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Chapter 1

Group Theory

1.1 Aug. 28, 2019

1.1.1 Groups

Definition 1.1.1. A binary operation on a set S is a map m : S × S → S. If a, b ∈ S, we
write m(a, b) = a? b or ab or a · b. a? b ∈ S by definition. We write (S, ?) in place of (S,m).

Definition 1.1.2. A group (G, ?) is a set G with the binary operation ? such that

1. ∀a, b, c ∈ G, (a ? b) ? c = a ? (b ? c)

2. ∃e ∈ G such that a ? e = a = e ? a

3. ∀a ∈ G, ∃b ∈ G such that a ? b = e = b ? a

Example 1.1.3. 1. (Z,+), Z := integers

2. F be a field, (F,+) : (Q,+), (R,+), (C,+), etc.

Definition 1.1.4. A group G is abelian if a ? b = b ? a.

Notation: For a1, . . . , an ∈ G, set a1, . . . , an = (a1, . . . , an−1)an. Associativity implies
that the order of the parenthesis is irrelevant

If G is a group, a ∈ G, we write b ∈ G so that a ? b = e = b ? a as b = a−1 in abstract
group. In (Z,+), a−1 = a.

Proposition 1.1.5 (Cancellation Laws). Let G be a group, a, b, c ∈ G, then

(i) ab = ac implies b = c

(ii) ba = ca implies b = c

Proof. We multiply a−1 on the left for (i) and we multiply the same thing on the right for
(ii). ut
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Remark 1.1.6. (i) The identity e in a group G is unique. Indeed suppose e′ ∈ G consider
e = ee′ = e′.

(ii) For each a ∈ G, a−1 is unique. Consider cancellation laws.
(iii) ∀a ∈ G, (a−1)−1 = a. Consider multiplication by a−1 and use cancellation laws

Notation If G is a group, a ∈ G, for n > 0, an = a . . . a, where we have n factors.
a0 = 1. For n < 0, a−n = (an)−1. am+n = aman, amn = (am)n

Definition 1.1.7. Let G be a group with operation ?, a subset H of G is called a subgroup
if (H, ?) is a group.

Lemma 1.1.8. Let H be a subset of a group G, the following are equivalent

(i) H is a subgroup

(ii) H is non-empty and a, b ∈ H implies ab−1 ∈ H

(iii) e ∈ H, a, b ∈ H implies ab ∈ H, a ∈ H implies a−1 ∈ H

Proof. (i)⇒ (ii) e ∈ H, H is nonempty, then the rest follows.
(ii) ⇒ (iii) Let a ∈ H, then e = aa−1 ∈ H. e, a ∈ H, then ea−1 ∈ H. a, b ∈ H, then

b−1 ∈ H, then a(b−1)−1 ∈ H. Thus ab ∈ H
(iii)⇒ (i) If a, b, c ∈ H, then a, b, c ∈ G. So associativity follows. ut

Remark 1.1.9. For n ∈ Z, let nZ = {nk|k ∈ Z}, then nZ is a subgroup.

Proof. n = n × 1 ∈ nZ, so nZ 6= ∅. If a = nk, b = nl, then a − b = n(k − l) ∈ nZ. Then
apply lemma. ut

Proposition 1.1.10. Let H be a subgroup of Z. Then H = nZ for a unique n ∈ Z+.

Proof. Assume well ordering principle: any subset S of Z ≥ 0 has a minimal element a so
that a ≤ b for all b ∈ S

Assume division algorithm. If a, b ∈ Z, a > 0, then ∃q, r ∈ Z so that b = qa + r with
0 ≤ r < a.

Let H be a subgroup. If H = {0}, then H = 0Z. Otherwise ∃a 6= 0, a ∈ H. Since
−a ∈ H, H ∩ Z+ 6= ∅. So H ∩ Z+ 6= ∅ has a minimal element n. Then n ∈ H. so nZ ⊂ H
since nk = n+ . . .+ n ∈ H.

We are going to show H ⊂ nZ. For this, let b ∈ H. Then by division algorithm,
b = nq + r with 0 ≤ r < n. Then r = b − qn ∈ H since b, qn ∈ H, r > 0 violates the
assumption that n is minimal in H ∩Z+ 6= ∅. Therefore, r = 0. So b− qn = 0, b = qn ∈ nZ.

ut
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1.2 Aug. 30, 2019

1.2.1 More on Z

Let a, b ∈ Z, aZ + bZ = {ax + by|x, y ∈ Z}. aZ + bZ is a subgroup of Z : a ∈ aZ + bZ.
If u = xa + yb, v = x′a + y′b ∈ aZ + bZ, u − v = (x − x′)a + (y − y′)b ∈ aZ + bZ. Hence
aZ + bZ = dZ where d = 0 if a = b = 0, and d is minimal in aZ + bZ ∩ Z+.

If a, b are not both 0. Write d = (a, b) and call it the greatest common divisor (gcd) of
a and b.

Notation: if m,n ∈ Z, m 6= 0, write m | n if n = km, k ∈ Z. Notate: m | n if and only
if n ∈ mZ.

Then d | a. Indeed, a ∈ aZ + bZ = dZ. d | b similarly.
If c | a and c | b, then c | d so d ≥ c. Indeed c | a implies ax ∈ cZ. c | b implies by ∈ cZ.

Then cZ is a subgroup implies ax+ by ∈ cZ. Hence d ∈ cZ so c | d

Definition 1.2.1. If a, b ∈ Z and (a, b) = 1 we say a and b are relatively prime.

Note: (a, b) = 1 if and only if ∃x, y ∈ Z such that xa+ by = 1

Proposition 1.2.2. If a, b, c ∈ Z and a 6= 0, and a | bc, and (a, b) = 1 then a | c

Proof. (a, b) = 1 implies 1 = ax+ by. Then c = cax+ cby. To show c ∈ aZ, xac ∈ aZ and
ybc ∈ aZ since a | bc. Since aZ is a subgroup. c = xac+ ybc, so a | c. ut

Proposition 1.2.3. Let a, b be not both 0, then (a/(a, b), b/(a, b)) = 1.

Proof. Since (a, b) = xa + by. We divide (a, b), then we have (a/(a, b), b/(a, b)) = 1. Then
by our note, we get what we desired. ut

Proposition 1.2.4. Let [a, b] be the least common multiple of a, b, then (a, b)[a, b] = ab.

1.2.2 Order of elements

Definition 1.2.5. Let G be a group and let a ∈ G, let 〈a〉 = {an|n ∈ Z}. Easy to check
〈a〉 is a subgroup. It is called the cyclic subgroup of G generated by a.

Definition 1.2.6. If H is a group, let |H| be the order of H.

Definition 1.2.7. If an 6= e for all n > 0, we say that the order |a| of a is ∞. If an = e for
some n > 0, we say |a| = d, where d is minimal in Z+ so ad = e.

Note: {n ∈ Z|an = e} is a subgroup of Z. Indeed, n = 0 ∈ K, if n,m ∈ K, an = e = am,
so an−m = e, so n−m ∈ K. Hence, K is a subgroup. Now we are going to show |a| = |〈a〉|
where |a| =∞ iff |〈a〉| =∞
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Proof. Case 1: |a| = ∞. We claim that an = am for n,m ∈ Z implies n = m. Indeed,
let an = am, we can assume n ≥ m. Then an−m = e, and n − m ≥ 0. Since |a| = ∞
implying n −m is not bigger than 0, n −m = 0, which means n = m. Hence all elements
in {an|n ∈ Z} are distinct so |〈a〉| =∞

Case 2: let |a| = d < ∞. let S = {e, a . . . an−1}. Then S = 〈a〉. Indeed, if an ∈ 〈a〉,
then n = qd + r, 0 ≤ r < d and an = aqd+r = (aq)dar = ear = ar ∈ S. S ⊂ 〈a〉 is clear,
so S = 〈a〉. Let ai, aj ∈ S, with j ≥ i. If ai = aj , then aj−1 = e. So j − i = 0. Since d is
minimal among n > 0 with an = e, hence, S has d distinct elements. So |S| = |〈a〉| = d,
and |a| = |〈a〉|. ut

Definition 1.2.8. A group G is cyclic if G = 〈a〉 for some a ∈ G.

Example 1.2.9. Z is cyclic. Since Z = 〈1〉

Note: if |a| = d, then {n ∈ Z|an = d} is a subgroup of Z, and {n ∈ Z|an = e} = dZ.

Proposition 1.2.10. (adaptation of Ash) Let G be a group, a ∈ G, let a ∈ G has order
d <∞. Let k ∈ Z, then |ak| = d/(k, d).

Proof. Certainly (ak)d/(k,d) = akd/(k,d) = (ad)k/(k,d) = e. Hence |ak| ≤ d/(k, d). Show
(ak)m = e then d/(k, d) | m so |ak| = d/(k, d) since (k, d) | k. Note d/(k, d) | k/(k, d). From
above we know that (d/(k, d), k/(k, d)) = 1 so we have what we desired. ut

Proposition 1.2.11. Let G = 〈a〉 be a finite cyclic group with n elements. Then ∀k | n, ∃a!
subgroup Hk of G such that |Hk| = k and |Hk| = 〈an/k〉. Every subgroup of G is Hk for
some k dividing n.

Proof. Existence: |an/k| = n/(n, k) by the last proposition, but n/k | n so n/(n, k) = n/k.
|an/k| = k. Let Hk = 〈an/k〉. Then |Hk| = k. Let H ⊂ G be a subgroup, if H = e, then
H = 〈an〉 = H1. If not, ∃al ∈ H with 0 < l < n. Choose m > 0 minimal so that am ∈ H.
Then 〈am〉 in H. Show that H = 〈am〉. If x ∈ H, x = al. l = qm+ r with 0 ≤ r < m. Then
al = aqm+r = aqmar ≤ 0. ar = (aqm)−1 ∈ H. By minimality of m, r = 0, so H = 〈am〉.
Show m | n. Let d = (m,n), d = xm + yn, x, y ∈ Z. Then ad = amx since an = e. Hence
ad ∈ H and d ≤ m. By minimality of m, m = d. Therefore m | n. ut

1.3 Sep. 2, 2019

1.3.1 Examples of groups

Definition 1.3.1. A field (F,+, ·) is a set with 2 binary operations such that

1. (F,+) is an abelian group

2. (F ′, ·) is a abelian group

3. identity 0 of F is not identity 1 of F

5



4. a(b+ c) = ab+ ac,∀a, b, c ∈ F

Definition 1.3.2. Let F be a field, and let n > 0, and let un(F ) = {z ∈ F |zn = 1}, where 1
is the identity of (F ′, ·), then un(F ) is a subgroup of F ′. un(C) = {e2πki/n|k = 1, . . . , n− 1}
is defined as the nth roots of unity, where eiθ = cos θ+ i sin θ. Then the roots of unity in C
is a cyclic group of order n with generator ζ = e2πi/n

Definition 1.3.3. The Orthogonal group O(n, F ) = {A ∈M(n, F )|A×AT = In}

Notation: Frequently write AB in place of A×B.

