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1. Introduction

In this paper, we are going to prove the Dirichlet’s Unit Theorem and the
finiteness of ideal class group through adèles and idèles. This introduces a
more topological method to prove the results in algebraic number theory by
using knowledge in local field theory and global field theory.

2. p-adic Numbers

2.1. Norms and p-adic Integers.

Definition 2.1. Let F be a field, x, y ∈ F , a map ‖ · ‖ : F → R≥0 satisfying
the following properties is called a norm:

(i) ‖x‖ = 0 if and only if x = 0
(ii) ‖x · y‖ = ‖x‖ · ‖y‖
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition 2.2. A norm is called non-Archimedean if ‖x+y‖ ≤ max(‖x‖, ‖y‖)

Definition 2.3. Let F be a field, x, y ∈ F , a valuation is a map v : F → R
with the following properties:
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(i) v(x) =∞ if and only if x = 0
(ii) v(xy) = v(x) + v(y)
(iii) v(x+ y) ≥ min(v(x), v(y))

Definition 2.4. A valuation v is called discrete if the image of v is αZ for
some α ≥ 0

Definition 2.5. If k is a number field, Ok its ring of integers, p a prime
ideal of Ok, We call the map vp : k× → Z the p-adic evaluation if p generates
p, a ∈ k, a = upm, where u is a unit. Then vp(a) = m or vp(a) = ∞ when
a = 0.

Definition 2.6. Under the same construction as Def. 2.5, let f be the
degree of the residue field extension Ok/p over Z/(p), ‖ · ‖vp : k → R is

called the p-adic norm, if ‖a‖vp = ‖p‖−fvp(a), or ‖a‖vp = 0 when a = 0

We note that ‖ · ‖vp is a non-archimedean norm.

Definition 2.7. We define Op to be the localization of Ok at p. Thus
Op = {ab |b /∈ p, a, b ∈ Ok}

Consider Mn = Op/(p
n), and the map ϕm : Mn →Mn−1, by ϕ(mn) = mn

mod pn−1, and we see that Mn−1 ↪→Mn and that {Mn} forms an projective
system.

Definition 2.8. We define the inverse limit lim←−Mn to be the p-adic integers,

we denote as Ov.

Remark 2.9. Ok ⊆ Op ⊆ Ov. This is easy to check, Ok ⊆ Op is clear since
one can pick b = 1. Consider a, b ∈ Ok, then a, b ∈ Ov by map a 7→ Mvp(a)

and similarly for b. Then one can do long division to see that a/b ∈ Ov.
Thus Op ⊆ Ov

Definition 2.10. We define Ak to be the canonical set of k, which is a set
of all the absolute values, one non-archimedean absolute value for each p,
and an archimedean absolute value for each real and complex embedding.
We denote the set of archimedean absolute values as S∞.

2.2. Completion of Ov. In this section and throughout the rest of the
paper, we denote v = vp.

Remark 2.11. We observe that the units of Ov are the elements of Ov with
valuation 0, otherwise they all divide p, the uniformizing element. Therefore,
we get the field of fraction of Ov by inverting p. We write it as Kv = Ov(p

−1)

Definition 2.12. The basic open sets of Kv are defined as the open balls
B(x, r) = {y ∈ Kv|‖x− y‖v < r}

Proposition 2.13. The basic open sets of Kv are closed, and Kv is totally
disconnected.
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Proof. It suffices to check that B(0, r) are closed. Consider the image of

‖a‖v = ‖p‖−vp(a), where vp has integer image. Thus im(‖ · ‖v) = {‖p‖Z}.
Therefore, we see that the image is discrete besides at 0, which is a limit
point. Thus, for some small ε > 0, B(0, r) = B(0, r − ε). Therefore, the
basic open sets are closed. And we consider ∩r>0B(x, r) = {x}. Therefore,
Kv is totally disconnected. ut

Theorem 2.14. Kv is a locally compact, complete topological field with
compact open and closed subsets Ov and O∗v

Proof. It is clear that Kv is a topological field, considering term by term
addition and multiplication to be continuous. Completeness is easy to check
since one can check if convergent sequences are Cauchy. Since Kv is discrete,
and every point is contained in a ball, which is finite. Thus, each basic open
sets is compact, Kv is locally compact.
Ov is finite since each Mn is discrete and finite, thus compact. By Ty-

chonoff theorem, Ov =
∏∞
n=1Mn is compact. O∗v is compact since it is

a closed subset of Ov, which is because O∗v = Ov − pv = Ov − B(0, 1).
Then we prove Ov is closed. Consider it as the subspace of

∏∞
i=1Mi, if

(am) /∈ Ov, then ∃N > 0 such that ϕN (aN ) 6= aN−1. Thus (am) ∈
(a1, . . . , aN−1) ×

∏
m>N Mm, which is open. Thus Ov is the complement

of an open set, thus closed. ut

Proposition 2.15. O∗v , Ov,Kv are topological closures of O∗k, Ok, k respec-
tively.

3. Adeles and Ideles

3.1. Properties of Adeles.

Definition 3.1. We define adeles Ak to be the subset of
∏
v∈Ak

kv, such

that Ak = {(av)v∈Ak
|av ∈ Ov for all but finitely many v}

Remark 3.2. AK inherits the subspace topology from
∏
v∈Ak

Kv, to be
specific, for some S∞ ⊂ S ⊂ Ak, the basic open sets of AK is the sets∏
v∈S Uv ×

∏
v/∈S Ov, where Uv is open in Kv.

Proposition 3.3. AK is a locally compact topological ring.

Proof. We first show AK is locally compact. Since the basic open sets of AK
are in the form

∏
v∈S Uv×

∏
v/∈S Ov, we know that AK ⊂

∏
v∈SKv×

∏
v/∈S Ov.

Since each Ov is compact,
∏
v/∈S Ov is compact by Tychonoff theorem, and

each Kv is locally compact, thus
∏
v∈SKv is locally compact. Therefore,

we know that
∏
v∈SKv ×

∏
v/∈S Ov is locally compact, thus AK is locally

compact.
Next, AK is a ring is clear. We check continuity. Consider f(a, b) =

a + b. Pick a basic open set U =
∏
v∈S B(cv, rv) ×

∏
v/∈S Ov. If (av, bv) ∈

f−1(U). Then ‖av + bv − cv‖v < rv. Next pick the sets U1, U2 ⊂ A such



4 TING GONG

that av ∈ U1, bv ∈ U2, f(U1), f(U2) ⊂ U , then U1 =
∏
v∈S B(av, rv/4) ×∏

v/∈S Ov and U2 =
∏
v∈S B(bv, rv/4)×

∏
v/∈S Ov works, since f(U1 × U2) =∏

v∈S B(av + bv, rv/2) ×
∏
v/∈S Ov ⊂

∏
v∈S B(cv, rv) ×

∏
v/∈S Ov. Similarly,

consider f(a, b) = ab, and the balls with radius
√
rv/2. ut

Proposition 3.4. Let ι : k ↪→ AK such that ι(x) = xv, then ι(k) is a
discrete subring of AK
Proof. k is a subring is clear. We prove that it is discrete. Consider the
basic open set at 0: U =

∏
v∈S∞ B(0, 1/2) ×

∏
v/∈S∞ Ov. Assume 0 6= α ∈

U ∩ k, then ‖α‖v ≤ 1 for non-achimedean evaluation and ‖α‖v < 1/2 for
archimedean ones. Thus

∏
v∈Ak

‖α‖nv
v < 1/2. But

∏
v∈Ak

‖α‖nv
v = 1 by

product formula. Thus contradiction. Thus U ∩k = 0. Thus ι(k) is discrete.
ut

Proposition 3.5. Consider λ : Kv ↪→ AK , if x ∈ Kv, then λ(x) =
(0, . . . , 0, x, 0, . . .) ∈ AK . λ(Kv) a closed subring, and it inherits the usual
topology on Kv.

Proof. The inheritance of the topology is clear. Now consider that λ(Kv)
is closed. Assume v′ 6= v, av′ 6= 0. Consider the following open set of
a ∈ AK−Kv: B(av, ‖av‖/2)×

∏
Ak−S∞,n 6=v′ On×

∏
n∈S∞ Kn. This is disjoint

to λ(Kv). Thus λ(Kv) is closed. ut

Next, we are going to show that AK/k is compact.

Lemma 3.6. k+AS∞K = AK , where AS∞K is the set
∏
v∈S∞ Kv×

∏
v/∈S∞ Ov.

Thus we have any adele can be written as a sum of an element of k and
AS∞K .

Proof. We prove if a ∈ AK , then ∃α ∈ k such that ∀v /∈ S∞, a − α ∈ Ov.
Since av ∈ Ov for all but finitely many v /∈ S∞, so we take c such that c is
highly divisible by finitely many primes of Z lying under p with av /∈ Ovp .
Therefore, ∃c, such that ca ∈ Ov. Then let S be the set of primes of Ok
dividing cOk, by approximation theorem, let α ∈ Ok be α ≡ cav mod pm,
for p ∈ S and large m. Therefore, if p /∈ S, then c ∈ O∗v , so α/c ∈ Ov,
av − α/c ∈ Ov. If p ∈ S, then if m is large enough, av − α/c ∈ Ov. ut

Theorem 3.7. AK/k is compact.

Proof. Consider the restricted mapping ι|Kv : k ↪→
∏
v∈S∞ Kv = Rn. And

Ov, as the p-adic integers, forms the lattice. Let P ∈ Rn be a fundamen-
tal parallelotope for the lattice Ok, since it has the same rank as Rn, P is
bounded and P̄ is compact. Also, we proved that Ov is compact. By Ty-
chonoff theorem, Q =

∏
v/∈S∞ Ov×P̄ is compact. By lemma 3.6, a−α ∈ AS∞K ,

thus we translate by β to get a−α+β ∈
∏
v/∈S∞ Ov×P̄ , and−α+β ∈ k which

translates a into a compact set. Thus A/k = kA/k = kQ/k ∼= Q/(k ∩ Q)
which is compact. ut
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3.2. Properties of Ideles.

Definition 3.8. We define ideles IK to be the subset of
∏
v∈Ak

K∗v , such

that IK = {(av)v∈Ak
|av ∈ O∗v for all but finitely many v}.

Remark 3.9. One can see that the ideles is the units in adeles, and if we
define ‖ · ‖AK

: A∗K → R>0, with ‖a‖AK
=

∏
v∈Av

‖av‖v. Then the ideles is
the kernel of this map. However, since the adeles forms a ring, the units of
a ring doesn’t need to be a multiplication group since the inverse doesn’t
need to be continuous.

Remark 3.10. One has two ways to consider the basic open set:
∏
v∈S Uv×∏

v/∈S O
∗
v , where Uv ⊂ K∗v , which is inherited from adelic ring. One can also

consider φ : IK → A × A, where φ(a) = (a, a−1). We observe that φ is a
homeomorphism. Let U = (

∏
v∈S Uv×

∏
v/∈S O

∗
v ,
∏
v∈S Uv×

∏
v/∈S O

∗
v). Then

U ∩ φ(IK) = (
∏
v∈S Uv ∩ (U ′v)

−1 ×
∏
v/∈S O

∗
v ,
∏
v∈S(U−1

v ∩ U ′v) ×
∏
v/∈S Ov),

whose preimage is
∏
v∈S Uv ∩ (U ′v)

−1 ×
∏
v/∈S O

∗
v , which is open. Thus we

have φ is homeomorphic.

Proposition 3.11. IK is a topological group.

Proof. Since IK is the kernel of our normed map, it is clearly a group.
Consider φ : IK ↪→ A× A. Since we have shown φ is a homeomorphism,

φ−1 is continuous, thus the inversion map is continuous.
Then define ψ : IK × IK → IK by pointwise multiplication seeing IK as

in A × A. Then let (a1, a2), (a3, a4) ∈ IK ⊂ A × A, then (a1, a2)(a3, a4) =
(a1a3, a2a4) is continuous since A is an adelic ring, thus a topological ring.

ut

Proposition 3.12. Let ι : k∗ ↪→ IK such that ι(x) = xv, then ι(k∗) is a
discrete subgroup of IK
Proof. Consider the basic open set at 1: U =

∏
v∈S∞ B(1, 1/2)×

∏
v/∈S∞ O

∗
v .

Assume 0 6= α ∈ U ∩ k∗, then ‖α− 1‖v ≤ 1 for non-archimedean evaluation
and ‖α − 1‖v < 1/2 for archimedean ones. Thus

∏
v∈Ak

‖α − 1‖nv
v < 1/2,

which contradicts the product formula. Thus U ∩ k∗ = 1. Thus ι(k) is
discrete. ut

Proposition 3.13. Condier λ : K∗v ↪→ IK , if x ∈ K∗v , then λ(x) =
(0, . . . , 0, x, 0, . . .) ∈ IK . λ(K∗v ) a closed subgroup.

Proof. Let v′ 6= v, av′ 6= 0, then if a ∈ IK−K∗v , then considerB(av, ‖av‖/2)|×∏
Ak−S∞,n 6=v′ O

∗
n×

∏
n∈S∞ K

∗
n, which is an open neighborhood disjoint from

λ(K∗v ). Thus λ(K∗v ) is closed. ut

4. Applications in Algebraic Number Theory

4.1. The Idele Class Group.

Remark 4.1. We define a map: ‖ · ‖ : IK → R+ with ‖a‖ =
∏
v∈Ak

‖av‖nv
v
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Lemma 4.2. ‖ · ‖ is continuous.

Proof. Assume (b0, b1) ⊂ R+. We show that the preimage is open in IK .
If a ∈ IK , and ‖a‖ ∈ (b0, b1), then pick an archimedean valuation v0. Let
S be the set of valuations where a is not in O∗v , consider the open sets
Ur =

∏
v∈S,v 6=v0 B(av, 1)×

∏
v/∈S O

∗
v×B(av0 , r) where r varies. Thus a ∈ Ur.

Then we can make r small so that ‖Ur‖ lies in (b0, b1). ut

Remark 4.3. Since {1} is closed, ker(‖ · ‖) is closed in IK . We call this I1K .
By product formula, k∗ ⊆ I1K , is a discrete subgroup.

Now, let FK be the multiplication group of fractional ideals of k. Let
PFK be the subgroup of principal ideals. Let CK = FK/PFK be the class
group over k.

Theorem 4.4. IK/k∗IS∞K ∼= CK

Proof. We define φ : IK → FK by if φ(a) =
∏
v∈Ak−S∞ pvp(av). Thus,

only finitely many vp(av) are non-zero, indicating that this is a fractional
ideal. This map is surjective, since one can find the preimage easily for
each element. The kernel of this map happens when all vp(av) = 0, but the

archimedean entries can vary. Thus the kernel is IS∞K . Moreover, if α ∈ k∗,
then φ(α) is a principal ideal generated by (α). Thus φ(k∗) ⊂ PFK . Thus
φ(k∗) = PFK . Thus, there is an induced surjective homomorphism from

ψ : IK/k∗ → CK . And consider ϕ : IK → CK , then ker(ϕ) = k∗IS∞K by the

discussion above. Thus by the first isomorphism theorem, IK/k∗IS∞K ∼= CK
ut

Definition 4.5. We call C = IK/k∗ the idele class group, and C1 = I1K/k∗.

Definition 4.6. Let S be a finite subset of Ak containing S∞, we call
kS = ISK ∩ k∗ the S-units of k. And we call ISK/kS the group of S-idele
classes and denote by CS . We set IS1

K = ISK ∩ I1K and C1
S = IS1

K /kS

Remark 4.7. For each S, CS ↪→ C. Since ISK is both open and closed
in IK , CS is both open and closed in C. Similarly, C1

S ↪→ C, and C1
S is

both open and clased in C1. Then consider the map C → CK , then the
kernel will be CS∞ since IK/k∗IS∞K ∼= CK , by third isomorphism theorem,

IK/k∗IS∞K ∼= IK
k∗ /

IS∞K k∗

k∗ , and the latter is isomorphic to CS∞ by the second
isomorphism theorem. Thus C/CS∞ ∼= CK

Finally, notice the map C1 → CK is also surjective, since if f ∈ F, a ∈ IK
with φ(a) = I, we can change an archimedean value to get a′ ∈ I1K , and
φ(a′) = I. Thus the kernel is C1

S∞
. So we have C1/C1

S∞
∼= CK

4.2. Approximation Theorem.

Definition 4.8. Let a ∈ AK , we define L(a) ⊆ k, such that L(a) =
{α|‖α‖v ≤ ‖αv‖v, α ∈ k, ∀v ∈ Ak}. We write λ = |L(a)|.
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Remark 4.9. If α ∈ k∗, x ∈ L(a), then since ‖x‖v ≤ ‖xv‖v, then ‖αx‖v =
‖α‖v‖x‖v ≤ ‖α‖v‖xv‖v = ‖αxv‖v. Therefore, there is a bijection between
L(a) and L(αa), thus λ(a) = λ(αa)

Theorem 4.10. ∃c0 a constant, depending only on k such that for any
a ∈ AK , λ(a) ≥ c0‖a‖.

Proof. For the proof of this theorem, refer to [1]Theorem 8.1. ut

Lemma 4.11. Let a ∈ IK , ‖a‖ ≥ 2/c0, then ∃α ∈ k∗ such that we have
∀v ∈ Ak, 1 ≤ ‖αav‖v ≤ ‖a‖

Proof. For the proof of this lemma, refer to [1]Lemma 9.1 ut

4.3. Finiteness of Class Number.

Theorem 4.12. C1 is compact

Proof. Let ψ : IK → R+ by ψ(a) = ‖a‖. Since if a ∈ k∗, φ(a) = 1 by the
product formula. Thus consider ψ : C → R+. Thus ker(ψ) = C1. Then
since if ρ ∈ R+, aρ ∈ IK with ‖aρ‖ = ρ, then ψ−1(ρ) = aρC

1. Therefore, we
see that ψ−1 is homeomorphic to C1. Thus we prove ψ−1 is compact.

Let ρ > 2/c0, pick a ∈ ψ−1(ρ), then by Lemma 4.11, ∃αa ∈ k∗ such that
∀v ∈ Ak, 1 ≤ ‖αaav‖v ≤ ρ. Since ‖ · ‖v cannot take values bewteen 1 and
N(p), and there are only finitely many p with N(p) ≤ ρ. Thus we have
‖αaav‖vp = 1 for all but finitely many of vp. Thus ∃S ⊃ S∞ such that
1 ≤ ‖αaav‖v ≤ ρ if v ∈ S but ‖αaav‖v = 1 if v /∈ S.

Now define T =
∏
v∈S(B(0, ρ)−B(0, 1))×

∏
v/∈S O

∗
v . Thus by Tychonoff

theorem, T is compact, since ψ−1(ρ) is a close subset of φ(T ), where φ :
IK → C. Thus ψ−1 is compact. ut

Corollary 4.13. C1
S is compact for any finite set S containing S∞.

Theorem 4.14 (Finiteness of class number). For any number field k, CK
is finite.

Proof. Since C1/C1
S∞
∼= CK , and C1 is compact, thus CK is compact. Since

C1
S∞

is open, CK is also discrete. Thus CK is both compact and discrete,
thus it is finite. ut

Lemma 4.15. Any discrete subgroup Λ of Rs is free abelian of rank dimRΛ

Proof. We induct on dimRΛ. If dimRΛ = 1, since Λ is discrete, ∃λ ∈ Λ
closest to 0. Thus Λ = Zλ.

Assume dim Λ = m, let λ1, . . . , λm be a R−basis for RΛ. If Λ0 is a
subgroup of Λ spanned by λ, . . . , λm−1, then by induction hypothesis, Λ0 =
Zλ1 ⊕ . . .⊕ Zλm−1. Let Λ′ of λ ∈ Λ such that λ = a1λ1 + . . .+ amλm with
0 ≤ ai < 1 for i ≤ m− 1 and 0 ≤ am ≤ 1. Then Λ′ is bounded, thus finite.
Let λ′ ∈ Λ′ has minimal nonzero coefficient, assume λ′ = a′1λ1 + . . .+a′mλm.
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Assume if λ ∈ Λ, then ∃t such that the mth coefficient of λ − tλ′ gives
0 ≤ am < a′m. Then we modify by λ0 ∈ Λ0 to get λ − tλ′ − λ0 ∈ Λ′. Thus
am = 0 since a′m is minimal. Thus λ − tλ′ − λ0 = 0. Since λ1, . . . , λm are
linearly independent, we have Λ = Zλ⊕ . . .⊕ Zλm. ut

Theorem 4.16 (Dirichlet Unit Theorem). For any set finite set S ∈ Ak of
size s containing S∞, the S-units kS have rank s− 1.

Proof. Let v1, . . . , vs ∈ S, and assume vs is archimedean. Define log : ISK →
Rs by log(a) = (log ‖av1‖

nv1
v1 , . . . , log ‖avs‖

nvs
vs ). Since it is continuous in

each coordinate, log is continuous. Also, since a ∈ IS1
K , then ‖a‖ = 1, since

‖av‖v = 1 for v /∈ S, log(IS1
K ) = {x1, . . . , xs ∈ R|x1 + . . . + xs = 0} = H.

Thus dim log(IS1
K ) = s− 1.

Since in a bounded region in Rs, log(kS) has bounded achidemean aboslute
values. Thus the coefficients of the polynomials of these elements over Z is
bounded. And the degree is bounded by [k : Q], there are finitely many such
polynomials. Thus there are finitely many k maps into this bounded region.
Thus log(kS) is discrete. By the last lemma, log(kS) is a free abelian group.

Let W be the subspace of H generated by log(kS), then consider log :
IS1
K /kS = C1

S → H/W . Since IS1
K generates H, the image generates H/W

as an R-vector space. Since log is continuous, C1
S is compact, the image is

compact. Then if H/W is non-trivial, then it has no non-trivial compact
subgroups. Thus H/W = 0, H = W , dim log(kS) = s− 1. ut

Corollary 4.17. The group of global units of a number field k is isomorphic
to µ(k)×Zr1+r2−1, where µ(k) is the roots of unity, r1 is the number of real
embeddings, r2 is the number of complex embeddings.
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