
CLASS NUMBER FOMULAE

TING GONG

Contents

1. Abstract 1
2. Preliminaries 1
3. Calculate Class Number through Algebra 2
3.1. What is a Class Group and Class Number 2
3.2. Class Numbers on Imaginary Number Fields 3
4. Finiteness of Class Number and Dirichlet’s Unit Theorem 7
4.1. Finiteness of Class Number 7
4.2. Dirichlet’s Unit Theorem 11
5. Calculate Class Number through Analysis 12
5.1. Riemann Zeta Function 12
5.2. Class Number Formula 14
References 16

1. Abstract

In this paper, we are going to follow a text written by Jarvis, to explore
the concept of class numbers and class groups; moreover, we are going to
find ways to calculate the class number over number fields by deriving a
class number formula through Analytic Number Theory, with Dirichlet Unit
Theorem. We will first explain some geometric techniques in order to prove
the finiteness of class numbers and Dirichlet Unit Theorem, and then we will
use Analytic Number Theory to derive the formula. This formula is very
useful in computing the class number of a specific number field, and decide
if the number field is a unique factorization domain by analyzing the class
group of the number field.

2. Preliminaries

Definition 2.1. An ideal I in a commutative ring R is defined with the
following properties:

(i) 0R ∈ I
(ii) if i and j ∈ I, then i− j ∈ I
(iii) if i ∈ I, c ∈ R, then ci ∈ I.
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An ideal with only one generator is called a principal ideal.

Definition 2.2. A field K is a number field if it is a finite extension of Q.

Definition 2.3. Let K be a number field, then ZK is the ring of integers
of K, with ZK = {α ∈ K|α is an algebraic integer}

Definition 2.4. A fractional ideal of ZK is a subset of K with the form
1

γ
c,

with c an ideal in ZK and γ a non-zero element of ZK . The fractional ideal
is principal if c is principal.

Definition 2.5. Let R be an integral domain, then R is a principal ideal
domain if every ideal is principal.

Definition 2.6. Let R be in a ring, and u ∈ R. If there exists v ∈ R such
that uv = 1, then u is a unit in R

Definition 2.7. Let p ∈ R. Then p is irreducible if
(i) p is not a unit.
(ii) whenever p = ab, then either a or b is a unit.

Definition 2.8. A ring R is a unique factorization domain if it is an integral
domain in which every element a ∈ R can be written as a = up1 . . . pn, where
u is a unit and each pi irreducible.

Fact 2.9. Let φ : R → S be a ring homomorphism. Then there is an
isomorphism

R/kerφ ∼= imφ

Definition 2.10. An nth roots of unity is a number ζ ∈ C such that ζn = 1.

Definition 2.11. After choosing a basis for K a number field, represent
a ∈ K as a matrix. Thus, we define norm as the determinant of a, denoted
by NK/Q(a).

3. Calculate Class Number through Algebra

3.1. What is a Class Group and Class Number. In order to explain
what a class group is and how it works, we need several facts. [Thm. 4.31,
5.30, 5.32]{Jar14}

Fact 3.1. A principal ideal domain (PID) is a unique factorization domain
(UFD). If we do a contrapositive, we will see this fact as: If a domain doesn’t
have unique factorization, then there are some ideals that are not principal.

Fact 3.2. Ideals in a ring of integers of number field can be uniquely fac-
torized into prime ideals. This implies that we could use fractional ideals to
represent ideals in the ring of integers.

Fact 3.3. Fractional ideals and principal fractional ideals form an Abelian
group.
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Definition 3.4. Let K be a number field, FK be the group of fractional
ideals, and PFK be the group of principal fractional ideals. Then we define

the quotient group CK =
FK
PFK

to be a class group of K. And we call the

number of elements in this group, hK , the class number.

Remark 3.5. From the definition, we observe that when hK = 1, the
class group CK is trivial, meaning that the domain is a unique factorization
domain; otherwise, it will not be a unique factorization domain.

3.2. Class Numbers on Imaginary Number Fields. In this section, we
first introduce some preliminary concept and theorems, before we calculate
class numbers in imaginary number fields.

Definition 3.6. A quadratic form in n variables is a homogeneous polyno-
mial of degree 2, i.e.

n∑
i=1

n∑
j=1

aijxixj

Notice that this could be written as a product of vectors and matrices: Let
v = (x1, ..., xn)t and A = (aij), then it could be written as vtAv.

Definition 3.7. A binary quadratic form is a quadratic form in 2 variables,
thus can be written as

f(x, y) = ax2 + bxy + cy2

this can be written as (a, b, c), and it has discriminant b2 − 4ac.

Definition 3.8. A quadratic form is positive definite if f(x, y) ≥ 0, for all
x, y ∈ R, and f(x, y) = 0 iff x = y = 0. Notice that this is equivalent to
discriminant b2 − 4ac < 0.

Definition 3.9. Quadratic forms f(x, y) is equivalent to g(x, y) if there
exists p, q, r, s ∈ Z, such that ps − qr = 1 and one can map f(x, y) to
g(x, y) or other way round by (x, y) 7→ (px+ qy, rx+ sy). And notice that
p, q, r, s forms a matrix, the mapping denotes a linear transformation, and
the matrix in GL2(Z). Similarly, f(x, y) is properly equivalent to g(x, y) if
p, q, r, s forms a matrix, the mapping denotes a linear transformation, and
the matrix in SL2(Z)

Definition 3.10. A form (a, b, c) is reduced if −a < b ≤ a < c or 0 ≤ b ≤
a = c.

Remark 3.11. One could prove that every positive definite binary qua-
dratic form is properly equivalent to a unique reduced form. The reason
this is introduced is that every ideal in a ring of integers has a correspond-
ing reduced quadratic form. Therefore, we classify all the ideals having the
same reduced quadratic form into a equivalence class. Therefore, we want
to show that there is a bijective relation between this equivalence class and
ideal classes; so that we could draw a solution about class group and class
number through studying quadratic forms.
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Now, we could start proving how to compute class numbers. But since
we know that the rings of integers of different number fields have different
forms, we need to distinguish Z[

√
d] of whether d ≡ 2, 3 mod 4 or d ≡ 1

mod 4. We assume d ≡ 2, 3 mod 4 for now.

Lemma 3.12. Let a be an ideal in the ring of integer ZK . Then there exists
positive integers a, b, c such that

a = aZ + (b+ c
√
d)Z

with c|a and c|b

Proof. Take a to be the minimal integer in a, c as small as possible. We
claim that in this setting, we could represent a. We need to check three
properties:

(i) We know that aZ + (b+ c
√
d)Z ⊆ a, we only need to prove the other

direction. Take x + y
√
d ∈ a ,and ∃m such that x + y

√
d −m(b + c

√
d) =

(x−mb)+(y−mc)
√
d, where 0 ≤ (y+mc) < c. Since c is as small as possible,

we know that y+mc = 0 or we find a smaller integer which contradicts our
assumption. Now we discuss (x −mb). Since a is minimal, we know that
(x − mb) ≡ 0 mod a, or we find a smaller integer in the ideal. Thus, we

know that a = aZ + (b+ c
√
d)Z

(ii) Now we do the same trick. Since a ∈ a, we conclude that a
√
d ∈ a.

Therefore, ∃t, a
√
d = t(b+ c

√
d) + qa such that 0 ≤ ct− a < c. If ct− a = 0,

c|a, otherwise we contradict the minimality of c

(iii) By the same reasoning as in (ii), b
√
d + cd ∈ a. Therefore, ∃t such

that 0 ≤ b− ct < c. Then we could conclude that c|b. ut

Corollary 3.13. Assume we could write a = aZ + (b+ c
√
d)Z in a ring of

integer ZK . Then NK/Q(a) = ac

Proof. The norm of an ideal denotes the cardinality of the ring of integer
modulo the ideal. Therefore NK/Q(a) = |ZK/a|. But we know that a, c are

minimal, the set ZK/a = {x + y
√
d|0 ≤ x < a, 0 ≤ y < c}. Therefore, it is

clear that there are ac elements. ut

Proposition 3.14. Assume a, b, c ∈ Z, then the Z-module aZ+ (b+ c
√
d)Z

is a ideal in ZK iff c|a, c|b, and ac|c2d− b2

Proof. The difference between a Z-module and an ideal is that whether we
could multiply it by an element in the ring and still remain in the set.
Therefore, take x, y ∈ Z, α = ax+ by + cy

√
d. And we know that α

√
d ∈ a.

Thus, ∃s, t ∈ Z, α
√
d = cyd+ ax

√
d+ by

√
d = as+ bt+ ct

√
d. Therefore, we

know that t =
ax+ by

c
, which implies that c|a, c|b, then ∀x, y ∈ Z. Also,

we have cyd = as + bt; thus we have s = cyd−bt
a = c2yd−abx−b2y

ac . This is an

integer iff ac|c2d− b2 ut
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Theorem 3.15. Assume a = aZ + (b+ c
√
d)Z is an ideal of ZK . Then

NK/Q(ax+ (b+ c
√
d)y)

NK/Q(a)

is a quadratic form with integer coefficients and discriminant 4d.

Proof. We first calculate

NK/Q(ax+ (b+ c
√
d)y) = (ax+ by)2 − dc2y2

= a2x2 + 2axby + b2y2 − dc2y2

Therefore, we know that our original equation

NK/Q(ax+ (b+ c
√
d)y)

NK/Q(a)
=
a2x2 + 2axby + b2y2 − dc2y2

ac

=
a

c
x2 +

2b

c
xy +

b2 − dc2

ac
y2

Thus, by the last proposition, we know that this is a quadratic form with
integer coefficients. And the discriminant

DK =
4ab2 − 4ab2 + 4adc2

ac2
= 4d

ut

Now we find a mapping from the ideals to quadratic forms, that

Φ(a) =
NK/Q(ax+ (b+ c

√
d)y)

NK/Q(a)

Before we spend time examine the bijectivity, we need to check that properly
equivalent quadratic forms lie in one class.

Lemma 3.16. If z is in the upper-half complex plane, and M =

(
p q
r s

)
∈

GL2(Z), then
q + sz

p+ rz
is in the upper half complex plane iff M ∈ SL2(Z)

Proof. Now we simplify the fraction:

q + sz

p+ rz
=

(q + sz)(p+ rz̄)

|p+ rz|2
=
pq + qrz̄ + psz + sr|z|2

|p+ rz|2

Thus, the imaginary part is
im(z)(ps− qr)
|p+ rz|2

, therefore, it is clear that both

direction works in this case. ut

Proposition 3.17. If a and b are in the same ideal class, then Φ(a) and
Φ(b) are properly equivalent.
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Proof. Since a and b are in the same ideal class, ∃θ = α/β, such that a = θb,
thus, βa = αb. Now assume that a = γZ+δZ, then βa = βγZ+δβZ. Thus,
we know that

NK/Q(〈β〉a) = |NK/Q(β)|NK/Q(a)

and

NK/Q(βγx+ δβy) = NK/Q(β)NK/Q(γx+ δy)

Thus, we know that Φ(βa) = Φ(a). And we could deduce Φ(αb) = Φ(b).
Therefore, we know that Φ(αb) = Φ(βa) ut

We define Ψ((a, b, c)) = aZ+ (
b

2
+
√
d)Z and claim that this is the inverse

function of Φ. We check:

Proposition 3.18. If (a, b, c) and (a′, b′, c′) are properly equivalent, then
Ψ((a, b, c)) and Ψ((a′, b′, c′)) lie in the same ideal class.

Proof. Since there are only three types of proper equivalence, we check all
the possibilities: (a, b, c) 7→ (a, b ± 2a, c ± b + a) and (a, b, c) 7→ (c,−b, a)

Ψ((a, b±2a, c±b+a)) = aZ+(
b± 2a

2
+
√
d)Z = aZ+(

b

2
+
√
d)Z = Ψ((a, b, c))

Since we know that b2 − 4ac = 4d, we have −a = b2−4d
4c

b+ 2
√
d

2c
Ψ((c,−b, a)) =

b+ 2
√
d

2c
(cZ + (

−b
2

+
√
d)Z)

= (
b

2
+
√
d)Z + (−a)Z = Ψ((a, b, c))

Therefore, we know that they are in the same ideal class. ut

Theorem 3.19. Φ and Ψ are inverse bijections to each other between the set
of proper equivalence calsses of quadratic forms and the set of ideal classes
in Z[

√
d].

Proof. Now, it suffices to check Φ(Ψ(a, b, c)) = (a, b, c) and Ψ(Φ(a)) = a.

Ψ(Φ(a)) = Ψ(
a

c
x2 +

2b

c
xy +

b2 − dc2

ac
y2) =

1

c
(aZ + (b+ c

√
d)Z)

Therefore, we know that Ψ(Φ(a)) gives a equivalence.

Φ(Ψ(a, b, c)) = Φ((aZ + (
b

2
+
√
d)Z))

=
1

a
(a2x2 − abxy − b2 − 4d

4
y2)

= ax2 + bxy + cy2

And this concludes our proof, since it gives exactly (a, b, c). ut
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Remark 3.20. We could do the same proof to d ≡ 1 mod 4, but we only

need to replace
√
d with

1 +
√
d

2

Theorem 3.21. There are only finitely many reduced quadratic forms of
discriminant D.

Proof. Assume (a, b, c) to be reduced, with 0 ≤ |b| ≤ a ≤ c. Thus 0 ≤
b2 ≤ ac. Which yields −4ac ≤ D ≤ 3ac. Therefore, we have the range of

ac, which is
−D

4
≤ ac ≤ −D

3
. Thus, a2 ≤ ac ≤ −D

3
. We found a to be

bounded, and for each choice of a and b, we have only one c. This tells us
that there are finitely many reduced form. ut

Corollary 3.22. The class group of an imaginary quadratic field is finite.

Remark 3.23. We can find specific class numbers by using the bound in
Theorem 2.24, and counting quadratic forms.

4. Finiteness of Class Number and Dirichlet’s Unit Theorem

In this section, we will need some geometrical techniques. This will be
introduced in the following sections.

4.1. Finiteness of Class Number.

Definition 4.1. Let V be an n-dimensional real vector space. A lattice in
V is a subgroup in the form

Γ = Zv1 + . . .+ Zvm
where {v1...vm} are linearly independent vectors in V . The lattice is com-
plete if m = n

Definition 4.2. The fundamental mesh or fundamental region associated
to Γ, ΦΓ, is defined as

ΦΓ = {α1v1 + . . .+ αmvm|0 ≤ αi < 1}

Definition 4.3. A subset Γ ⊂ Rn is discrete if for all radius r ≥ 0, Γ
contains only finitely many points at a radius at most r from 0.

Definition 4.4. A region X ⊂ V is centrally symmetric if x ∈ X implies
−x ∈ X

Definition 4.5. A region X ⊂ V is convex if x, y ∈ X, and t ∈ [0, 1] then
the line {(1− t)x+ ty} ⊂ X

Now, we recognize three basic propositions, to which I will give a sketch
for the proofs in order to introduce a theorem faster.

Proposition 4.6. A subgroup Γ ⊂ V is a lattice iff it is discrete



8 TING GONG

Sketch. (⇒) We could define a continuous map: φ : a1v1 + ... + anvn 7→
(a1, ...an). We could draw a closed ball with radius r in the preimage, which
would be compact. Therefore, the image would also be compact, thus we
could take M to be the maximum and claim that we have ai ≤M .

(⇐) We could let Γ span V0 and take Γ0 to be lattices in V0, and we could
prove that qΓ = Γ0 by discussing the extra points besides Γ0. ut

Proposition 4.7. A subgroup Γ ⊂ V is complete iff ∃ a bounded BV ∈ V
such that

⋃
γ∈Γ(BV + γ).

Sketch. (⇒) Take Bv to be ΦΓ

(⇐) BV is bounded, then every point is inside a radius r. If Γ is not
complete, and V0 is the span, then V0 is not V . Then there will be points
out side of V0 but inside V , which will lead to a contradiction. ut

Proposition 4.8. Assume Γ is a lattice in Rn. If vi = (ai1, ..., ain), then
the volume vol(Γ) = | det(aij)|

Sketch. By changing of coordinates when computing the integral:∫
ΦΓ

1dx1...dxn

ut

Theorem 4.9. (Minkowski) Assume Γ is a complete lattice in V . Let X be
a centrally symmetric convex subset of V . Suppose vol(X) > 2nvol(Γ), then
X contains at least one non-zero lattice point.

Proof. We prove this by contradiction. Assume there are no non-zero lattice

points. Then it is clear that (
1

2
X + γ1) ∩ (

1

2
X + γ2) = ∅, where γ1 and γ2

are distinct lattices (if not, then we can find x1, x2 ∈ X such that γ1− γ2 =
1

2
x2−

1

2
x1). Then, we know that {ΦΓ∩

1

2
X+γ}γ∈Γ = ∅. But this is a subset

of ΦΓ. Thus vol(Γ) ≥ vol(ΦΓ∩{
1

2
X+γ}γ∈Γ) = vol(

1

2
X) =

1

2n
vol(X), which

is a contradiction. ut

Definition 4.10. If σ: K ↪→ C, and σ(K) ⊂ R, then σ is called a real em-
bedding. Otherwise it is called a complex embedding. Its conjugate denoted
by σ̄ is defined as σ̄(k) = σ(k).

Proposition 4.11. Let KR = Rr1×Cr2 (Since C ∼= R2, we could understand
this space as a real space with (r1 + 2r2)-dimensional space). And i be
a mapping from K ↪→ KR. Γ = i(ZK) is a complete lattice in KR and

vol(Γ) = |DK |1/2.

Proof. Assume Γ = Ziω1 + ... + Ziωn ⊂ KR. Let M be the matrix (τiωj).
Then, by definition, we know that DK = 4{ω1, ..., ωn} = det(M)2. Then,
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by the reasoning in proposition 3.8, we know that vol(Γ) = |det(τiωj)| =

det(M) = |DK |1/2 ut

Definition 4.12. The discriminant of ideal a, if a = α1Z + ... + αnZ, is
D(a) = 4{α1, ..., αn} = det(τiαj)

2, where τ are all embeddings of K into C.

Corollary 4.13. If a is a non-zero ideal of ZK , then Γ = i(a) is a complete

lattice in KR, with D(a) = NK/Q(a)2DK , and Φr has volume NK/Q(a)|DK |1/2

Proposition 4.14. Let Γ be a lattice in KR, and let c1, ..., cr1 , C1, ..., Cr2 ∈

R>0 satisfy c1...cr1(C1...Cr2)2 >

(
2

π

)r2
vol(Γ). Then there exists a non-zero

v = (x1, ..., xr1 , z1, ..., zr2) ∈ Γ such that |xj | < cj for all j = 1, ..., r1, and
|zk| < Ck for all k = 1, ..., r2.

Proof. In this proof, we want to invoke Minkowski’s theorem. Let X be
the set of all elements with |xj | < cj for all j = 1, ..., r1, and |zk| <
Ck for all k = 1, ..., r2. Then it is clear that X is centrally symmetric
and convex. Then we have volR(X) > (2c1)...(2cr1)(πC2

1 )...(πC2
rn). Thus,

we know that vol(X) = 2r2volR(X) > 2r2(2c1)...(2cr1)(πC2
1 )...(πC2

rn) >

2r1+r2πr2
(

2

π

)r2
vol(Γ). Therefore, we finally get vol(X) > 2nvol(Γ). Thus

we know v exists. ut

Proposition 4.15. Let a be a non-zero integral ideal of ZK . Then there

exists a non-zero α ∈ a such that |NK/Q(α)| ≤
(

2

π

)r2
NK/Q(a)|DK |1/2

Proof. By Corollary 3.13, we take M , where

M >

(
2

π

)r2
NK/Q(a)|DK |1/2 =

(
2

π

)r2
vol(α)

Therefore, by proposition 3.14, we could choose c1...cr1(C1...Cr2)2 = M .
Therefore, there is a non-zero element α ∈ a, such that each of its coordinates
is smaller than the embeddings. Therefore, we know that NK/Q(α) < M .
SinceM can be infinitely close to the value, we know that we get the equation
required. ut

Theorem 4.16. The class group C(K) is finite.

Proof. We take b ∈ [a−1], where [a−1] denotes the ideal class of a−1 , WLOG,
we assume b ∈ ZK . Then by proposition 3.15, we have ∃β such that

|NK/Q(β)| ≤
(

2

π

)r2
NK/Q(b)|DK |1/2. Then let c = 〈β〉b−1 ∈ [a]. Therefore,

we have NK/Q(c) = |NK/Q(β)|NK/Q(b)−1 ≤
(

2

π

)r2
|DK |1/2 = M . There-

fore, we know there are finitely ideals whose norm is within a bound. Thus
there are only finitely many ideal classes. ut
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Now, let’s find a better bound.

Lemma 4.17. Let

Xt = {(x1, ..., xr1 , z1, ..., zr2)||x1|+ ...+ |xr1 |+ 2|z1|+ ...+ 2|zr2 | < t} ⊂ KR

Then vol(Xt) = 2r1πr2
tn

n!

Proof. Since C ∼= R2, we could see each zi as ui, vi. And by a former
proposition, vol(X) = 2r2volR(X), we only need to calculate volR(X) by

changing variables (ui, vi) to (
Ri
2

cos θi,
Ri
2

sin θi), thus

volR(X) =

∫
Xt

1dx1...dxr1du1dv1...dur2dvr2

= 2r14−r2(2π)r2
∫
Yt

R1..Rr2dx1...dxr1dR1...dRr2

= 2r14−r2(2π)r2
tn

n!

Therefore, we have vol(Xt) = 2r1πr2
tn

n!
ut

Theorem 4.18. (Minkowski bound) Every ideal class of K contains an

integral ideal c of norm at most
n!

nn

(
4

π

)r2
|DK |1/2

Proof. Assume b ∈ [a−1], with a an ideal class. We want to invoke Minkowski’s

theorem, so we choose a t, such that 2r1πr2
tn

n!
> 2nvol(b). Since n = r1+2r2,

by a proposition proved before, we pick

tn > n!

(
4

π

)r2
|DK |1/2NK/Q(b)

Then we know there exists a non-zero β ∈ b with i(β) ∈ Xt. Moreover, we
have Arithmetic Mean-Geometric Mean inequality giving

(∏
τ

|τ(β)|
) 1

n ≤ 1

n

(∑
τ

|τ(β)|
)

|NK/Q(β)| ≤
(
t

n

)n
|NK/Q(β)| < n!

nn

(
4

π

)r2
NK/Q(b)|DK |1/2

Therefore, if c = 〈β〉b−1 ∈ [a], then plug in our previous result intoNK/Q(c) =

|NK/Q(β)|NK/Q(b)−1, we get our result. ut
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4.2. Dirichlet’s Unit Theorem.

Remark 4.19. We are going to introduce several mappings for future use:

l : (x1, ..., xr1 , z1, ..., zr2) 7→ (log |x1|, ..., log |xr1 |, log |z1|, ..., log |zr2 |)
and

Z×K = {ε ∈ ZK |NK/Q(ε) = ±1}
S = {y ∈ K×R |N(y) = ±1}

and we have
H = {x ∈ Rr1+r2 |tr(x) = 0}

Also,

λ : Z×K
i→ S → l→ H

And let Γ = λ(Z×K).

Proposition 4.20. The kernel of λ is µ(K), group of roots of unity in K.

Proof. η(K) ⊆ ker(λ) is clear. The embeddings clearly map the roots of
unity to 0.

Now we prove the other direction. If ε ∈ ker(λ), then |i(ε)| = 1. There-
fore, it is a bounded region. And it is a lattice, thus it is discrete, thus it
is finite. And since the kernel is closed under multiplication, we know every
element has finite order. Thus it is a root of unity. ut

Corollary 4.21. Γ is a subgroup of H.

Proposition 4.22. Γ is a lattice in H.

Proof. It suffices to prove that Γ is discrete. Thus, we want to show if
B(r, h) ⊂ H, then Γ∩B(r, h) is finite. Consider l−1(Γ∩B) = l−1(Γ)∩l−1(B).
Since l−1(Γ) = i(Z×K). We know i(Z×K) is finite, i(Z×K)∩l−1(B) is finite. And
l−1(B) is bounded. Thus Γ is discrete. ut

Proposition 4.23. There is a bounded region BS ⊂ S such that

S =
⋃
ε∈Z×

K

i(ε)BS

Proof. Consider the lattice i(Z×K) ∈ KR of volume |DK |1/2. Then if we move

the lattice by y, we have yi(Z×K) also have volume |DK |1/2, because N(y) =
±1. Then we can appeal to proposition Prop. 3.14 to set up a X contains
a non-zero point x ∈ yi(Z×K), and thus we have N(x) = NK/Q(α), with

α ∈ Z×K . Therefore, we know that NK/Q(α) is bounded by an M from 3.14.
Thus, there are only finitely many α, thus we construct a set {α1, ..., αN}.
Thus, α = ε−1αk. Therefore, we know that y = xi(α)−1 = xi(αk)

−1i(ε).
Therefore, we could take BS = {s ∈ S|s ∈ Xi(αk)−1}. ut

Corollary 4.24. Γ is a complete lattice in H.
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Proof. By last proposition, S =
⋃
ε∈Z×

K
i(ε)BS , take BH = l(BS). We know

that BS is a translate of X. And N(x) = ±1, thus all the coordinates are
bounded away from 0. Thus the logarithm is not a problem. Thus, BH is
bounded. Thus, we let H =

⋃
ε∈Z×

K
(λ(ε)+BH) =

⋃
γ∈Γ(γ+BH). Therefore,

by proposition 3.7, we know that Γ is complete. ut

Theorem 4.25. (Dirichlet) ∃ε1, ..., εr such that all ε ∈ Z×K can be written
uniquely in the form

ε = ζεv1
1 ...ε

vr
r

with ζ ∈ µ(K), vi ∈ Z, and r = r1 + r2 − 1 (Z×K ∼= µ(K)× Zr).

Proof. Consider the map: λ : K× → Rr1+r2 restrict to λ : Z×K → H. Then
the kernel is µ(K), image is Γ, and Γ is complete lattice in r-dimensional
vector space. Therefore, Γ ∼= Zr. ut

Definition 4.26. We define ε1, ..., εr as thefundamental units.

5. Calculate Class Number through Analysis

5.1. Riemann Zeta Function.

Definition 5.1. We define the Riemann Zeta Function as following:

ζ(s) =
∞∑
n=1

1

ns

Definition 5.2. We define the Gamma function as following:

Γ(z) =

∫ ∞
0

e−ttz
dt

t

Definition 5.3. We define the functional equation as following:

ξ(s) = π−s/2Γ(s/2)ζ(s)

Definition 5.4. We define the Dedekind zeta function as following:

ζK(s) =
∑
a

1

NK/Q(a)s

where a is an integral ideal in number field K.

Fact 5.5. We can write the Riemann Zeta Function as

ζ(s) = 2sπs−1sin(
πs

2
)Γ(1− s)ζ(1− s)

Fact 5.6. ζ(s), s ∈ R, converges absolutely for all s > 1, and diverges for
s ≤ 1.
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Fact 5.7. If Re(s) > 1, then

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(1− 1

ps
)−1

The same applies to Dedekind zeta function: If Re(s) > 1, then

ζ(s) =
∏
p

1

1−NK/Q(p)−s

In this section, we want to know a bit about the functional equation.
Thus, we will begin proving a result:

Lemma 5.8. Set θ(t) =
∑

n∈Z e
−πt2n2

. Then if t 6= 0, θ(1/t) = tθ(t).

Proof. Fix t > 0, and let f(x) = e−πt
2x2

. And define F (x) =
∑

n∈Z f(x+n).

Thus F (x) =
∑

n∈Z e
−πt2(x+n)2

. We know that F (0) = θ(t). It is periodic

with F (x) = F (x+ 1). We take its Fourier series. F (x) =
∑

m∈Z ame
2πimx.

Thus, we compute am:

am =

∫ 1

0
F (x)e−2πimxdx =

∑
n∈Z

∫ 1

0
f(x+ n)e−2πim(x+n)dx

=

∫ ∞
−∞

f(x)e−2πimxdx =

∫ ∞
−∞

e−πt
2x2−2πimxdx

= e−πm
2/t2

∫ ∞
−∞

e−π(tx+im/t)2
dx = t−1e−πm

2/t2

Therefore,

θ(t) = F (0) =
∑
m∈Z

am =
∑
m∈Z

t−1e−πm
2/t2 = t−1θ(1/t)

ut

Proposition 5.9. For Re(s) > 1, we have∫ ∞
0

(θ(t)− 1)ts−1dt = π−s/2Γ(s/2)ζ(s)

Proof. We evaluate the integral by changing variable u = nt and v = πu2

2

∫ ∞
0

∑
n≥1

e−πt
2n2
ts−1dx = 2

∞∑
n=1

1

ns

∫ ∞
0

e−πu
2
us−1du

= 2ζ(s)

∫ ∞
0

e−v(v/π)s/2−1(2π)−1dv = π−s/2Γ(s/2)ζ(s)

ut

Theorem 5.10. For Re(s) > 1, ξ(s) = ξ(1− s)
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Proof. We evaluate ξ(s) by changing variable u = 1/t, and by Lemma 4.8
and proposition 4.9, we have

ξ(s) =

∫ ∞
1

(θ(t)− 1)ts−1dt+

∫ 1

0
(θ(t)− 1)ts−1dt

=

∫ ∞
1

(θ(t)− 1)ts−1dt+

∫ ∞
1

(uθ(u)− 1)u−s−1du

=

∫ ∞
1

(θ(t)− 1)ts−1dt+

∫ ∞
1

u−s(θ(u)− 1) + u−s − u−s−1du

=

∫ ∞
1

(θ(t)− 1)ts−1dt+

∫ ∞
1

u−s(θ(u)− 1)du− 1

s
− 1

1− s

Therefore, we get∫ ∞
1

(θ(t)− 1)(ts−1 + t−s)dt− 1

s
− 1

1− s
Which clearly satisfies ξ(s) = ξ(1− s). ut

5.2. Class Number Formula.

Remark 5.11. In this section, we are going to derive the Analytic Class
Number Formula:

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2RKhK

m|DK |1/2

Where RK is the regulator of K, hK is the class number of K, and m is the
number of roots of unity in K

Definition 5.12. Let ε1, . . . , εr be a set of fundamental units, r = r1+r2−1.
λ : K → Rr1+r2 be the logarithm mapping. The regulator, RK is the absolute
value of the determinant of any r × r minor in the (r + 1)× r-matrix with
entries λi(εj).

Definition 5.13. A cone in Rn is a subset X ⊂ Rn such that if x ∈ X and
λ ∈ R>0, then λx ∈ X

Proposition 5.14. Let X be a cone in Rn, F : X → R>0, be a function
satisfies: F (ξx) = ξnF (x), with x ∈ X, ξ ∈ R>0. Let T = {x ∈ X|F (x) ≤ 1}
be bounded, with non-zero volume v = vol(T ). Let Γ be a lattice in Rn,

with ∆ = vol(Γ). Then Z(s) =
∑

Γ∩X
1

F (x)s
converges for Re(s) > 1 and

lims→1(s− 1)Z(s) =
v

∆

Proof. First, we notice vol(
1

r
Γ) =

∆

rn
. Let N(r) be the number of points in

1

r
Γ ∩ T , then N(r) is also the number of points in {x ∈ Γ ∩X|F (x) ≤ rn}.
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Then v = vol(T ) = lim
r→∞

N(r)
∆

rn
. Now we arrange 0 < F (x1) ≤ F (x2) ≤ ...,

and let rk = F (xk)
1/n. Then N(rk−ε) < k ≤ N(rk). Therefore,

k

rnk
≤ N(rk)

rnk
.

This gives lim
rk→∞

k

rnk
= lim

k→∞

k

F (xk)
=

v

∆
. Thus, ∀ε > 0, ∃k0, such that

∀k ≥ k0, we have (
v

∆
− ε) 1

k
<

1

F (xk)
< (

v

∆
+ ε)

1

k
. Thus,

(
v

∆
− ε)s

∞∑
k=k0

1

ks
<

∞∑
k=k0

1

F (xk)s
< (

v

∆
+ ε)s

∞∑
k=k0

1

ks

Therefore, we know it converges when Re(s) > 1. And if we multiply
lims→1(s − 1) on both sides, since the pole of ζ(s) is at s = 1. We will
get the equation we want. ut

Definition 5.15. The cone X ⊂ KR is defined with the following property
(x ∈ X):

(i) N(x) 6= 0
(ii) The coefficients ξi of l(x) satisfy 0 ≤ ξi < 1

(iii) 0 ≤ arg(x1) <
2π

m
, where x1 is the first component of x

Lemma 5.16. If y ∈ Rn, with N(y) 6= 0. Then y is uniquely of the form
xi(ε), where x ∈ X and ε ∈ Z×K .

Proof. Let l(y) = γλ + γ1λ(ε1) + ... + γrλ(εr). Let’s write γi = ki + ξi,

with k ∈ Z, ξ ∈ [0, 1). And let η = εk1
1 ...ε

kr
r . Let z = yi(η). We know

that 0 ≤ arg(z1) − 2kπ

m
<

2π

m
for some k. Choose ζ ∈ µ(K) such that

τ1(ζ) = e2πi/m, then x = yi(η−1ζ−k) ∈ X, thus y = xi(ηζ). ut

Remark 5.17. Let connect what we have proved before with class numbers.
By Dedekind zeta function: ζK =

∑
C∈CK

fC(s), summing all the ideal

classes. And fC(s) =
∑

a∈C
1

NK/Q(a)s
. But if we take b ∈ C−1, then ab

is principal, say 〈α〉. Thus, a and 〈α〉 are bijective, and α ∈ b. Thus,

fC(s) = NK/Q(b)s
∑

b|〈α〉
1

NK/Q(α)s
. Let Γ = i(b), Θ = {x ∈ KR|x =

i(α), α ∈ B}, where B is a complete set of non-associate members of b,

then fC(s) = NK/Q(b)s
∑

x∈Θ

1

N(x)s

Proposition 5.18.

vol(T ) =
2r1+r2πr2RK

m

Proof. Let ε ∈ Z×K . Then it preserves volume. And also by the last lemma,

we let T̃ =
⋃m−1
k=0 Ti(ζ

k), and this has vol(T̃ ) = m · vol(T ). Now, we let
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T = {x ∈ T̃ |xi > 0, ∀i = 1, ..., r1}. Then vol(T ) =
2r1

m
vol(T ). Now we

compute vol(T ) by change of variables first.

(x1, ..., xr1 , z1, ..., zr2) 7→ (x1, ..., xr1 , R1, φ1, ..., Rr2 , φr2)

Where zk = Rke
iφk . And the Jacobian of this change is R1...Rr2 . Now, since

l(x) = ξλ+ ξ1λ(ε1) + ...+ ξrλ(εr), and

l(x1, ..., xr1 , z1, ..., zr2) 7→ (log(x1), ..., log(xr1), 2 log(R1), ..., 2 log(Rr2))

. We could do another change of variable with log(xi) =
1

n
log ξ+

∑r
k=1 ξkλi(εk)

and log(Ri) =
2

n
log ξ +

∑r
k=1 ξkλr1+i(εk). And the Jacobian is computed

to be |J | = RK
2r2R1...Rr2

. Therefore,

vol(T ) = 2r2volR(T ) = 2r2
∫
T
dx1...dxr1dyr1+1dzr1+1...dyr1+r2dzr1+r2

= 2r2
∫
T
R1...Rr2dx1...dxr1dR1dφ1...dRr2dφr2

= 2r2(2π)r2
∫
T
|J |R1...Rr2dξ1...dξr = 2r2πr2RK

Thus, we plug this back into our equation. We will then get what we want.
ut

Let’s make a conclusion with our remark.

Remark 5.19.

lim
s→1

(s− 1)fC(s) = NK/Q(b)
v

∆
=
NK/Q(b)2r1+r2πr2RK

NK/Q(b)m|D|1/2
=

2r1+r2πr2RK

m|D|1/2

Therefore, we could use the relation between ζ(s) and fC(s) to get:

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2RKhK

m|DK |1/2
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