Example 1.3.4. 1. (Zn,+), where Zn = {0, 1, 2, ..., n− 1} integers mod n. Will assume
familarity, carefully later. (Zn,+) is cyclic and 1 is the generator

2. Let F be a field (Q,R,C). Let · = multiplication on F . Let F ′ = F − {0}. Then
(F ′, ·) is a group by field axioms

3. Let F be a field, n ∈ Z+. M(n, F ) is the n× n matrices with entries in F . M(n, F )
is a group under matrix addition.

4. Let A,B ∈ M(n, F ), then A × B ∈ M(n, F ). Set GL(n, F ) = {A ∈ M(n, F )|A
is invertible} = {A ∈ M(n, F )| det(A) 6= 0}. Therefore, (GL(n, F ),×) is a group.
Check: A,B ∈ GL(n, F ), A×B ∈ GL(n, f) since det(AB) = det(A) det(B). If n ≥ 2,
then GL(n, F ) is nonabelian. If |F | = q < ∞, then |GL(n, F )| =

∏n−1
i=0 (qn − qi).

Idea: A is invertible if each column is linearly independent. So choosing a matrix in
GL(n, F ) is same as choosing an n-tuple of linearly independent vectors. a1 cannnot
be chosen as 0, and a2 is chosen not to be F · a1 and so on.

5. Let A ∈ M(n, F ). Let AT =transpose of A. The orthogonal group is a group and is
a subgroup of GL(n, F ).

1.4 Sep. 4, 2019

If det(A) = 1, then A is a rotation, if det(A) = −1, then A is a reflection. And sα =
R(α)sR(−α).

Definition 1.4.1. If f : S → T is a map of sets, then f is

(i) Injective: if f(x1) = f(x2) =⇒ x1 = x2 for x1, x2 ∈ S (one to one)

(ii) Surjective: if ∀y ∈ T, ∃x ∈ S such that f(x) = y (Onto)

(iii) Bijective: if f is injective and surjective (one-to-one corespondence).

Lemma 1.4.2. If f : S → T, g : T → W be maps of sets. Define g ◦ f : S → W by
(g ◦ f)(x) = g(f(x))

1. f, g injective implies g ◦ f injective
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2. f, g surjective implies g ◦ f surjective

3. f, g bijective implies g ◦ f bijective

4. If f is bijective then there exists q : T → S such that f ◦ q = q ◦ f = x, q is called the
inverse of f .

Definition 1.4.3. A(S) = {f : S → S|f is bijective}.

Lemma 1.4.4. A(S) is a group with group operation composition.

We continue the examples

Example 1.4.5. 6 The regular n-gon Tn is the n-gon with vertices (in polar coordinates
(1, 0), (1, 2π/n), . . . (1, 2π(n−1)/n). Let the dihedral group D2n = {A ∈ O(2)| a maps
vertices of Tn to vertices of Tn}. D2n = {I, r, r2, . . .} ∩ {s, sr, . . .}. Therefore, the
rotations and reflections. D2n = {s, r|sr = r−1s, rn = e, s2 = e} is a subgroup of
O(2).

7 Symmetric Groups: Let S be a set possibly infinite. Let S = {1, . . . , n}, A(S) = Sn
the symmetric group.

1.5 Sep. 6, 2019

Definition 1.5.1. If σ ∈ Sn, supp(σ) = {i|σ(i) 6= i}. A k-cycle is an element with
supp(σ) = {i1, . . . , in} ∈ {1, . . . , k} such that σ(ii) = i2, . . . , σ(ik) = σ(i1). We write the
above k-cycle as (i1 i2 . . . ik). We call 2-cycles transpositions. A transposition τ is called
simple if τ = (i i + 1) for some i ∈ {1, . . . , k}. If σ, τ ∈ Sn we say that they are disjoint if
supp(σ) ∩ supp(τ) = ∅.

Results:

1. If σ, τ ∈ Sn are disjoint, then στ = τσ.

2. If σ ∈ Sn, then σ can be written as a product of disjoint cycles. σ = σ1 . . . σk where
σ is a n-cycle. Further, the cycle decomposition it in a unique way up to reordering.

3. σ is a k-cycle, then |σ| = k for this compute σk = i.

4. σ has cycles decomposition σ = σ1 . . . σk, where l(σ) = n, then |σ| = lcm(n1, . . . , nk).

5. if σ is a k-cycle, then σ = (i1 i2) . . . (ik−1 ik).

6. if σ ∈ Sn, σ is a product of transpositions by 2 and 5.

7. if σ ∈ Sn and τ = (i1 . . . ik) then στσ−1 = (σ(i1) . . . σ(ik))

8. |Sn| = n!.
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1.5.1 Cosets and Homomorphisms

Definition 1.5.2. Let G be a group with subgroup H. If a ∈ G, the left coset aH =
{ax|x ∈ H}, the right coset Ha = {xa|x ∈ H}

Let G/H = {aH|a ∈ G}, H\G = {Ha|a ∈ G}

Definition 1.5.3. For a ∈ G, wite La : G→ G for the map La(x) = ax.

Lemma 1.5.4. The map La : H → aH is bijective. In fact, |H| = |aH|.

Proof. Let y ∈ aH, so y = ax. Then y = La(x). So surjective. Injective: let x!, x2 ∈ H,
La(x1) = la(x2) implies ax1 = a2, so x1 = x2. ut

Lemma 1.5.5. Let a, b ∈ G. Then either aH = bH or aH ∩ bH = ∅

Proof. Suppose aH ∩ bH 6= ∅. Let y ∈ aH ∩ bH. Then y = ax = bz, x, z ∈ H. Therefore,
a = bzx−1, and zx−1 ∈ H, then aH ⊂ bH. Interchanging a and b, we get bH ⊂ aH.
Therefore, aH = bH ut

Notation: Let S be a set with subsets {Ti}. We say S = tTi if S = ∩Ti and Ti∩Tj = ∅.
Then |S| =

∑
|T |.

If G is a group with subgroup H and {aH|i ∈ I} are the distinct left cosets, then G =
taiH. Indeed, if i 6= j, aiH 6= ajH by distinctness, so aiH∩ajH = ∅. If b ∈ G, b = be ∈ bH,
then bH = aH.

Theorem 1.5.6. Let G be a group with subgroup Hi, i ∈ I, then |G/H| = |G|/|H|, in
particular |H| | |G|.

Proof. Let a1H, . . . , akH be the distinct left cosets. By the remark, G = a1 t . . . t ak.
Therefore, |G| =

∑
|aiH| = k|H|. ut

Corollary 1.5.7. Let G be a finite group and let a ∈ G. Then |a|/|G| and a|G| = e.

Proof. We checked that |a| = |〈a〉| | G by Lagrange Theorem. Thus |G| = n|a| so a|G| =
en = e. ut

Definition 1.5.8. The index of a subgroup H of G is |G/H|. We say the index of H in G
is |G : H|.

1.6 Sep. 9, 2019

let n ∈ Z+, for a, b ∈ Z, a ≡ b mod n if n/(a − b) is an equivalence notation, Let Zn
is an equivalence class Zn = {0̄, 1̄, . . . , ¯n− 1}. We observe that (Z×n , ·) is a group under
multiplication.

Let φ(n) = |Z×n | < n. If p is prime, Z×p = {0̄, 1̄, . . . , ¯p− 1}. So φ(p) = p− 1.
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Corollary 1.6.1. (Euler’s Theorem) If a ∈ Z and (a, n) = 1, then aφ(n) ≡ 1 mod n. If p
is prime and a ∈ Z, then ap ≡ a mod p.

Proof. Since |Z×n | < n, then Z×n implies āφ(n) ≡ 1 mod n. Let a ∈ Z, p is a prime, then
(a, p) | p, so (a, p) = 1 or p. If (a, p) = p, then p | a. if (a, p) = 1, then ap−1 ≡ 1 mod p.
Hence ap ≡ a mod p. If p | a, then a ≡ 0 mod p so ap ≡ 0 ≡ a mod p. ut

1.6.1 Cosetology

Proposition 1.6.2. Let H ⊂ G be a subgroup, let a, b ∈ G then the following are equivalent:

1. aH = bH

2. b = ax, x ∈ H

3. a−1b ∈ H

Proof. 1⇒ 2 since b = be ∈ bH = aH, so b = ax, x ∈ H
2 ⇒ 1 If b = ax, then bH = axH ∈ aH since x ∈ H. so xH = H. aH ∩ bH 6= ∅, so

bH = aH. By Lemma 2 from last time
2⇒ 3 b = ax, a−1b = a−1ax = x, similarly for the other direction, ut

Similarly for right cosets.
Notation: For S ⊂ G, a subset, and a ∈ G. Let aS = {ax|x ∈ S}, and Sa = {xa|x ∈ S}

Remark 1.6.3. If a, b ∈ G, S as above, then a(bS) = (ab)S, (Sa)b = S(ab), a(Sb) = (aS)b

Definition 1.6.4. For G group, H subgroup of G, [G : H] = |G/H| and is called the index
of H in G. [G : H] =∞ is allowed.

Proposition 1.6.5. Let G be a group with subgroup H,K with K ⊂ H, then [G : K] =
[G : H][H : K].

[This follows by Lagrange’s Theorem [G : H] = |G|/|H| if G is finite]

Proof. Let {aiH|i ∈ I} be the distinct left cosets of H in G, {bjK|j ∈ J} be the distinct left
cosets of K in H. S = {ai|i ∈ I}, T = {bj |j ∈ J}. Then we define a map φ : S×T → G/K
by φ(ai, bi) = aibjK. We claim that φ is bijective. Surjective: Let xK ∈ G/K, then
xH ∈ G/H, so xH = aiH for some i ∈ I. By cosetology, x = aiy for some y ∈ H. Then
yK ∈ H/K, then yK = bjK for some j ∈ J . Then x = aibjz, where y = bjz, z ∈ K.
Therefore, xK = aibjK = φ(ai, bj). φ is injective: let φ(ai, bj) = φ(as, bt), s ∈ I, t ∈ J .
Then aibjK = asbtK. Therefore, aibj = asbtz for some z ∈ K. so ai = asbtzb

−1
j . Thus

aiH = asH by cosetology. So i = s by the choice of ai being distincts of {aiH}. Therefore,
aibjK = aibtK, then bjK = btK. Thus j = t. ut

Definition 1.6.6. A subgroup N of a group G is normal if aNa−1 ⊂ N ∀a ∈ G. aNa−1 =
{ana−1|x ∈ N}.
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Remark 1.6.7. Let N ⊂ G be a subgroup, then the following are equivalent

1. N is normal in G

2. aNa−1 = N, ∀a ∈ G

3. aN = Na,∀a ∈ G.

Proof. 2⇒ 1 is clear, 3⇒ 2 is also clear. 1⇒ 2 since aNa−1 ⊂ N , thus aN ⊂ Na, ∀a ∈ G.
But a−1 ∈ G and a = (a−1)−1, so a−1Na ⊂ N, ∀a ∈ G, =⇒ aa−1Na ⊂ aN,Na ⊂ aN . ut

Example 1.6.8. 1. G is Abelian, then aH = Ha, ∀ subgroups H of G, and a ∈ G, so
H is normal.

2. G = D2n, N = 〈r〉. if g ∈ G, and x ∈ N , since gxg−1 ∈ N since det(gxg−1) =
det(g) det(x) det(g−1) = det(x) since x ∈ N . Therefore, gxg−1 ∈ N , since N has
determinant 1.

Remark 1.6.9. By problem set 2 number 12, a subgroup of index 2 is normal, so N is Ex2
is normal in D2n automatically.

1.7 Sep. 11, 2019

If N is a normal subgroup, we can write G/N into a group. Let aN, bN ∈ G/N be the left
cosets. We’d like to define aNbN = abN . To do this, we must ensure abN depends only on
aN and bN and not on a, b. Let aN = a1N , bN = b1N . Then a1 = ax, b = by, x, y ∈ N .
Then a1b1N = axbyN . But xb ∈ Nb = bN , so xb = bx, x1 ∈ N , thus a1b1N = abxyN =
abN , since x, y ∈ N . Thus is a well defined binary operation on G/N .

Proof that G/N is a group. Everything is ingerited from similar property on G. ut

Usually, computing G/N is not transparent.

Example 1.7.1. G = Z, N = nZ.(Z/nZ, ·) is fairly transparent.

Notation: Usually we write aNbN = aN · bN .

1.7.1 Group homomorphism

Definition 1.7.2. Let φ : G → H be a map between two groups. φ is called a group
homomorphism (hom) if φ(xy) = φ(x)φ(y), ∀x, y ∈ G.

Example 1.7.3. 1. G be a group N normal in G. Define π : G→ G/N by π(a) = aN .
π is a group homomorphism. Check π(ab) = abN = aNbN = π(a)π(b).

2. M is a subgroup of G. Define j : M → G, by j(a) = a. Clear from defition that j is
a group homomorphism.
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3. Let n ∈ Z, define φ : Z→ Z by φ(a) = na. Then φ is a group homomorphism. Every
group homomorphism φ : Z→ Z is φ = φn for some n.

4. Let f be a field, define f : Sn → GL(n, F ) as follows, for σ ∈ Sn, let f(σ) be matrix
so that f(σ)(e) = eσ(i). This determines f(σ) uniquely since e1, . . . , en is a basis of F .
This matrix are porentation matrices, exactly one entry of each columns is nonzero
and that entry is 1. f is a group homomorphism.

5. det : GL(n, F )→ F×, A 7→ det(A). This is a group homomorphism since det(AB) =
det(A) det(B), ∀A,B ∈ GL(n, F ).

Remark 1.7.4. Let φ : G → H be a group hom. Then φ(eG) = eH , ∀a ∈ G,φ(a−1) =
φ(a)−1.

Notation: Let φ : G → H be a group. If X ⊂ G, let φ(X) = {φ(a)|a ∈ X}. If
Y ⊂ H let φ−1(Y ) = {a ∈ G|φ(a) ∈ Y }, there doesn’t exists φ−1 : H → G. We say φ is a
monomorphism is φ is injective. We say φ is a epimorphism is φ is surjective. We say φ is
a isomorphism is φ is bijective.

Remark 1.7.5. If φ : G1 → G2 and ψ : G2 → G3 are group hom’s. Then ψ ◦ φ : G1 → G3

is a group hom.

Example 1.7.6. Let G1 = Sn, G2 = GL(n, F ), G3 = F×. Define sgn : Sn → F× = det ◦f .
So sgn is a group homormophism by remark.

Proposition 1.7.7. Let φ : G→ G2 be a group hom.
Then (i) if H ⊂ G1 is a subgroupm then phi(H) is a subgroup. If N ⊂ G1 is a normal

subgroup, and φ is surjective, then φ(N) is normal in G2.
(ii) If K ⊂ G2 is a subgroup, then φ−1(K) is a subgroup of G1, If N ⊂ G2 is a normal

subgroup, and φ is surjective, then φ−1(N) is normal in G1. (Don’t need φ to be surjective)

1.8 Sep. 13, 2019

Proposition 1.8.1. For a group M , {eM} and M are normal subgroups

Let φ : G→ H be a group homomorphism

Definition 1.8.2. The image of im(φ) = φ(G) = {φ(x)|x ∈ G}. This is a subgroup. The
kernel ker(φ) = φ−1({eH}) = {x ∈ G|φ(x) = eH}. ker(φ) is a normal subgroup.

Example 1.8.3. 1. Let SL(n, F ) = {A ∈ GL(n, F )| det(A) = 1}. SL(n, F ) = ker(det), det :
GL(n, F ) → F×, A → detA. SL(n, F ) is normal in GL(n, F ) and An is normal in
Sn.

2. π : Z→ Zn, π(a) = a mod π, π is a group homomorphism and ker(π) = {n ∈ Z|a ≡ 0
mod n}
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Proposition 1.8.4. Let φ : G → H be a group homomorphism, then φ is injective iff
ker(φ) = {eG}

Proof. ⇒ φ is injective then φ(eG) = eH , then eG ∈ ker(φ) If x ∈ ker(φ), φ(x) = eH , so
φ(x) = φ(eG), then x = eG
⇐ Let x, y ∈ G, if φ(x) = φ(y), Then φ(xy−1) = eH , so xy−1 ∈ ker(φ) = {eG} ut

Let S be a set with equivalence relation ∼. This means for a, b, c ∈ S, a ∼ a, a ∼ b =⇒
b ∼ a, a ∼ b, b ∼ c =⇒ a ∼ c. For a ∈ S, let [a] = {b ∈ S|b ∼ a} =equivalence class of S.
Let S/ ∼= {[a]|a ∈ S}. If [ai] and [ai] are in S/ ∼, then either [ai] ∩ [aj ] = ∅ or [ai] = [aj ].
If {[ai]|i ∈ I} are distinct equivalence classes, then S = t[ai]. Finally, define π : S → S/ ∼
by π(a) = [a].

For S, T sets, let Map(S, T ) = {φ : S → T |φ is a map}. If f : R → S is a map, we
get f× : Map(S, T ) → (R, T ). f×(φ) = φ ◦ f : R → T . If g : T → U is a map, we get
g×Map(S, T )→ (S,U), g×(φ) = g ◦ φ. Idea: Map(S/ ∼, T ) = {φ ∈Map(S, T )|φ(a) = φ(b)
if a ∼ b} = Map∼(S, T ).

Lemma 1.8.5 (Meta-Lemma). π∗ : Map(S/ ∼, T )→Map(S, T ) is bijective.

S/ ∼ is an example of a quotient. Quotient objects should always have the meta-lemma
property.

1.8.1 Factor Theorem

Theorem 1.8.6. Let G be a group with a normal subgroup N . For groups M,L, let
Hom(M,L) = {φ : M → L|φ is a group hom.}. Let π : G → G/N be π(a) = aN .
Let HomN (G,H) = {φ ∈ Hom(G,H)|φ(x) = eH , ∀x ∈ N}. Then π∗ : Hom(G/N,H) →
HomN (G,H) is bijective

Proof. If φ ∈ Hom(G/N,H), π∗φ : G→ H is a group hom. Since π∗(φ) = φ◦π group hom.
If x ∈ N, π∗(φ)(x) = e. By meta lemma, π∗ is bijective, π∗ is injective if χ ∈ Hom(G,H),
χ̄ from meta-lemma. Then χ̄(aNbN) = χ̄(abN) = χ(a)χ(b) = χ̄(aN)χ̄(bN). ut

Theorem 1.8.7 (First Isomorphism Theorem). Let φ : G → H be a surjective group
homomorphism with ker(φ) = K. Then the map φ̄ : G/K → H, φ̄(aK) = φ(a) is a group
isomorphism. Hence G/K ∼= H.

Proof. We know φ̄ is a group homomorphism, φ̄ is surjective if b ∈ H, b = φ(a) = φ̄(aK). φ̄
is injective: let aK ∈ ker(φ̄). Then eH = φ̄(aK) = φ(a), so a ∈ K and aK = eK = eG/K .
So injective. ut

Example 1.8.8. φ : R× → R×, φ(a) = a2, φ is a group homomorphism. ker(a) = {a|a2 =
1}. im(φ) = R>0. Can replace Φ : R× → R>0. So R×/{±1} ∼= R>0.

More generally, if φ : G→ H is a group homomorphism, and K = ker(φ), then G/K is
isomorphic to im(φ), in particular, |im(φ)| = |G|/|K|, |G| is finite.
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1.9 Sep. 16, 2019

Example 1.9.1. 1. F a field, det : GL(n, F )→ F×. Then GL(n, F )/SL(n, F ) ∼= F×.

2. Let sgn : Sn → R×. Then Sn/An ∼= Z2

3. G = 〈a〉, if |G| =∞, then G ∼= Z

4. G = 〈a〉, if |G| = n <∞, then G ∼= Z/nZ

Consequence: If p is prime, |G| = p, then G ∼= Z/pZ.

Proof. Let a ∈ G− {e}, then 〈a〉 is a subgroup of G, so |〈a〉| | p. Since |〈a〉| 6= 1, |〈a〉| = p.
Thus G ∼= Z/pZ. ut

Example 1.9.2. If a | b, then aZ/bZ ∼= Z/ baZ.

Theorem 1.9.3 (Second Isomorphic Theorem). Setting: G is a group, H,N are subgroups
of G, N is normal in G. Let HN = {xy|x ∈ H, y ∈ N}. Then H/H ∩N ∼= HN/N .

Lemma 1.9.4. HN is a subgroup of G, N is normal in HN , H ∩N is normal in H.

Proof to the theorem: Need φ : H → HN/N , φ(x) = xN . φ is a group homomorphism as
H → G→ G/N . ker(φ) = {x ∈ H|xN = eN} = {x ∈ H|x ∈ N} = H ∩N . φ is surjective:
let aN ∈ HN/N , so a = xy, x ∈ H, y ∈ N . Then aN = xyN = xN since y ∈ N . Thus
aN = φ(x). Thus H/H ∩N ∼= HN/N ut

Let G be a group with normal subgroups H,N , and suppose H ⊃ N . Let π : G→ G/N
be x 7→ xN . Then π(H) = H/N is normal since π is surjective.

Theorem 1.9.5 (Third Isomorphism theorem). (G/N)/(H/N) ∼= G/H.

Proof. Consider πH : G → G/H. πH(a) = aH, quotient group homomorphism. If x ∈ N ,
πH(x) = xH = eH since x ∈ N ⊂ H. Thus πH(N) = e. So by first isomorphism theorem,
we have π̄H(aN) = aH, a group homomorphism. πH surjective implies π̄H is surjective.
ker(π̄H) = {aN |aH = eH} = H/N . Thus we have isomorphism theorem. ut

1.10 Sep. 18, 2019

Theorem 1.10.1 (Correspondence Theorem). Let N be a normal subgroup of G. Then

1. Then φ : SN (G) → S(G/N) given by φ(H) = π(H) is bijective. Its inverse is ψ :
S(G/N)→ SN (G) given by ψ(H̄) = π−1(H).

2. φ and ψ preverse inclusions. If H1, H2 ∈ SN (G), then H1 ⊂ H2 iff φ(H1) ⊂ φ(H2)
and similarly for H̄1, H̄2 ∈ S(G/H)

3. If H ∈ SN (G), then H is normal in G iff π(H) is normal in G/N .
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Proof. (i) Show ψe(H) = H, and ψψ(H̄) = H̄. Then φ is bijective and inverse of ψ.
Set theory: let f : X → Y be a map of sets. Let Z ⊂ X, X ⊂ Y . Then

1. Z ⊂ f−1f(Z) with equality if f is injective.

2. ff−1(V ) ⊂ V .

Since φψ(H̄) = ππ−1(H̄) = H̄. By (ii) above since π is surjective. ψφ(H) = π−1π(H) by
(ii) above let a ∈ π−1π(H) so π(a) = π(b) so b ∈ H. So ab−1 ∈ ker(π) ⊂ N . Therefore we
have π−1π(H) = H

(ii) H1 ⊂ H2, therefore π(H1) ⊂ π(H2) is clear. Conversely, if π(H1) ⊂ π(H2), then
π−1π(H1) ⊂ π−1π(H2). But in proof of (1), we showed N ⊂ Hi implies π−1π(H1) = H1.
Thus H1 ⊂ H2

(iii) If H ∈ SN (G), is normal in G, then π(H) is normal in G/N . If π(H) is normal,
H = π−1π(H) is normal. ut

Remark 1.10.2. Subgroups of a finite cyclic group is cyclic. Alternative proof: LetH = 〈a〉
be cyclic of order n, then φ : Z→ H, φ(n) = an is a surjective group homomorphism with
kernel nZ. Then Z/nZ ∼= H, but all subgroups of Z are cyclic, so all subgroups of Z/nZ
are π(k), k is cyclic so π(k) is cyclic.

1.10.1 Products

Let G1, . . . , Gn be groups, let G = G1 × . . . × Gn = {(g1, . . . , gn)|gi ∈ Gi}. Then G has a
binary operation, (g1, . . . , gn)(x1 . . . , xn) = (g1x1, . . . , gnxn). (G, ·) is a group.

Example 1.10.3. G = (R,+) , then G1 × . . . × Gn = (Rn,+). Can take Gi = Z. Then
G1 × . . .×Gn = Zn.

More generally, if {Gi}i∈I is a family of groups, we can let G =
∏
i∈I Gi{(xi)|x ∈ G},

then (xi) · (yi) = (xiyi). Then G is a group. e = (ei), (xi)
−1 = (x−1i ).

Let G =
∏
Gi has a group homomorphism φ : G → Gj given by φ(xi) = xj . Also we

have a group homomorphism ij : G→ G, such that ij(xj) = (yj) wjere yj = xj , or yj = eGi .
Thus we know G1, . . . Gn are normal in G.

1.11 Sep. 20, 2019

Remark 1.11.1. Let G be a group, x, y ∈ G, we let [x, y] = xyx−1y−1 be the commutator
of G, then [x, y] = e iff xy = yx.

Remark 1.11.2. let G be a group with normal subgroups H,K with H ∩ K, then if
x ∈ H, y ∈ K, then xy = yx

Proof. Consider [x, y] ∈ K, and [x, y] ∈ H. Then [x, y] ∈ H ∩K = e. Thus xy = yx. ut
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Proposition 1.11.3. let G be a group with normal subgroups H,K, with H ∩K. Define
m : H ×K → G by m(h, k) = hk, with h ∈ H, k ∈ K. Then

1. m is an injective group homomorphism and im(m) = HK. So H ×K ∼= HK

2. If G = HK, then m is an isomorphism

Proof. 2 is clear from 1. Proof of 1. Let x1 = (h1, k1), x2 = (h2, k2) ∈ H × K. Then
m(x1, x2) = m(h1h2, k1k2) = h1h2k1k2 = h1k1h2k2 = m(x1)m(X2). Thus m is a group
homomorphism, and ker(m) = {(h, k)|hk = e}. If hk = e, then h = k−1 = e. Thus,
ker(m) = e. Thus injective. Then im(m) = HK. ut

Application: Let G be a group of order 4, then either G ∼= Z4 or G ∼= Z2 × Z2.

Proof. let a ∈ G, then a4 = e. Thus |a| | 4. And a 6= e. Thus |a| = 2, 4. If |a| = 4,
then |〈a〉| = |G|, so 〈a〉 = G. So G is cyclic and G ∼= Z4. Otherwise, a2 = e. If so, let
c, b ∈ G− {e}, then |b| = |c| = 2. Let H = 〈b〉, K = 〈c〉. Then H and K have index 2. So
H = {e, b}, K = {e, c}. Then by proposition, we have G ∼= Z2 × Z2. ut

Remark 1.11.4. Let G be a group, g ∈ G. Define cg : G → G by cg(x) = gxg−1

conjugation by g. cgch = cgh, ce = id(G). So cg is bijective. Finally cg : G → G is a group
homomorphism. Since cg(xy) = cg(x)cg(y). Hence, if A(G) = cg, A(g) ∈ Aut(G). Then
A : G→ Aut(G), A(g) = cg and A is a group homomorphism. ker(A) = {g ∈ G|cg = id} =
{g ∈ G|gxg−1 = x}. Thus gx = xg. We call this the center Z(G) = {g ∈ G|gx = xg,∀x ∈
G}. Conclude that the center is the normal subgroup of G.

1.11.1 Group actions

Let G be a group, S be a set.

Definition 1.11.5. A G-action on X is a map α : G × X → X, write as α(g, x) = g · x
such that

1. if g!, g2 ∈ G, x ∈ X, then (g1g2)x = g!(g2x)

2. e · x = x,∀x ∈ X.

Example 1.11.6. 1. If G is a group, X = G, then α(g, x) = gx.

2. Let G be a group, X = G. Then α(g, x) = gxg−1.

3. G = Sn, X = {1, . . . , n}. α(σ, i) = σ(i), i ∈ X.

4. G = GL(n, F ), F field. X = Fn. Then α(g, r) = g(r).

Remark 1.11.7. A group action on a set X is the same as a group homomorphism φ :
G→ A(X). Let g ∈ G, define φ(g) : X → X by φ(g)(x) = gx. φ(gh) = φ(g)φ(h), ∀g, h ∈ G,
then φ(g) ∈ A(x) because φ(g) ◦ φ(g−1) = φ(e). And thus we have a group homomorphism
φ : G→ A(G). Converse is true as well.
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1.12 Sep. 23, 2019

Theorem 1.12.1 (Cayley’s Theorem). If G is a finite group, G is isomorphic to subgroup
of Sn for some n

Proof. use the left multiplication of G on itself, this gives φ : G → A(G), φ(g) = lg,
lg(x) = gx. Then ker(φ) = {g ∈ G|gx = x} = {e}. Therefore, G ∼= im(φ) a subgroup of
A(G). Since G is finite, A(G) = Sn. Thus, G is isomorphic to a subgroup of S|G|. ut

Example 1.12.2. Let G = D8, G acts on vertices of a polygon T4, so G can be regarded
as a subgroup of S4. So D8 ⊂ S4. But by Cayley’s Theorem, D8 ⊂ S8

G can also acts on G using right multiplication, (a, x) → xa−1. This is also a group
action. Every left action can be converted to a right action by taking the inverse.

Example 1.12.3. G acts on G by conjugation (g, x)→ gxg−1.

Example 1.12.4. G a group, H its subgroup let X = G/H = {aH|a ∈ G}, where
(g, aH)→ gaH. This is a group action.

Example 1.12.5. Suppose G is a group of order 36 with a subgroup H of order 9. We
get φ : G → A(G/H). But |G/H| = |G|/|H| = 4. Therefore, |G| = 36, A(G/H) ∼= S4, so
|A(G/H)| = 4! = 24. Hence φ is not injective. But ker(φ) ⊂ H, so |ker(φ)|/|H| = 9. Thus
|ker(φ)| = 3, 9. Conclude that G has a proper normal subgroup of order 3 or 9

Definition 1.12.6. Let G act on X, let x ∈ X, (i) the orbit G · x is G · x = {gx|g ∈ G}.
The stablizer Gx = {g ∈ G|gx = x}, G · x is called B(x) and Gx is called G(x))

Remark 1.12.7. The stablizer is a subgroup of G. Indeed, e·x = x so e ∈ Gx, let g, h ∈ Gx.
If g ∈ Gx, g · x = x, then g−1gx = g−1x so g−1 ∈ Gx.

Theorem 1.12.8. let G act on a set X, and let x ∈ X. Then the map φ : G/Gx → X,
φ(gGx) = G · x is a well-defined bijection.

Proof. φ is well defined, φ depends only on gGx, not on G. If gGx = hGx, then h ∈ Gx,
h = ga, so h · x = (ga) · x = g · (a · x). Then φ(hGx) = φ(gGx), g, h ∈ G. Then g · x = h · x.
Thus g−1h ∈ Gx. So hGx = gGx. Thus injective. Surjective is clear. ut

We write the above as G/Gx ∼= G · x. Note: if G is finite, |G|/|Gx| = |G · x|. Helps
answer the questions: How can we descrive G/H? Answer: if we find G action on X and
x ∈ X with Gx ∼= H, then G/H is bijective to G · x.

Definition 1.12.9. G action on X is called transitive, if ∃x ∈ X with G · x = X, if so,
G · x = X, for all x ∈ X.

Example 1.12.10. Sn acts on X = {1, . . . , n} by (σ, i) → σ(i) with a subgroup. Let
x = n ∈ X, G · x = Sn · x = X. Transitivity. Indeed, can take σ = (i, n) so σ(n) = i.
Gn = {σ ∈ Sn|σ(n) = n} ∼= Sn−1, embedded in Sn as permutations fixing n. Conclude
Sn/Sn−1 ∼= {1, . . . , n}
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Example 1.12.11. Let G = D2n acts on vertices {x1, . . . , xn} at Tn by dihedral group
action. Set x1 = (1, 0). Gx = {σ ∈ D2n|σ(x1) = x1} = {e, s}. G · xj = {x1, . . . , xn} via
rotations, bijection to D2n/{e, s} ∼= {x1, . . . , xn}

Example 1.12.12. A matrix A = (aij) is upper triangular. Let B(n, F ) =upper triangular
matrices. Instead, we’ll find an action on GL(n, F ) on a set X such that ∃x ∈ X with
GL(n, F )x = B(n, F ) so B(n, F ) is a subgroup of stablizers.

1.13 Sep. 25, 2019

Let {e1, . . . en} be the standard basis of Fn. Let Vi be generated by the basis. Vi ∈ Gr(i, Fn).
Note V1 ⊂ V2 ⊂ · · · ⊂ Vn = Fn. If G = GL(n, F ), G acts on Gr(1, Fn) × Gr(2, Fn) × · ×
Gr(n, Fn), by (g, (U1, . . . , Un)) = (g(U1), . . . , g(Un)). Can check this is a group action. We
claim that B(n, F ) = Gx = {g ∈ G|g · x = x}. Hence B(n, F ) is a subgroup of G.

1.13.1 Sylow Theorems

Definition 1.13.1. Let G be a group of order n = prm as above. We say a subgroup P of
G is a p-Sylow subgroup if |P | = pr

We are going to prove that if G is finite and p is prime, G has a p-Sylow subgroup.

Remark 1.13.2. If F = Zp, N(n, F ) is a p-Sylow subgroup of GL(n, F ). |GL(n, F )| =∏n−1
i=0 (pn − pi). Thus |GL(n, F )| = pn(n−1)/2m with (p,m) = 1, then N(n, F ) is a p-Sylow

subgroup of GL(n, F ).

Definition 1.13.3. A group H is called a p-group of p prime, |H| = pk for some k.

Lemma 1.13.4. let p be a prime, n = prm with (p,m) = 1. Let t = pk. Then t = pr iff
t | n and (n/t, p) = 1. Let |G| = prm as above, let H ⊂ G be a subgroup, which is a p-group,
then H is a p-Sylow subgroup if (|G|/|H|, p) = 1

Theorem 1.13.5. 1. Every finite group G has a p-Sylow subgroup for each prime p

2. Let p be prime, let G be a finite group with a p-Sylow subgroup. Let H be a p-subgroup
of G. Then H has a p-Sylow subgroup.

The proof of this uses the injection of G/P .

1.14 Sep. 27, 2019

Remark 1.14.1. G be a group with subgroup S. G acts on X = G/S by g(xS) = gxS.
GxS = xSx−1: indeed, g ∈ GxS iff gxS = xS iff x−1gxS = S. Thus x−1gx ∈ S. g ∈ xSx−1.
If A ⊂ G is another subgroup, then A acts on X = G/S by g(xS) = gxS for g ∈ A.
AxS = GxS ∩A = A ∩ xSx−1
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Remark 1.14.2. Let G be a group, with subgroup H. Then gHg−1 = cg(H). cg(x) =
gxg−1, since cg is an automorphism of G, gHg−1 = cg(H) is a subgroup of G, and |H| =
|gHg−1|. For k ∈ Z>0, let Sk = { subgroups H by the above comments. It’s easy to check
this is a group action. The stabiliser GH of a subgroup H is GH = {g ∈ G|gHg−1}. We
call GH = NG(H), normalizer of H in G. NG(H) is a subgroup of G since it is a stabilizer.

Proposition 1.14.3. Let G be finite, with a p-Sylow subgroup P . Let H ⊂ G be a subgroup.
Then H has a p-Sylow subgroup Q

Proof. If g ∈ G and P ⊂ G is a p-Sylow subgroup. gPg−1 = cg(P ) is also a p-Sylow
subgroup. By the orbit remark, X = X1 t . . . t Xk, where they are H-orbits of X. And
|X| =

∑
|Xi|. But |X| = |G|/|P | = prm/pr = m. So p - |X|. There exists j such that

p 6= |Xj |. But if Xj = HjP , |Xj | = |H|/|H ∩ gPg−1| by stabilizer Remark. But H ∩ gPg−1
is a subgroup of gPg−1, so |H∩gPg−1| | |gPg−1| = |P | = pr. So H∩gPg−1 is a p-subgroup
of H. By Lemma, we have H ∩ gPg−1 is a p subgroup of G. ut

Theorem 1.14.4 (Sylow 1). . Let |G| = prm, (p,m) = 1. Then G has a p-Sylow subgroup

Proof. We have a injection group homomorphism G → Sn with n = |G|. For F = Zp, we
have a injection group homomorphism p : Sn → Gl(n, F ). This is a injection homomor-
phism: G→ GL(n, p). And this group has a p-Sylow subgroup. ut

Lemma 1.14.5. Let H be a p-group, for p prime. Let H act on a finite set X. Let
XH = {x ∈ X|gx = x, ∀g ∈ H}, the fixed points of H. Then |X| = |XH | mod p.

Proof. Observe that if x ∈ X, then x ∈ XH iff Hx = {x} iff |Hx| = 1. Indeed, x ∈ XH

then gx = x,∀g ∈ H,so Hx = {x} is similar Hx = {x} iff |Hx| = 1 because x ∈ Hx.
By the orbit remark, |X| =

∑
|Hxi| where Hx1, . . . ,Hxl are distinct orbits number so

|Hx1| = 1. And |Hxi| < 1 for i > q. Then |X| =
∑

1 + |Hxi|. but |Hxi| = |H|/|Hxi |. H
is a p-group, so |H| = pa, since |Hxi| = pa some ai ≤ a. For i = q + 1, . . . , k, |Hxi| > 1. So
|X| = |XH |+

∑
pai so |X| = |XH | mod p. Since pa = 0 mod p for ai > 0. ut

Theorem 1.14.6. Let |G| = prm with (p,m) = 1. (i) Let P,Q are Sylow p subgroups,then
P = xQx−1

Proof. H act on X = G/P by ai(xP ) = axP, a ∈ A, x ∈ G. Then |X| = |G|/|P | = m.
So p - |X|, but |X| = |XH | mod p. |XH | 6= 0 mod p. So |XH | 6= 0, XH 6= ∅. Let
gP ∈ XH . Then agP = gP,∀a ∈ H so H ⊂ GP . But GgP = gPg−1 by stabilizer remark.
So H ⊂ gPg−1. Similarly one can prove the other side. ut

1.15 Sep. 30, 2019

Lemma 1.15.1. Let P,Q ∈ Sylp, If P ⊂ NG(Q), then P = Q.

We consider the Q action on Sylp, by (g,Q)→ gQg−1. SylQ = {Q1 ∈ Sylp|gQ1 = Q1}.
By the lemma, SylQ = Q.
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Theorem 1.15.2. Let |G| = prm with p a prime, (p,m) = 1 as above. Let np = |Sylp|, the
number of Sylow subgroups of G. Then np | m, np ≡ 1 mod p.

Proof. We know G acts transitively on Sylp, and |Sylp| = np. Therefore, ∃ a bijection
by orbit-stablizer theorem, G/NG(P ) ∼= Sylp. Therefore, np = |Sylp| = |G|/|NG(P )| =
|G|/|NG(P )| · |NG(P )||P |. Thus np | m. Then by the lemma from last time, for action of
p-group A on a finite set X, |X| ≡ |XA| mod p. Apply to P action on Sylp. P is a p-Sylow
subgroup. Conclude that np ≡ 1 mod p. ut

Remark 1.15.3. Often the third Sylow theorem is sufficient to compute np to show np = 1.

Example 1.15.4. If |G| = 63 = 327, then n7 = 1 since n7 ≡ 1 mod 7, n7 | 9, so n7 = 1

Remark 1.15.5. Let G be a finite group, p | |G|. Then np = 1 iff any p-Sylow subgroup
of G is normal.

Proof. If np = 1, then g ∈ G, gQg−1 is a p Sylow subgroup. Thus Q = gQg−1. Let Q,P be
p-Sylow subgroups with Q normal. Then by the second Sylow theorem, ∃g ∈ G such that
Q = gPg−1, but Q = gQg−1. Thus Q = P . ut

Conclude: A group of order 63 has a normal 7-Sylow subgroup.

Definition 1.15.6. A group G is simple if it has no proper normal subgroups, i.e., no
normal subgroups besides the trivial subgroup and the group itself.

Hence a group of order 63 is not simple.

Example 1.15.7. Zp is simple for p-prime. An is simple for n ≥ 5.

Example 1.15.8. Let G be a group of order 6. Then either G ∼= S3 or G ∼= Z6.

Proof. Let A be a 2-Sylow subgroup, B a 3-Sylow subgroup. |A| = 2, A = 〈2〉, |a| = 2.
B = 〈b〉, |b| = 3. Then G acts on G/A = Ψ. Then |Ψ| = 3, we get a homomorphism
Φ : G→ A(Ψ). So Φ(g) = g × A. Then A(Ψ) ∼= S3. If ker(Φ) = 1. Then Φ : G→ Im(Φ).
Thus Im(Φ) = A(Ψ). Thus we get G ∼= A(Ψ) ∼= S3. If ker(Φ) = A, then abΨ = bΨ. So we
know that the order is 2. Thus A is normalized by B. Therefore, {e, a, b, b2} ⊂ NG(A). so
|NG(A)| ≥ 4. So |NG(A)| = 6. Also, B is normal since the index is 2. Thus |A × B| = G.
Thus Z2 × Z3

∼= G ∼= Z6. ut

Corollary 1.15.9 (Cauchy’s Theorem). Let G be finite, p be prime. Then p | |G| iff ∃a ∈ G
such that |a| = p.

Proof. One way is clear since |〈a〉| | |G|. The other way gives, if Q ⊂ G be a p-Sylow
subgroup. So |Q| = pr, r > 0 since p | |G|. Let x ∈ Q. Then |X| | |Q|, so |x| = pk. Thus,

|xpk−1| = p. ut
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1.16 Oct. 2, 2019

Corollary 1.16.1. If G is a finite, then G is a p-group if and only if ∀a ∈ G, |a| = pka

Proof. If |G| = pn, If a ∈ G, |a| | |G| = pn, thus |a| = pka for some ka.
By contradiction, if |G| = pn, ∃ a prime q 6= p so q | |G|. ∃a ∈ G such that |a| = q,

contradicting right handside. ut

Definition 1.16.2. A group G is called a p-group of ∀a ∈ G, ∃ka such that |a| = pka

Example 1.16.3. G = Zp × . . .× Zp = Z∞p . If a ∈ G, af = e, so G is a p-group.

1.16.1 The class equation

Let a group A act on a finite set X. XA = {x ∈ X|g · x = x,∀g ∈ A}. Then |X| = |XA|+∑r
i=1 |Xi|, where X1, . . . , Xr are the distinct A-orbits such that |Xi| > 1. Indeed, we saw

|X| =
∑
|Xj | as Xj ranges over distinct A-orbits. |Xj | = 1 if and only if Xj = {xj}, xj ∈ X.

Apply G-action on X = G by (g, x) → gxg−1, g ∈ G, x ∈ X. If x ∈ X, the G-orbit
G · x = {gxg−1|g ∈ G} = C(x), the conjugacy class of x. By orbit stablizer theorem,
G/Gx ∼= G · x. Gx = {g ∈ G|gxg−1 = x} = CG(x) the centralizer of x in G. Conclude, ∃ a
bijection G/CG(x) ∼= Cx, gCG(x)→ gxg−1

And XG = {x ∈ X|g · x = x} = {x ∈ G|gxg−1 = x} = Z(G) center of G normal
subgroup. Distinct G-orbits a X are distinct conjugacy classes. By generality with G =
A,X = X, conclude |X| = |Z(G)| +

∑
|C(x)|, where the sum is over distinct conjugacy

classes. This is called the class equation.

Proposition 1.16.4. Let G be a finite p-group. Then Z(G) 6= {e}. In fact, p | |Z(G)|

Proof. Let |G| = pn. Write down the class equation pn = |Z(G)| +
∑
|Cxi |. But |Cxi | =

(|G|/|CG(xi)|) | G = pn, thus |Cxi | = pa. Thus pn ≡ |Z(G)|+
∑
pa mod p, then |Z(G)| ≡ 0

mod p, so p | |Z(G)|. ut

Proposition 1.16.5. Let G be a group of order pq with p, q primes, and p < q. Then G
has a normal p-Sylow subgroup, and q 6≡ 1 mod p, then G is cyclic.

Proof. Let nq be the number of q-Sylow subgroups |G| = qm, where m = p. nq ≡ 1
mod p, nq | m = p, thus nq = 1. Thus there is a normal q-Sylow subgroup. Suppose q 6≡ 1
mod p, |G| = pm, with m = q. By Sylow theorem, np = 1. Since the intersection is trivial,
G = Cq × Cp ut

Corollary 1.16.6. If |G| = pq, then G is not simple.

Proposition 1.16.7. Let p, q be distinct primes and let |G| = p2q, then G has a normal
p-Sylow subgroup or a normal q-Sylow subgroup.
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1.17 Oct. 4, 2019

Proposition 1.17.1. The alternating group A5 is a simple group, i.e, it has no proper
normal subgroups.

Proof. 60 = 5 · 12, then n5 | 12, n5 ≡ 1 mod 5, so n5 = 1, 6. In fact, n5 = 6. Let
σ = (1 2 3 4 5), then 〈σ〉 has order of 5. If τ = (1 3 2 4 5) 6∈ 〈σ〉. Thus 〈τ〉 is distinct
from that of σ. So n5 = 6. Now assume G = A5 is not simple, then find a contradiction.
Show ∃ a proper normal subgroup H of G such that 5 | |H|. By assumption, ∃ a proper
normal subgroup N of G. Since |N | | |G| = 60, |N | = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30. If
|N | = 5, 10, 15, 20, 30, we take H = N . If not |N | = 2, 3, 4, 6, 12, if |N | = 6, then N has a
normal 3-Sylow subgroup H1. And if |N | = 12, then N has a normal 3 or 4 Sylow subgroup
H1. The subgroup H1 of G of N is normal in G. Hence if 5 - |N |, then G has a normal
subgroup of order 2, 3, 4. If |N | = 6, 12, take N1 = H1, if |N | = 2, 3, 4, then take N1 = N .
Let Ḡ = G/N1, and π : G → Ḡ. Then |Ḡ| = 20, 30, 15. If |Ḡ| = 30, then Ḡ has normal
5-Sylow subgroup by remark 1. If Ḡ = 20, then Ḡ has normal 5-Sylow subgroup. Hence
Ḡ has a normal 5-Sylow subgroup. Q̄, |Q̄| = 5. Then take H = π−1(Q̄). Then H/N ∼= Q̄,
H is normal in G by the correspondence theorem. then |H| = |N ||Q̄| = 5|N |, so 5 | |H|
and H is proper since |N1| = 2, 3, 4. Hence ∃ a proper normal subgroup H of G such that
5 | |H|. Thsu |H| = 5, 10, 15, 20, 30. By problem set 8(i), every 5-Sylow subgroup of H is
contained in G. Therefore H has 6 distinguished 5-Sylow subgroups, so by argument H has
24 element of order 5. thus |H| = 30. However, a group of order 30 has a unique 5-Sylow
subgroup Q. Since H is normal in G, by problem set 6: 8(ii), G has a unique 5-Sylow
subgroup. But n5 = 1, thus n5 = 6. Thus a contradiction. Thus A5 is simple. ut

Theorem 1.17.2. An is simple if n ≥ 5.

The proof is inductive.

1.18 Oct. 7, 2019

1.18.1 Composition Series

Definition 1.18.1. Let G be a group a composition series for G is a sequence of subgroup
e ⊂ G0 ⊂ . . . ⊂ Gr = G such that Gi−1 �Gi and Gi/Gi−1 is simple.

Notation: Given a composition series G0 = e ⊂ G1 ⊂ . . . ⊂ Gr = G, we say that the
length of the composition series is r and the composition factors are Gi/Gi−1

Theorem 1.18.2 (Jordan Holder Theorem). Let G be a group with composition series
e = G0 ⊂ G1 ⊂ . . . ⊂ Gg = G and e = H0 ⊂ H1 ⊂ . . . ⊂ Hr = H. and G = H. Then r = g.
Further more is Ḡi = Gi/Gi−1, and H̄i = Hi/Hi−1, then ∃σ(i) such that Ḡσ(i) = H̄i. In
other words, the composition factors are are the same up to permutation.
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Example 1.18.3. Let n ∈ Z>0, n = pe11 . . . penn be the prime factorization. Then ∃ a
composition series of G of length e1 . . . ek with the composition factors of Zp1 . . .Zpn . By
Jordan Holder theorem, we see that the prime factorization is unique.

Proposition 1.18.4. Let G be a non-trivial finite group, then G has a composition series.

Proof. We use induction on |G|. If |G| is 2, then G ∼= Z2 which is simple. Thus G0 = e,
G1 = Z2. Thus G is a composition series. Let |G| = n, and assume |H| < n, then H has a
composition series. Case 1: if G is simple, G0 = e,G1 = G. So we have a composition series.
Case 2: if G is not simple, then G has a proper normal subgroup, say N . By induction
hypothesis, N has a composition series. And Ḡ = G/N , then Ḡ has a composition series.
Thus G has a composition series. ut

1.19 Oct. 9, 2019

1.19.1 Solvable groups

Let G be a group, let X ⊂ G be a subset. 〈X〉 = smallest subgroup of G containing X. We
call 〈X〉 the subgroup of G generated by X.

Remark 1.19.1. 〈X〉 = {xn1
1 . . . xnkk |k ≥ 0, x1, . . . , xk ∈ X not necessarily distinct}. Let

this be Hx, it is easy to see that Hx is a subgroup, and X ⊂ Hx, so 〈x〉 ⊂ Hx. Conversely,
X ⊂ H and H a group, Hx ⊂ H, so Hx ∈ 〈X〉. Thus Hx = 〈X〉.

Definition 1.19.2. If H,K ⊂ G are subgroups, [H,K] is the subgroup of G generated by
all [a, b], a ∈ H, b ∈ K. Especially if H = G,K = G, then [G,G] = 〈[a, b]|a, b ∈ G〉. [G,G]
is called the commutator subgroup of G.

Remark 1.19.3. let X ⊂ G be a subset, and let g ∈ G. Then 〈gXg−1〉 = g〈X〉g−1 by
remark. Hence, if gXg−1 ⊂ X,∀g ∈ G, then g〈X〉g−1 = 〈gXg−1〉 ⊂ 〈X〉. Thus 〈X〉 is
normal.

Lemma 1.19.4. 1. If H,K are normal subgroups of G, then [H,K] is normal.

2. [G,G] is a normal subgroup of G.

3. G is abelian iff [G,G] = {e}

4. G(1) = [G,G], then G/G(1) is abelian.

5. If N ⊂ G is normal, G/N is abelian, iff G(1) ⊂ N .

Proof. 1. Let a ∈ H, b ∈ K, a[a, b]g−1 = g(aba−1b−1)g−1 = gag−1gbg−1ga−1g−1gb−1)g−1 =
[gag−1, gbg−1]. Hence, it is in [H,K] since H,K are normal.

4. Let aG(1), bG(1) ∈ G/G(1). Then aG(1)bG(1) = abG(1) = ab[b−1, a−1]G(1) = baG(1).
5. Suppose G(1) is not in N , ∃a, b ∈ G such that [a, b] /∈ N . So [a, b]N 6= N . But

[a, b]N = aba−1b−1N = [aN, bN ]. So [aN, bN ] 6= N . So G/N is not abelian. ut
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Remark 1.19.5. Let φ : G→ H be a group homomorphism. φ([G,G]) = [φ(G), φ(G)].

Remark 1.19.6. Let G0 = G, G(1) = [G,G], and we continue inductively. By lemma 1,
G(1) is normal in G, G(2) is similarly normal in G(1). And G(i) is normal in G. We have a
sequence of normal subgroup G = G0 ⊃ G(1) . . ..

Definition 1.19.7. A group G is solvable if ∃r > 0 such that G(r) = 1.

Example 1.19.8. If G is abelian, then G(1) = e. Thus G is solvable. If G is non-abelian
and simple, then G is not solvable. Indeed G(1) is a normal subgroup of G, and G is not
abelian, then G(1) 6= e. G simple implies G = G(1) = . . .. Hence An, n ≥ 5 is not solvable.

Theorem 1.19.9. If G is a finite group, G is solvable, then it has a composition series
with abelian composition factors.

1.20 Oct. 11, 2019

Proposition 1.20.1. Let G be a group, the the following are equivalent

1. G is solvable

2. ∃ a sequence G = G0 ⊃ G1 ⊃ G2 . . . ⊃ Gr = {e} of normal subgroups of G such that
for Gi/Gi+1 is abelian

3. Same as 2 except we only assume Gi+1 is normal in G.

Proof. 1 ⇒ 2 Since G(i) is normal in G, we set the sequence to be G(i). 2 ⇒ 3 is trivial.
3⇒ 1. Given Gi+1 ⊃ G(i) since Gi/Gi+1 is abelian. Then by induction, we have a sequence
of G(i). ut

Proposition 1.20.2. Let G be a group: (i) if G is solvable, and A ⊂ G is a subgroup, then
A is solvable. (ii) Let N ⊂ G be normal, then G is solvable iff N and G/N are solvable.

Proof. A ⊂ G, then A(i) ⊂ G(i). Therefore if G(r) is trivial then A(r) is trivial.
Consider the quotient homomorphism. Then π(G(i)) = π(G)(i). So if G(r) is trivial then

G/N (r) is trivial.
Since G/N is solvable, then if G/N (r) is trivial, π−1(G/N (r)) ⊂ N . But N is solvable.

So G is solvable. ut

Definition 1.20.3. A group G is nilpotent if ∃r > 0 such that G(r) = [G,Gi−1] = e

Theorem 1.20.4. If G/Z(G) is nilpotent, then G is nilpotent

Proof. Let π be the quotient group homomorphism. ∀φ : G → H group homomorphism,
φ(Gi) = φ(G)i. Then G/Z(G) is nilpotent then π(G) is nilpotent, so there is an r such that
Gr ⊂ Z(G), but [G,Z(G)] = 1. So G is nilpotent. ut
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Corollary 1.20.5. A finite p-group G is nilpotent, and hence solvable.

Proof. let |G| = pr, use induction on r. If r = 0, then G is nilpotent. Assume for a
nilpotent group A if |A| = pk, k < r. G has nontrivial Z(G), so |Z(G)| = pt, t > 0. Thus
|G/Z(G)| = pr−t < pr. Thus G/Z(G) is nilpotent. thus G is nilpotent. Hence G is solvable.

ut

1.20.1 Free Groups

Definition 1.20.6. Let S be a set, a free group G on S is a group G with a map g : S → G
such that if φ : S → H is a map to a group H, ∃ a unique group homomorphism φ̃ : G→ H
such that φ = φ̃ ◦ j.

Example 1.20.7. S = {x}, |S| = 1. We take G = Z, j : S → Z is j(x) = 1. (Z, j) is a free
group on S.

1.21 Oct. 14, 2019

Definition 1.21.1. Let k ≥ 0, a word of length k on S is a formal expression xε11 . . . xεkk
with xi ∈ S, ε = ±1. And if xj = xj+1, then εj = εj+1. A word of length 0 is the empty
set.

Definition 1.21.2. F (S) is the collection of all words in S of length x ≥ 0. If a is a word
of length k and b is a word of length l, we define ab by appending b to the end of a and
cancelling all expressions x−1i xi or xix

−1
i that result.

Define c : S → F (S) by c(x) = xc for x ∈ S

Proposition 1.21.3. (i) F (S) is a group. (ii) (F (S), c) is a free group on S.

Free groups exist; formally, they are objects in group theory, but they are best studied
using topology or logic

Corollary 1.21.4. Let H be a group, then ∃ a free group (F (S), c) and a surjective group
homomorphism ψ : F (S)→ H. Hence, H ∼= F (S)/ker(ψ)

Suppose H ∼= F (S)/ker(ψ), R ⊂ ker(ψ) is a subset so that ker(ψ) is the smallest
normal subgroup of F (S) containing R. Then we call R the relations of F (S).

1.22 Oct. 18, 2019

1.22.1 Category

Definition 1.22.1. A category C consists a collection of objects Ob(C), and ∀x, y ∈
Ob(C), a collection of morphisms HomC(x, y) such that if x, y, z ∈ Ob(C), there is a map
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HomC(y, z)×HomC(x, y)→ HomC(x, z) written (g, f)→ g ◦ f called composition, satis-
fying axioms (i) ∀x ∈ C,∃HomC(X,X) such that if f ∈ HomC(x, y), g ∈ HomC(z, x), then
f ◦ idx = f and idx ◦ g = g. (ii)∀x, y, z, w ∈ Ob(C) and f ∈ HomC(x, y), g ∈ HomC(y, z),
h ∈ HomC(z, w) then (h ◦ g) ◦ f = h ◦ (g ◦ f)

Note: x ∈ Ob(C) need not be a set, say idx : x→ x is the identity map of x. Often we
write x ∈ C in place of x ∈ Ob(C) and Hom(x, y) for HomC(x, y) when C is understand.

Example 1.22.2. C = Sets. Ob(C) = Sets. If x, y ∈Sets, then HomSets(x, y) = {f : x→
y|f is a map}

Example 1.22.3. C = Groups, thenOb(C) =Groups. IfG,H are groups, HomGroups(G,H) =
{f is a group homomorphism}. If G,H are groups, they are also sets, but HomGroups 6=
HomSets(G,H) execept when H = 1.

There will be category of rings, a category of R-modules for R a ring.

Definition 1.22.4. A category C is called small if ∀x, y ∈ C,HomC(x, y) is a set.

Definition 1.22.5. Let C be a category, x, y ∈ C, and f : x→ y in HomC(x, y), then f is
an isomorphism if ∃g ∈ HomC(y, x) such that g ◦ f = idX and f ◦ g = idY . If so, we write
x ∼= y.

A small category with 1 object for which every morphism is an isomorphism is the same
as a group.

Definition 1.22.6. Let C be a category, and object X0 ∈ C is called an initial object
if ∀x ∈ Ob(C), ∃ a unique element fx ∈ HomC(x0, x). An object X1 is called final if
∀x ∈ Ob(C), ∃! element gx ∈ HomC(x, x1)

Lemma 1.22.7. Let C be a category, if x0, y0 are initial objects, there is an ∼= f0 : x0 → x0.
If x, y ∈ C0 are final objects, there is an ∼= fx1 : x1 → y1.
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Chapter 2

Ring Theory

2.1 Oct. 28, 2019

Definition 2.1.1. A ring (R,+, ·) is a set R with 2 binary operations, written as (a, b)→
a+ b and (a, b)→ ab such that

1. (R,+) is an abelian group

2. ∀a, b, c ∈ R, (ab)c = a(bc)

3. ∀a, b, c ∈ R, (a+ b)c = ac+ bc and c(a+ b) = ca+ cb

4. ∃1R ∈ R, 1R 6= 0R where 0R is identity of (R,+) such that 1Ra = a1R = a.

Remark 2.1.2. One can check that ∀a, b, c ∈ R

1. a0R = 0Ra = 0R,

2. (−a)b = a(−b) = −ab

3. 1R1R = 1R

4. (−a)(−b) = ab

5. b− c = b+ (−c)

6. (a− b)c = ac− bc

7. c(a− b) = ca− cb

8. 1R is the unique element with the identity property.

Therefore, usual rules of arithmetic apply in a ring, except those that use ab = ba or
existence of multiplicative inverses. If we allowed 1R = 0R, then R = {0R} since a1 = a =
a0 = 0.
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Proposition 2.1.3. Let (R,+, ·) be a ring. Let R× = {a ∈ R|∃b ∈ R with ab = 1 = ba}.
Then R× is a group with identity 1R

Definition 2.1.4. If a, b ∈ R− {0} but ab = 0, then we call a, b zero divisors. We call the
elements of R× the units of R. R is called commutative if ab = ba∀a, b ∈ R. If R× = R−{0},
we call R a division ring. We call commutative division ring a field. This agrees with our
earlier definition of a field.

Definition 2.1.5. Let R be a ring with operations + and ·. If S ⊂ R is a subset, we say
S is a subring if (S,+, ·) is a ring and 1R ∈ S

Remark 2.1.6. A subset S is a subring iff (1) (S,+) is a subgroup, (2) a, b ∈ S, ab ∈ S (3)
1R ∈ S.

Example 2.1.7. Let R = C, complex numbers, then Z is a subring of C.
Let d ∈ Z − {0, 1}, we say d is square free if n2 | d, then n = ±1 for n ∈ Z. Let

Q[
√
d] = {a + b

√
d|a, b ∈ Q},Z[

√
d] = {a + b

√
d|a, b ∈ Z}. These are both subrings of C.

And Z[i] = Z[
√
−1]. Z[

√
−5]

Definition 2.1.8. A commutative ring R is an integral domain if it has no zero divisors.
A field F is an integral domain. Let a, b ∈ F , ab = 0, and a 6= 0 then ∃1/a ∈ F . And
1/a(ab) = 1b = b, so b = 0. Thus ab = 0 in R ⊂ F , then ab = 0 implies a or b is 0.

Remark 2.1.9. A subring of an integral domain is an integral domain. Hence Z[
√
d] and

Q[
√
d] are integral domains. Moreover, Q[

√
d] is a field.

Example 2.1.10. Let n ∈ Z>1, Zn = {0, . . . , n− 1}. Then Zn is a ring. In particular, Z×p
is a field iff p is a prime.

Remark 2.1.11. Let R be a finite integral domain. Then R is a field.

Proof. Assume |R| <∞ for a ∈ R, define La : R→ R by La(x) = ax. Then La : (R,+)→
(R,+) is a group homomorphism. Indeed if x, y ∈ R, La(x + y) = a(x + y) = ax + ay =
La(x) + La(y). But ker(La) = {x ∈ R|ax = 0} = {0}. Since R is an integral domain.
Hence, La is injective, so |im(L)| = |R|, so since im(La) ⊂ R, and |R| < ∞, im(La) = R.
But 1 ∈ R, so 1 ∈ im(La), so ∃x ∈ R s.t. ax = 1. Hence R× = R− {0}, so R is an integral
domain. ut

We apply this to Zn, so for p a prime, Zp is a field, otherwise Zn is not a integral domain.

2.2 Oct. 30, 2019

Let R be a ring, M(n,R) = {A = (aij |aij ∈ R}. M(n,R) is a ring using usual addition and
multiplication of matrices.

Remark 2.2.1. If R = F is a field, then M(n, F )× = GL(n, F )
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Definition 2.2.2. let R = M(2,C), let S = {
[
u v
−v̄ ū

]
|u, v ∈ C} ⊂ M(2,C) is a subring.

We write H = S, and call H the quarternions. And the quarternions is a noncommutative
division ring.

2.2.1 Polynomial rings

Let R be a ring, define R[x] = {p =
∑

i=0 aix
i|∃d(p) ≥ 0 such that a = 0,∀i > d(p)}. When

we write p, we typically omit terms of form 0xi. We claim that (R[x],+, ·) is a ring.

Definition 2.2.3. Let p =
∑∞

i=0 aix
i ∈ R[x], p 6= 0. Then p = a0 + a1x+ . . . + adx

d with
ad 6= 0. We set deg(p) = d and l(p) = ad (leading coefficients). We set deg(0) = −∞.

We claim that if R is an integral domain, and q, p ∈ R[x]−{0}, then deg(pq) = deg(p)+
deg(q) and l(pq) = l(p)l(q)

Example 2.2.4. Let R be a ring, R[[x]] = {
∑∞

i=0 aix
i|ai ∈ R}. Then R[[x]] is a ring using

the same formulas for + and · as for R[x].

Proposition 2.2.5. Let R be a ring. Let a, b ∈ R. Assume ab = ba, then (a + b)n =∑(
n
k

)
akbn−k.

Proof. Use induction and binomial coefficient identity. ut

Definition 2.2.6. Let R,S be rings. A map f : R → S is called a ring homomorphism if
f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b), f(1R) = 1S

Example 2.2.7. Let R = C, then τ : R→ R, and τ(x) = x̄. τ is a ring homomorphism

2.3 Nov. 1, 2019

Definition 2.3.1. Let I be a subset of the ring R, consider

1. I is an additive subgroup of R

2. If a ∈ I and r ∈ R, then ra ∈ I

3. If a ∈ I and r ∈ R, then ar ∈ I.

If 1 and 2 hold, then I is a left ideal of R if 1 and 3 hold, then I is a right ideal of R. If all
satisfies then I is an ideal of R. Let I 6= R then I is a proper ideal of R.

Let R be a ring and let a ∈ R, a ∈ R, then we know RaR is an ideal, aR is a left ideal
and Ra is a right ideal.

If R is commutative, ideals = left ideals = right ideals.
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Definition 2.3.2. Let (a) = Ra for a ∈ R, then we call I principal if I = (a) for some
a ∈ R.

If R is not commutative then we call an ideal a two-sided ideal.

Definition 2.3.3. If R is an integral domain, and a ∈ R − {0} and b ∈ R, we say a | b if
b = ca for some c ∈ R. Note a | b iff b ∈ (a).

Remark 2.3.4. If p, q ∈ R[x], and R is a domain, and p | q. Then deg(q) ≥ deg(p) if q 6= 0.

Definition 2.3.5. Let f : R→ S be a ring homomorphism. Define ker f = {a ∈ R|f(a) =
0} and im(f) = {f(a)|a ∈ R} ⊂ S.

Proposition 2.3.6. (1) ker(f) is a proper ideal of R. (ii) im(f) is a subring of S.

Remark 2.3.7. If I is an ideal of R, then I = R iff ∃ a unit a in I

Definition 2.3.8. f : R → S a ring homomorphism is called a ring isomorphism if ∃g :
S → R a ring homormophism such that g ◦ f = idR and f ◦ g = idS .

Remark 2.3.9. A ring homomorphism f : R→ S is an isomorphism iff f is bijective.

2.3.1 Quotient Rings

Let R be a ring with proper ideal I. We define a new ring (R/I,+, ·) as follows. I is
a normal subgroup of the abelian group R, so (R/I,+) is the usual quotient group, i.e.
a, b ∈ R, (a+ I) + (b+ I) = (a+ b) + I. To define multiplication, let a, b ∈ R. Want to set
(a+I)(b+I) = ab+I. Moreover, the map π : R→ I, π(a) = a+I is a ring homomorphism
by construction. And ker(π) = I by group theory.

2.4 Nov. 4, 2019

Remark 2.4.1. If R is a field, the only ideals are {0} and R

Proof. Let I ⊂ R be a nonzero ideal. Then ∃a ∈ I − {0}. So ∃b ∈ R such that ba = 1, but
so 1 ∈ I, I = R ut

Remark 2.4.2. If R is a division ring, then only two-sided ideals are {0} and R

Proposition 2.4.3. Let f : R → S be a ring homomorphism, and R is a division ring,
then R is injective.

Proof. ker(f) is an ideal of R, ker(f) 6= R since ker(f) is a proper ideal. Thus ker(f) = 0,
so f is injective. ut
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2.4.1 Operation of Ideals

Addition: Let I, J be ideals. Then I + J = {x+ y|x ∈ I, y ∈ J} is an ideal. Further if {Ij}
is a family of ideals, and

∑
Ij = {xj1 + . . . + xjk|xji ∈ Iji}, then

∑
Ij is an ideal. This

holds for left and right ideals.

Example 2.4.4. R = Z, I = mZ, J = nZ. I + J = mZ + nZ = (m,n)Z.

If R is commutative, and a1, . . . , an ∈ R, then (a1, . . . , an) = (a1) + . . . (an)
Multiplication of ideals: Assume R is commutative (unnecessary). Let I, J be ideals.

IJ = I · J = {
∑
xkyk|xk ∈ I, yk ∈ J}. IJ is an ideal.

Let I = (a), J = (b), IJ = {
∑
xkyk|xk ∈ (a), jk ∈ (b)}. xk = rka, yk = skb, so∑

xkyk =
∑
rkskab. Thus IJ ⊂ (ab). (ab) ⊂ IJ is clear, so (a)(b) = (ab).

2.4.2 Isomorphism Theorems + Chinses Remainder Theorem

Theorem 2.4.5 (Factor Theorem). Let R be a ring and I be an ideal. Then if S is a
ring, there is an bijection between {f : R → S|f(I) = 0}, f is a ring homomorphism, and
{f : R/I → S} is a ring homomorphism.

Proof. Hence π : R → R/I, π(a) = a + I. We know π is a ring homomorphism. If
f : R/I → S is a ring homomorphism, consider f ◦ π : R → S is a ring homomorphism
since f̄ and π are ring homomorphisms. That g : R → S is a map with I ⊂ ker(g). Then
define ḡ : R/I → S by ḡ(a + I) = g(a). We checked that ḡ is a ring homomorphism by
construction. Thus by the same proof for groups, we prove the factor theorem. ut

Theorem 2.4.6. Let f : R → S be a ring homomorphism. Recall im(f) = {f(x)|x ∈ R}.
Then R/ ker(f) ∼= im(f) via ring f̄ , where f̄(a+ ker(f)) = f(a).

Proof. This is the same as proof of first isomorphism theorem of groups. ut

Example 2.4.7. R[x]/(x2 + 1) ∃ a ring homomorphism er : R[x] → C given er(p) = p(i),
where i =

√
−1. ker(er) = (x2 + 1). Thus R[x]/(x2 + 1) ∼= C.

Theorem 2.4.8. Let R be a ring, I, J be ideals. Let J ⊂ I, then R/I ∼= (R/I)/(I/J)

Proof. The proof is similar to that of the third isomorphism theorem of groups. ut

Theorem 2.4.9. Let R be a ring, I ⊂ R ideal, and S ⊂ R subring. Then S+I is a subring
of R. I is an ideal of S + I. S ∩ I is an ideal of S. If I ⊂ R is proper, I ⊂ S + I is proper,
S ∩ I ⊂ I is proper, and S/S ∩ I ∼= (S + I)/I.

Theorem 2.4.10 (Correspondence Theorem). let R be a ring with proper ideal I, Then
S → S/I gives a bijection from R to all R/I. The inverse map is π−1 where π is the
canonicle map.
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2.5 Nov. 6, 2019

Let {Ri} be a family of rings. Let
∏
Ri = {(xi)|xi ∈ Ri}, the Cartisian product of the

Ri. Then
∏
Ri is a ring. If x = (xi), y = (yi) ∈

∏
Ri, define multiplication and addition

coordinate wise. pi(
∏
Ri) → Ri, then each pi is a ring homomorphism. There is a group

homomorphism Ji : Ri → R, but Ji is not a ring homomorphism.

Definition 2.5.1. Let I, J be ideals of a ring R, we say I, J are relatively prime if I+J = R.

Remark 2.5.2. If I, J are ideals of a commutative ring, then IJ ⊂ I ∩ J . If I + J = R,
then IJ = I ∩ J .

Theorem 2.5.3 (Chinses Remainder Theorem). Let R be a ring with ideas I1, . . . In.
Assume that if 1 ≤ i, j ≤ n and i 6= j, then Ii + Ij = R. Consider the map f :
R → R/I1 × . . . × R/In, f(a) = (a + I1, . . . , a + In), Then f is a ring homomorphism.
ker(f) = I1 ∩ . . . ∩ In, and f is surjective.

Remark 2.5.4. As a consequence, R/I1∩ . . .∩In ∼= R/I1× . . .×R/In by first isomorphism
theorem. For R = F [x] where F is a field, we will see that the CRT implies if b1, . . . , bn ∈
F,∃f ∈ F [x] such that f(ai) = bi, ∀i and a1, . . . , an ∈ F, ai 6= aj if i 6= j.

2.5.1 Maximal ideals and prime ideals

Definition 2.5.5. Let R be a ring. A proper ideal I of R is called maximal if whenever
I ⊂ J , J ideal of R, then J = I or J = R.

Example 2.5.6. R = Z, I = pZ is maximal iff p is prime.

Theorem 2.5.7. Every proper ideal is contained in a maxiaml idea.

Definition 2.5.8. Let S be a set. A partial order ≤ on S is a relation such that (i)
a ≤ a,∀a ∈ S (ii) a ≤ b and b ≤ a, then a = b. (iii) a ≤ b ≤ c, then a ≤ c.

A set S with partial order ≤ is called a partially ordered set or poset.

Remark 2.5.9. A subset of a poset is a poset.

2.6 Nov. 8, 2019

Definition 2.6.1. Let (S,≤) be a poset.

1. A subset T of S is called a chain (or totally ordered) if ∀x, y ∈ T , x ≤ y or y ≤ x

2. An element x ∈ S is called an upper bound of a subset T if ∀y ∈ T, y ≤ x

3. And element x of S is called maximal if y ∈ S and x ≤ y implies x = y

Lemma 2.6.2 (Zorn’s Lemma). Let S be a nonempty poset. Then if every chain in S has
an upper bound in S, then S has a maximal element.
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Zorn’s lemma will be treated as an axiom, and is equivalent to the axiom of choice which
says every product of nonempty sets is nonempty.

Theorem 2.6.3. Let I be a proper ideal of a ring R, Then ∃ a maximal ideal M of R such
that M ⊃ I.

Proof. Let S = { proper ideals J of R such that I ