CLASS NUMBER THROUGH ADÈLES

TING GONG

Contents

1. Introduction	1
2. p-adic Numbers	1
2.1. Norms and p-adic Integers	1
2.2. Completion of O_v	2
3. Adeles and Ideles	3
3.1. Properties of Adeles	3
3.2. Properties of Ideles	5
4. Applications in Algebraic Number Theory	5
4.1. The Idele Class Group	5
4.2. Approximation Theorem	6
4.3. Finiteness of Class Number	7
References	8

1. INTRODUCTION

In this paper, we are going to prove the Dirichlet's Unit Theorem and the finiteness of ideal class group through adèles and idèles. This introduces a more topological method to prove the results in algebraic number theory by using knowledge in local field theory and global field theory.

2. p-ADIC NUMBERS

2.1. Norms and p-adic Integers.

Definition 2.1. Let *F* be a field, $x, y \in F$, a map $\|\cdot\| : F \to \mathbb{R}_{\geq 0}$ satisfying the following properties is called a *norm*:

- (i) ||x|| = 0 if and only if x = 0
- (ii) $||x \cdot y|| = ||x|| \cdot ||y||$
- (iii) $||x + y|| \le ||x|| + ||y||$

Definition 2.2. A norm is called *non-Archimedean* if $||x+y|| \le \max(||x||, ||y||)$

Definition 2.3. Let F be a field, $x, y \in F$, a valuation is a map $v : F \to \mathbb{R}$ with the following properties:

Date: Started September 26, 2018. Last revision October 23, 2019.

(i) $v(x) = \infty$ if and only if x = 0(ii) v(xy) = v(x) + v(y)(iii) $v(x+y) \ge \min(v(x), v(y))$

Definition 2.4. A valuation v is called *discrete* if the image of v is $\alpha \mathbb{Z}$ for some $\alpha \geq 0$

Definition 2.5. If k is a number field, O_k its ring of integers, \mathfrak{p} a prime ideal of O_k , We call the map $v_{\mathfrak{p}} : k^{\times} \to \mathbb{Z}$ the \mathfrak{p} -adic evaluation if p generates $\mathfrak{p}, a \in k, a = up^m$, where u is a unit. Then $v_{\mathfrak{p}}(a) = m$ or $v_{\mathfrak{p}}(a) = \infty$ when a = 0.

Definition 2.6. Under the same construction as Def. 2.5, let f be the degree of the residue field extension O_k/\mathfrak{p} over $\mathbb{Z}/(p)$, $\|\cdot\|_{v_\mathfrak{p}} : k \to \mathbb{R}$ is called the \mathfrak{p} -adic norm, if $\|a\|_{v_\mathfrak{p}} = \|\mathfrak{p}\|^{-fv_\mathfrak{p}(a)}$, or $\|a\|_{v_\mathfrak{p}} = 0$ when a = 0

We note that $\|\cdot\|_{v_{\mathfrak{p}}}$ is a non-archimedean norm.

Definition 2.7. We define $O_{\mathfrak{p}}$ to be the localization of O_k at \mathfrak{p} . Thus $O_{\mathfrak{p}} = \{\frac{a}{b} | b \notin \mathfrak{p}, a, b \in O_k\}$

Consider $M_n = O_{\mathfrak{p}}/(p^n)$, and the map $\varphi_m : M_n \to M_{n-1}$, by $\varphi(m_n) = m_n \mod p^{n-1}$, and we see that $M_{n-1} \hookrightarrow M_n$ and that $\{M_n\}$ forms an projective system.

Definition 2.8. We define the inverse limit $\varprojlim M_n$ to be the p-adic integers, we denote as O_v .

Remark 2.9. $O_k \subseteq O_{\mathfrak{p}} \subseteq O_v$. This is easy to check, $O_k \subseteq O_{\mathfrak{p}}$ is clear since one can pick b = 1. Consider $a, b \in O_k$, then $a, b \in O_v$ by map $a \mapsto M_{v_{\mathfrak{p}}(a)}$ and similarly for b. Then one can do long division to see that $a/b \in O_v$. Thus $O_{\mathfrak{p}} \subseteq O_v$

Definition 2.10. We define A_k to be the *canonical set* of k, which is a set of all the absolute values, one non-archimedean absolute value for each \mathfrak{p} , and an archimedean absolute value for each real and complex embedding. We denote the set of archimedean absolute values as S_{∞} .

2.2. Completion of O_v . In this section and throughout the rest of the paper, we denote $v = v_p$.

Remark 2.11. We observe that the units of O_v are the elements of O_v with valuation 0, otherwise they all divide p, the uniformizing element. Therefore, we get the field of fraction of O_v by inverting p. We write it as $K_v = O_v(p^{-1})$

Definition 2.12. The basic open sets of K_v are defined as the open balls $B(x,r) = \{y \in K_v | ||x - y||_v < r\}$

Proposition 2.13. The basic open sets of K_v are closed, and K_v is totally disconnected.

 $\mathbf{2}$

Proof. It suffices to check that B(0,r) are closed. Consider the image of $||a||_v = ||\mathfrak{p}||^{-v_{\mathfrak{p}}(a)}$, where $v_{\mathfrak{p}}$ has integer image. Thus $im(||\cdot||_v) = \{||\mathfrak{p}||^{\mathbb{Z}}\}$. Therefore, we see that the image is discrete besides at 0, which is a limit point. Thus, for some small $\varepsilon > 0$, $B(0,r) = \overline{B(0,r-\varepsilon)}$. Therefore, the basic open sets are closed. And we consider $\cap_{r>0}B(x,r) = \{x\}$. Therefore, K_v is totally disconnected. \Box

Theorem 2.14. K_v is a locally compact, complete topological field with compact open and closed subsets O_v and O_v^*

Proof. It is clear that K_v is a topological field, considering term by term addition and multiplication to be continuous. Completeness is easy to check since one can check if convergent sequences are Cauchy. Since K_v is discrete, and every point is contained in a ball, which is finite. Thus, each basic open sets is compact, K_v is locally compact.

 O_v is finite since each M_n is discrete and finite, thus compact. By Tychonoff theorem, $O_v = \prod_{n=1}^{\infty} M_n$ is compact. O_v^* is compact since it is a closed subset of O_v , which is because $O_v^* = O_v - \mathfrak{p}_v = O_v - B(0, 1)$. Then we prove O_v is closed. Consider it as the subspace of $\prod_{i=1}^{\infty} M_i$, if $(a_m) \notin O_v$, then $\exists N > 0$ such that $\varphi_N(a_N) \neq a_{N-1}$. Thus $(a_m) \in$ $(a_1, \ldots, a_{N-1}) \times \prod_{m>N} M_m$, which is open. Thus O_v is the complement of an open set, thus closed. \Box

Proposition 2.15. O_v^*, O_v, K_v are topological closures of O_k^*, O_k, k respectively.

3. Adeles and Ideles

3.1. Properties of Adeles.

Definition 3.1. We define *adeles* \mathbb{A}_k to be the subset of $\prod_{v \in A_k} k_v$, such that $\mathbb{A}_k = \{(a_v)_{v \in A_k} | a_v \in O_v \text{ for all but finitely many } v\}$

Remark 3.2. \mathbb{A}_K inherits the subspace topology from $\prod_{v \in A_k} K_v$, to be specific, for some $S_{\infty} \subset S \subset A_k$, the basic open sets of \mathbb{A}_K is the sets $\prod_{v \in S} U_v \times \prod_{v \notin S} O_v$, where U_v is open in K_v .

Proposition 3.3. \mathbb{A}_K is a locally compact topological ring.

Proof. We first show \mathbb{A}_K is locally compact. Since the basic open sets of \mathbb{A}_K are in the form $\prod_{v \in S} U_v \times \prod_{v \notin S} O_v$, we know that $\mathbb{A}_K \subset \prod_{v \in S} K_v \times \prod_{v \notin S} O_v$. Since each O_v is compact, $\prod_{v \notin S} O_v$ is compact by Tychonoff theorem, and each K_v is locally compact, thus $\prod_{v \notin S} K_v$ is locally compact. Therefore, we know that $\prod_{v \in S} K_v \times \prod_{v \notin S} O_v$ is locally compact, thus \mathbb{A}_K is locally compact. So a compact, thus \mathbb{A}_K is locally compact.

Next, \mathbb{A}_K is a ring is clear. We check continuity. Consider f(a, b) = a + b. Pick a basic open set $U = \prod_{v \in S} B(c_v, r_v) \times \prod_{v \notin S} O_v$. If $(a_v, b_v) \in f^{-1}(U)$. Then $||a_v + b_v - c_v||_v < r_v$. Next pick the sets $U_1, U_2 \subset A$ such

TING GONG

that $a_v \in U_1, b_v \in U_2, f(U_1), f(U_2) \subset U$, then $U_1 = \prod_{v \in S} B(a_v, r_v/4) \times \prod_{v \notin S} O_v$ and $U_2 = \prod_{v \in S} B(b_v, r_v/4) \times \prod_{v \notin S} O_v$ works, since $f(U_1 \times U_2) = \prod_{v \in S} B(a_v + b_v, r_v/2) \times \prod_{v \notin S} O_v \subset \prod_{v \in S} B(c_v, r_v) \times \prod_{v \notin S} O_v$. Similarly, consider f(a, b) = ab, and the balls with radius $\sqrt{r_v/2}$.

Proposition 3.4. Let $\iota : k \hookrightarrow A_K$ such that $\iota(x) = x_v$, then $\iota(k)$ is a discrete subring of A_K

Proof. k is a subring is clear. We prove that it is discrete. Consider the basic open set at 0: $U = \prod_{v \in S_{\infty}} B(0, 1/2) \times \prod_{v \notin S_{\infty}} O_v$. Assume $0 \neq \alpha \in U \cap k$, then $\|\alpha\|_v \leq 1$ for non-achimedean evaluation and $\|\alpha\|_v < 1/2$ for archimedean ones. Thus $\prod_{v \in A_k} \|\alpha\|_v^{n_v} < 1/2$. But $\prod_{v \in A_k} \|\alpha\|_v^{n_v} = 1$ by product formula. Thus contradiction. Thus $U \cap k = 0$. Thus $\iota(k)$ is discrete.

Proposition 3.5. Consider $\lambda : K_v \hookrightarrow A_K$, if $x \in K_v$, then $\lambda(x) = (0, \ldots, 0, x, 0, \ldots) \in A_K$. $\lambda(K_v)$ a closed subring, and it inherits the usual topology on K_v .

Proof. The inheritance of the topology is clear. Now consider that $\lambda(K_v)$ is closed. Assume $v' \neq v, a_{v'} \neq 0$. Consider the following open set of $a \in \mathbb{A}_K - K_v$: $B(a_v, ||a_v||/2) \times \prod_{A_k - S_\infty, n \neq v'} O_n \times \prod_{n \in S_\infty} K_n$. This is disjoint to $\lambda(K_v)$. Thus $\lambda(K_v)$ is closed.

Next, we are going to show that \mathbb{A}_K/k is compact.

Lemma 3.6. $k + \mathbb{A}_{K}^{S_{\infty}} = \mathbb{A}_{K}$, where $\mathbb{A}_{K}^{S_{\infty}}$ is the set $\prod_{v \in S_{\infty}} K_{v} \times \prod_{v \notin S_{\infty}} O_{v}$. Thus we have any adele can be written as a sum of an element of k and $\mathbb{A}_{K}^{S_{\infty}}$.

Proof. We prove if $a \in \mathbb{A}_K$, then $\exists \alpha \in k$ such that $\forall v \notin S_{\infty}, a - \alpha \in O_v$. Since $a_v \in O_v$ for all but finitely many $v \notin S_{\infty}$, so we take c such that c is highly divisible by finitely many primes of \mathbb{Z} lying under \mathfrak{p} with $a_v \notin O_{v_{\mathfrak{p}}}$. Therefore, $\exists c$, such that $ca \in O_v$. Then let S be the set of primes of O_k dividing cO_k , by approximation theorem, let $\alpha \in O_k$ be $\alpha \equiv ca_v \mod \mathfrak{p}^m$, for $\mathfrak{p} \in S$ and large m. Therefore, if $\mathfrak{p} \notin S$, then $c \in O_v^*$, so $\alpha/c \in O_v$, $a_v - \alpha/c \in O_v$. If $\mathfrak{p} \in S$, then if m is large enough, $a_v - \alpha/c \in O_v$.

Theorem 3.7. \mathbb{A}_K/k is compact.

Proof. Consider the restricted mapping $\iota|_{K_v} : k \hookrightarrow \prod_{v \in S_\infty} K_v = \mathbb{R}^n$. And O_v , as the p-adic integers, forms the lattice. Let $P \in \mathbb{R}^n$ be a fundamental parallelotope for the lattice O_k , since it has the same rank as \mathbb{R}^n , P is bounded and \bar{P} is compact. Also, we proved that O_v is compact. By Tychonoff theorem, $Q = \prod_{v \notin S_\infty} O_v \times \bar{P}$ is compact. By lemma 3.6, $a - \alpha \in \mathbb{A}_K^{S_\infty}$, thus we translate by β to get $a - \alpha + \beta \in \prod_{v \notin S_\infty} O_v \times \bar{P}$, and $-\alpha + \beta \in k$ which translates a into a compact set. Thus $A/k = kA/k = kQ/k \cong Q/(k \cap Q)$ which is compact.

4

3.2. Properties of Ideles.

Definition 3.8. We define *ideles* \mathbb{I}_K to be the subset of $\prod_{v \in A_k} K_v^*$, such that $\mathbb{I}_K = \{(a_v)_{v \in A_k} | a_v \in O_v^* \text{ for all but finitely many } v\}.$

Remark 3.9. One can see that the ideles is the units in adeles, and if we define $\|\cdot\|_{\mathbb{A}_K} : \mathbb{A}_K^* \to \mathbb{R}_{>0}$, with $\|a\|_{\mathbb{A}_K} = \prod_{v \in A_v} \|a_v\|_v$. Then the ideles is the kernel of this map. However, since the adeles forms a ring, the units of a ring doesn't need to be a multiplication group since the inverse doesn't need to be continuous.

Remark 3.10. One has two ways to consider the basic open set: $\prod_{v \in S} U_v \times \prod_{v \notin S} O_v^*$, where $U_v \subset K_v^*$, which is inherited from adelic ring. One can also consider $\phi : \mathbb{I}_K \to A \times A$, where $\phi(a) = (a, a^{-1})$. We observe that ϕ is a homeomorphism. Let $U = (\prod_{v \in S} U_v \times \prod_{v \notin S} O_v^*, \prod_{v \in S} U_v \times \prod_{v \notin S} O_v^*)$. Then $U \cap \phi(\mathbb{I}_K) = (\prod_{v \in S} U_v \cap (U'_v)^{-1} \times \prod_{v \notin S} O_v^*, \prod_{v \in S} (U_v^{-1} \cap U'_v) \times \prod_{v \notin S} O_v)$, whose preimage is $\prod_{v \in S} U_v \cap (U'_v)^{-1} \times \prod_{v \notin S} O_v^*$, which is open. Thus we have ϕ is homeomorphic.

Proposition 3.11. \mathbb{I}_K is a topological group.

Proof. Since \mathbb{I}_K is the kernel of our normed map, it is clearly a group.

Consider $\phi : \mathbb{I}_K \hookrightarrow A \times A$. Since we have shown ϕ is a homeomorphism, ϕ^{-1} is continuous, thus the inversion map is continuous.

Then define $\psi : \mathbb{I}_K \times \mathbb{I}_K \to \mathbb{I}_K$ by pointwise multiplication seeing \mathbb{I}_K as in $A \times A$. Then let $(a_1, a_2), (a_3, a_4) \in \mathbb{I}_K \subset A \times A$, then $(a_1, a_2)(a_3, a_4) = (a_1a_3, a_2a_4)$ is continuous since A is an adelic ring, thus a topological ring.

Proposition 3.12. Let $\iota : k^* \hookrightarrow \mathbb{I}_K$ such that $\iota(x) = x_v$, then $\iota(k^*)$ is a discrete subgroup of \mathbb{I}_K

Proof. Consider the basic open set at 1: $U = \prod_{v \in S_{\infty}} B(1, 1/2) \times \prod_{v \notin S_{\infty}} O_v^*$. Assume $0 \neq \alpha \in U \cap k^*$, then $\|\alpha - 1\|_v \leq 1$ for non-archimedean evaluation and $\|\alpha - 1\|_v < 1/2$ for archimedean ones. Thus $\prod_{v \in A_k} \|\alpha - 1\|_v^{n_v} < 1/2$, which contradicts the product formula. Thus $U \cap k^* = 1$. Thus $\iota(k)$ is discrete.

Proposition 3.13. Condier $\lambda : K_v^* \hookrightarrow \mathbb{I}_K$, if $x \in K_v^*$, then $\lambda(x) = (0, \ldots, 0, x, 0, \ldots) \in \mathbb{I}_K$. $\lambda(K_v^*)$ a closed subgroup.

Proof. Let $v' \neq v$, $a_{v'} \neq 0$, then if $a \in \mathbb{I}_K - K_v^*$, then consider $B(a_v, ||a_v||/2)| \times \prod_{A_k - S_\infty, n \neq v'} O_n^* \times \prod_{n \in S_\infty} K_n^*$, which is an open neighborhood disjoint from $\lambda(K_v^*)$. Thus $\lambda(K_v^*)$ is closed.

4. Applications in Algebraic Number Theory

4.1. The Idele Class Group.

Remark 4.1. We define a map: $\|\cdot\| : \mathbb{I}_K \to \mathbb{R}^+$ with $\|a\| = \prod_{v \in A_k} \|a_v\|_v^{n_v}$

Lemma 4.2. $\|\cdot\|$ is continuous.

Proof. Assume $(b_0, b_1) \subset \mathbb{R}^+$. We show that the preimage is open in \mathbb{I}_K . If $a \in \mathbb{I}_K$, and $||a|| \in (b_0, b_1)$, then pick an archimedean valuation v_0 . Let S be the set of valuations where a is not in O_v^* , consider the open sets $U_r = \prod_{v \in S, v \neq v_0} B(a_v, 1) \times \prod_{v \notin S} O_v^* \times B(a_{v_0}, r)$ where r varies. Thus $a \in U_r$. Then we can make r small so that $||U_r||$ lies in (b_0, b_1) .

Remark 4.3. Since $\{1\}$ is closed, $ker(\|\cdot\|)$ is closed in \mathbb{I}_K . We call this \mathbb{I}_K^1 . By product formula, $k^* \subseteq \mathbb{I}_K^1$, is a discrete subgroup.

Now, let \mathfrak{F}_K be the multiplication group of fractional ideals of k. Let \mathfrak{F}_K be the subgroup of principal ideals. Let $C_K = \mathfrak{F}_K/\mathfrak{F}_K$ be the class group over k.

Theorem 4.4. $\mathbb{I}_K/k^*\mathbb{I}_K^{S\infty} \cong C_K$

Proof. We define $\phi : \mathbb{I}_K \to \mathfrak{F}_K$ by if $\phi(a) = \prod_{v \in A_k - S_\infty} \mathfrak{p}^{v_\mathfrak{p}(a_v)}$. Thus, only finitely many $v_\mathfrak{p}(a_v)$ are non-zero, indicating that this is a fractional ideal. This map is surjective, since one can find the preimage easily for each element. The kernel of this map happens when all $v_\mathfrak{p}(a_v) = 0$, but the archimedean entries can vary. Thus the kernel is $\mathbb{I}_K^{S_\infty}$. Moreover, if $\alpha \in k^*$, then $\phi(\alpha)$ is a principal ideal generated by (α) . Thus $\phi(k^*) \subset \mathfrak{PF}_K$. Thus $\phi(k^*) = \mathfrak{PF}_K$. Thus, there is an induced surjective homomorphism from $\psi : \mathbb{I}_K / k^* \to C_K$. And consider $\varphi : \mathbb{I}_K \to C_K$, then $ker(\varphi) = k^* \mathbb{I}_K^{S_\infty}$ by the discussion above. Thus by the first isomorphism theorem, $\mathbb{I}_K / k^* \mathbb{I}_K^{S_\infty} \cong C_K$

Definition 4.5. We call $C = \mathbb{I}_K / k^*$ the idele class group, and $C^1 = \mathbb{I}_K^1 / k^*$.

Definition 4.6. Let S be a finite subset of A_k containing S_{∞} , we call $k_S = \mathbb{I}_K^S \cap k^*$ the S-units of k. And we call \mathbb{I}_K^S/k_S the group of S-idele classes and denote by C_S . We set $\mathbb{I}_K^{S1} = \mathbb{I}_K^S \cap \mathbb{I}_K^1$ and $C_S^1 = \mathbb{I}_K^{S1}/k_S$

Remark 4.7. For each $S, C_S \hookrightarrow C$. Since \mathbb{I}_K^S is both open and closed in \mathbb{I}_K, C_S is both open and closed in C. Similarly, $C_S^1 \hookrightarrow C$, and C_S^1 is both open and clased in C^1 . Then consider the map $C \to C_K$, then the kernel will be $C_{S_{\infty}}$ since $\mathbb{I}_K/k^*\mathbb{I}_K^{S_{\infty}} \cong C_K$, by third isomorphism theorem, $\mathbb{I}_K/k^*\mathbb{I}_K^{S_{\infty}} \cong \frac{\mathbb{I}_K}{k^*}/\frac{\mathbb{I}_K^{S_{\infty}k^*}}{k^*}$, and the latter is isomorphic to $C_{S_{\infty}}$ by the second isomorphism theorem. Thus $C/C_{S_{\infty}} \cong C_K$

Finally, notice the map $C^1 \to C_K$ is also surjective, since if $\mathfrak{f} \in \mathfrak{F}$, $a \in \mathbb{I}_K$ with $\phi(a) = I$, we can change an archimedean value to get $a' \in \mathbb{I}_K^1$, and $\phi(a') = I$. Thus the kernel is $C_{S_{\infty}}^1$. So we have $C^1/C_{S_{\infty}}^1 \cong C_K$

4.2. Approximation Theorem.

Definition 4.8. Let $a \in A_K$, we define $L(a) \subseteq k$, such that $L(a) = \{\alpha | \|\alpha\|_v \leq \|\alpha_v\|_v, \alpha \in k, \forall v \in A_k\}$. We write $\lambda = |L(a)|$.

Remark 4.9. If $\alpha \in k^*$, $x \in L(a)$, then since $||x||_v \leq ||x_v||_v$, then $||\alpha x||_v = ||\alpha||_v ||x||_v \leq ||\alpha||_v ||x_v||_v = ||\alpha x_v||_v$. Therefore, there is a bijection between L(a) and $L(\alpha a)$, thus $\lambda(a) = \lambda(\alpha a)$

Theorem 4.10. $\exists c_0 \ a \ constant$, depending only on k such that for any $a \in \mathbb{A}_K$, $\lambda(a) \geq c_0 ||a||$.

Proof. For the proof of this theorem, refer to [1] Theorem 8.1.

Lemma 4.11. Let $a \in \mathbb{I}_K$, $||a|| \ge 2/c_0$, then $\exists \alpha \in k^*$ such that we have $\forall v \in A_k, 1 \le ||\alpha a_v||_v \le ||a||$

Proof. For the proof of this lemma, refer to [1]Lemma 9.1

4.3. Finiteness of Class Number.

Theorem 4.12. C^1 is compact

Proof. Let $\psi : \mathbb{I}_K \to \mathbb{R}^+$ by $\psi(a) = ||a||$. Since if $a \in k^*$, $\phi(a) = 1$ by the product formula. Thus consider $\psi : C \to \mathbb{R}^+$. Thus $ker(\psi) = C^1$. Then since if $\rho \in \mathbb{R}^+$, $a_\rho \in \mathbb{I}_K$ with $||a_\rho|| = \rho$, then $\psi^{-1}(\rho) = a_\rho C^1$. Therefore, we see that ψ^{-1} is homeomorphic to C^1 . Thus we prove ψ^{-1} is compact.

Let $\rho > 2/c_0$, pick $a \in \psi^{-1}(\rho)$, then by Lemma 4.11, $\exists \alpha_a \in k^*$ such that $\forall v \in A_k, 1 \leq ||\alpha_a a_v||_v \leq \rho$. Since $||\cdot||_v$ cannot take values between 1 and $N(\mathfrak{p})$, and there are only finitely many \mathfrak{p} with $N(\mathfrak{p}) \leq \rho$. Thus we have $||\alpha_a a_v||_{v_{\mathfrak{p}}} = 1$ for all but finitely many of $v_{\mathfrak{p}}$. Thus $\exists S \supset S_{\infty}$ such that $1 \leq ||\alpha_a a_v||_v \leq \rho$ if $v \in S$ but $||\alpha_a a_v||_v = 1$ if $v \notin S$.

Now define $T = \prod_{v \in S} (\overline{B(0,\rho)} - B(0,1)) \times \prod_{v \notin S} O_v^*$. Thus by Tychonoff theorem, T is compact, since $\psi^{-1}(\rho)$ is a close subset of $\phi(T)$, where $\phi : \mathbb{I}_K \to C$. Thus ψ^{-1} is compact. \Box

Corollary 4.13. C_S^1 is compact for any finite set S containing S_{∞} .

Theorem 4.14 (Finiteness of class number). For any number field k, C_K is finite.

Proof. Since $C^1/C_{S_{\infty}}^1 \cong C_K$, and C^1 is compact, thus C_K is compact. Since $C_{S_{\infty}}^1$ is open, C_K is also discrete. Thus C_K is both compact and discrete, thus it is finite.

Lemma 4.15. Any discrete subgroup Λ of \mathbb{R}^s is free abelian of rank dim $\mathbb{R}\Lambda$

Proof. We induct on dim $\mathbb{R}\Lambda$. If dim $\mathbb{R}\Lambda = 1$, since Λ is discrete, $\exists \lambda \in \Lambda$ closest to 0. Thus $\Lambda = \mathbb{Z}\lambda$.

Assume dim $\Lambda = m$, let $\lambda_1, \ldots, \lambda_m$ be a \mathbb{R} -basis for $\mathbb{R}\Lambda$. If Λ_0 is a subgroup of Λ spanned by $\lambda, \ldots, \lambda_{m-1}$, then by induction hypothesis, $\Lambda_0 = \mathbb{Z}\lambda_1 \oplus \ldots \oplus \mathbb{Z}\lambda_{m-1}$. Let Λ' of $\lambda \in \Lambda$ such that $\lambda = a_1\lambda_1 + \ldots + a_m\lambda_m$ with $0 \leq a_i < 1$ for $i \leq m-1$ and $0 \leq a_m \leq 1$. Then Λ' is bounded, thus finite. Let $\lambda' \in \Lambda'$ has minimal nonzero coefficient, assume $\lambda' = a'_1\lambda_1 + \ldots + a'_m\lambda_m$.

TING GONG

Assume if $\lambda \in \Lambda$, then $\exists t$ such that the *m*th coefficient of $\lambda - t\lambda'$ gives $0 \leq a_m < a'_m$. Then we modify by $\lambda_0 \in \Lambda_0$ to get $\lambda - t\lambda' - \lambda_0 \in \Lambda'$. Thus $a_m = 0$ since a'_m is minimal. Thus $\lambda - t\lambda' - \lambda_0 = 0$. Since $\lambda_1, \ldots, \lambda_m$ are linearly independent, we have $\Lambda = \mathbb{Z}\lambda \oplus \ldots \oplus \mathbb{Z}\lambda_m$.

Theorem 4.16 (Dirichlet Unit Theorem). For any set finite set $S \in A_k$ of size s containing S_{∞} , the S-units k_S have rank s - 1.

Proof. Let $v_1, \ldots, v_s \in S$, and assume v_s is archimedean. Define $\log : \mathbb{I}_K^S \to \mathbb{R}^s$ by $\log(a) = (\log \|a_{v_1}\|_{v_1}^{n_{v_1}}, \ldots, \log \|a_{v_s}\|_{v_s}^{n_{v_s}})$. Since it is continuous in each coordinate, log is continuous. Also, since $a \in \mathbb{I}_K^{S1}$, then $\|a\| = 1$, since $\|a_v\|_v = 1$ for $v \notin S$, $\log(\mathbb{I}_K^{S1}) = \{x_1, \ldots, x_s \in \mathbb{R} | x_1 + \ldots + x_s = 0\} = H$. Thus dim $\log(\mathbb{I}_K^{S1}) = s - 1$.

Since in a bounded region in \mathbb{R}^s , $\log(k_S)$ has bounded achidemean aboutte values. Thus the coefficients of the polynomials of these elements over \mathbb{Z} is bounded. And the degree is bounded by $[k : \mathbb{Q}]$, there are finitely many such polynomials. Thus there are finitely many k maps into this bounded region. Thus $\log(k_S)$ is discrete. By the last lemma, $\log(k_S)$ is a free abelian group.

Let W be the subspace of H generated by $\log(k_S)$, then consider $\log : \mathbb{I}_K^{S1}/k_S = C_S^1 \to H/W$. Since \mathbb{I}_K^{S1} generates H, the image generates H/W as an \mathbb{R} -vector space. Since log is continuous, C_S^1 is compact, the image is compact. Then if H/W is non-trivial, then it has no non-trivial compact subgroups. Thus H/W = 0, H = W, $\dim \log(k_S) = s - 1$.

Corollary 4.17. The group of global units of a number field k is isomorphic to $\mu(k) \times \mathbb{Z}^{r_1+r_2-1}$, where $\mu(k)$ is the roots of unity, r_1 is the number of real embeddings, r_2 is the number of complex embeddings.

References

[1] Weston, The Idelic Approach to Number Theory, 1999, Online access

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618.

Email address: tgong@nd.edu