G

Proof. Let G be totally disconnected, then only singleton sets are connected
subspace, meaning singleton sets are closed. ut

4.2. Profinite Groups and Krull Topology.

Remark 4.16. The notion of profinite groups natually arises from infinite
Galois theory, and is alaos important in group cohomology. Thus, we are
going to discuss some properites of them.

Definition 4.17. A direct set is a set with a binary relation ≤, such that
it is reflexive, transitive and there is a upper bound for all pairs.

Definition 4.18. Assume S is a direct set. (Xi, φij)S where {Xi|i ∈ S}
is a set of topological spaces, and {φ : Xi → Xj |i, j ∈ S, j ≤ i} is a set of
continuous functions, is a projective system if it satisfies the following:

(i) φii is the identity on Xi.
(ii)∀k ≤ j ≤ i, φik = φjk ◦ φij

Definition 4.19. Let (Xi, φij) be a projective system. Let X =
∏
Xi be

the product topology. Let ϕi : X → Xi be a map. The projective limit is
lim
←−

Xi = {a ∈ X|ϕj(a) = φijϕj(a); j ≤ i}
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Proposition 4.20. Let (Xi, φij) be a projective system. Then the followings
are true:

(i) If Xi is Hausdorff, then lim
←−

Xi is also Hausdorff.

(ii) If Xi is totally disconnected, then lim
←−

Xi is also totally disconnected

(iii) If Xi is Hausdorff, then lim
←−

Xi is closed in X.

(iv) If Xi is compact, then lim
←−

Xi is also compact.

Proof. (i) Since X is a product space of Xi, and we know that lim
←−

Xi is a

subspace of X. Therefore, if Xi are Hausdorff, then X is Hausdorff, and
this implies lim

←−
Xi being Hausdorff.

(ii) Since X is a product space of Xi, and we know that lim
←−

Xi is a

subspace of X. Therefore, if Xi are totally disconnected, then X is totally
disconnected, and this implies lim

←−
Xi being totally disconnected.

(iii) Since Xi is Hausdorff, we know that all single point sets are closed.
Also, we know that ϕ, φ are continuous functions, thus, we let π = ϕj−φijϕj .
Thus, π is also continuous, and the set {a ∈ X|ϕj(a) = φijϕj(a); j ≤ i} is
the preimage of {0}. Therefore, the set is closed. With lim

←−
Xi being the

intersection of closed set, the set is also closed.
(iv) Since Xi is compact, the product space, X is also compact. Also, by

(iii), we know that lim
←−

Xi is closed. Thus, closed subspace of a compact set

is compact. Thus lim
←−

Xi is compact. ut

Proposition 4.21. The projective limit lim
←−

Xi is a topological group if Xi

is a topological group.

Proof. Since Xi is a topological group, the product space X is also a topo-
logical group. Now, it suffices to prove that lim

←−
Xi is a subgroup.

Firstly, we check non-empty. Indeed, we know that e ∈ X is an element
in lim
←−

Xi as the identity. Next, we check closure. Note that ϕ, φ are homo-

morphisms, we know that if a, b ∈ lim
←−

Xi, then ϕj(ab) = φijϕj(a)ϕj(b) =

φijϕ(ab). Therefore, it is closed. And by the same reasoning, inverse is also
in the group, and for a ∈ lim

←−
Xi, the inverse is a−1. ut

Definition 4.22. Let G be a topological group, we say that it is a profi-
nite group if it is isomorphic to lim

←−
Gi, with respect to a projective system

(Gi, φij), where Gi are finite discrete topological groups.

Theorem 4.23. G is a profinite group iff it is totally disconnected, Haus-
dorff, and compact.
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Proof. (⇒) Assume G is a profinite group. Since it has the discrete topology,
we know that discrete topology is Hausdorff, compact and totally discon-
nected. Therefore, we know that G as a topological group is also Hausdorff,
compact and totally disconnected.

(⇐) Assume G is compact, Hausdorff and totally connected. Assume
H = lim

←−
Hi, where Hi are quotient open normal subgroups of G. Therefore,

we want to show that G ∼= H. We define a map ρ : G→ H. Since H is the
inverse limit of subgroups in G, we know H is also compact, Hausdorff, and
totally disconnected. Therefore, we need to show bijection and continuity.

Continuity: it is clear, since the image and the corresponding preimage
are both open, we could see directly that the map is continuous.

Injective: Since G is totally connected, ∀g ∈ G we could find a closed and
open set U ⊂ G that contains the identity but not g. We want to construct
H in U . Now, assume V = (G \ U) ∩ U2. Since U is compact, it is easy to
conclude that V is also compact. Assume h ∈ U , W,X ⊂ U containing h, e,
and it is easy to check that W,X ⊂ V . Therefore, all the W ’s form an open
cover of U , and thus there is a finite subcover, say Wi. We let Y = X∩X−1,
therefore, we have UY = ∪WiY ⊂WiX ⊂ U . Therefore, we could set H ′ to
be the intersection of all such Y , say Y ′, and the H we want to construct
is ∩g∈GgH ′g−1. Since H ′ is open, we know that H is also open, and it is
normal subgroup of G and also contained in U

Surjective: Assume hiHi ∈ H, where hi ∈ G. We know that Hi is non-
empty, therefore, with G being compact, we know that ∩hiHi is non-empty.
Therefore, we know that the mapping is surjective. ut

Definition 4.24. Assume E/F is an infinite Galois extension, the Krull
Topology onGal(E/F ) is the topology having basis as all the cosets σGal(E/K),
σ ∈ Gal(E/F ),K is an intermediate finite Galois extension over F

Theorem 4.25. Let E be a Galois extension of F , the group Gal(E/F )
with the Krull topology is

(i) Hausdorff
(ii) Compact
(iii) totally disconnected
Thus it is a profinite group.

Proof. (i) Let σ, τ ∈ Gal(E/F ), with σ 6= τ , therefore, we have σ−1τ 6= e.
Now, notice that if U is a neighbourhood around σ, ∩Uσ = ∩Gal(K/F ) = e.
Thus, ∃U0, such that σ−1τ /∈ U0. Thus τ /∈ σU0, implying τU0 ∩ σU0 = ∅.
Therefore Hausdorff.

(ii) We define a map φ : Gal(E/F ) →
∏
Gal(K/F ), ∀K being finite

intermediate field extension over F . Therefore, we have
∏
Gal(K/F ) having

discrete topology, therefore, it is compact. Now, we want to prove that φ is
a hemeomorphism, and thus we could get compact.
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Bijective: Surjectivity is natural, since
∏
Gal(K/F ) is the image of φ.

And consider the kernel, φ(e) 7→ e, over F . Therefore, only the identity
maps to the identity in the image. We know that this implies injective.

Continuous: We have discussed that ϕ :
∏
Gal(K/F ) → Gal(K/F ) is

continuous. And we know that Gal(K/F ) is a topological group, it is homo-
geneous. Since e is open in the image, we check the preimage of the mapping
ϕ ◦ φ, we know that if σ fixes K, then σ ∈ Gal(E/K). Since Gal(E/K)
is a basis element of Krull topology, we know that it is open. Thus, φ is
continuous.

Therefore, we know that the Krull topology is compact.
(iii) Let K be a finite field extension over F , H be a connected component

containing e. Let UH = U ∩H. Therefore, e ∈ UH , and UH is open in H.

Then, define VH =
⋃

x∈H\UH

xUH . Thus, VH is open. We assumed that H is

connected, and H = VH ∩UH . Therefore, we know that VH must be empty,
or UH |VH is a separation of H. Therefore, H = UH . Thus, H ∈ ∩U = e.
Therefore, it is totally disconnected. ut

4.3. Fundamental Theorem of Infinite Galois Theory.

Lemma 4.26. Let E/F be a Galois extension, if H is a subgroup of Gal(E/F ),
then Gal(E/inv(H)) = H̄

Proof. We know thatGal(E/inv(H)) is closed, H is a subgroup ofGal(E/inv(H)),
we know that H̄ ⊆ Gal(E/inv(H)). Let σ ∈ Gal(E/F ) \ H̄, we can find
a intermediate field extension K, such that σGal(E/K) ∩H = ∅, meaning
that σ /∈ HGal(E/K). Therefore, we can find α ∈ K, such that H fixes α
but σ(α) 6= α. Thus, σ /∈ Gal(E/inv(H)). Therefore, Gal(E/inv(H)) ⊆ H̄

ut

Theorem 4.27. (Fundamental Theorem of Infinite Galois Theory) Let E/F
be a finite Galois extension. Let G = Gal(E/F ), and let H be a subgroup
of G

(i) There is a one-to-one and onto relation between intermediate fields of
E/F , say K, and subgroups of G, with K 7→ Gal(E/K) and H 7→ inv(H)

(ii) Let H1, H2 be closed subgroups of G, then H2 ⊂ H1 iff inv(H1) ⊂
inv(H2)

(iii) A closed subgroup H is open in G, iff inv(H) has finite degree over
F .

(iv) H is a closed normal subgroup of G, iff inv(H) is Galois over F .
And in this case, Gal(inv(H)/F ) ∼= G/H

Proof. (i) has mostly the same proof as the finite one. Only that considering
lemma 5.1, we could deduce that in order for the bijection to work, we have
to have the group to be closed.
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(ii) Since H1, H2 are both closed, and H2 ⊂ H1, then we know that the
elements that fixes H1 must also fix H2. Therefore, we have inv(H1) ⊂
inv(H2). The converse have the same proof.

(iii) We know the subgroup is closed, and by a former proposition, we
know that in a topological group, every open group is closed iff they have
finite index.

(iv) (⇒) Assume H = Gal(E/K) is a closed and normal subgroup of G,
where K is an intermediate field. And assume f(X) ∈ F [X] be the minimal
polynomial of a, and a, b be conjugates. Thus, define σ(a) = b. if τ ∈ H,
then τ(b) = τ(σ−1(a)) = σ−1στσ−1(a). We know that στσ−1 ∈ H, and a
fixes H, thus σ−1στσ−1(a) = σ−1(a) = b. Thus b also fixes H, meaning
that K/F is normal, and this implies that inv(H) is Galois over F .

(⇐) If K/F is Galois, then we define φ : G → Gal(K/F ) having kernel
being H. Thus, H is normal in G ut

5. Exploration of the p-adics

Remark 5.1. Consider the mapping φnm : Z/pnZ → Z/pmZ. Define a
projective system: (Z/pnZ, φnm). Then, we define Zp = lim

←−
Z/pnZ. We call

the additive group of Zp the group of p-adic integers. Notice that this can
form a profinite group.

Theorem 5.2. The algebraic closure of Qp has infinite degree over Qp

Proof. We know that xn−p is irreducible over Qp. Therefore, we could have
xn − p be in Qp( n

√
p), and thus [Qp( n

√
p) : Qp] = n. However, we know that

Qp( n
√
p) ⊂ Q̄p. Therefore, we have [Q̄p : Qp] ≥ [Qp( n

√
p) : Qp] = n. Then if

n→∞, we have Qp have infinite degree over Qp ut

Remark 5.3. For more properties about p-adic algebraic closure, we need
more knowledge about algebraic number theory, including the concept of
ramification, and Hensel’s lemma. Therefore, our discussion will stop here.
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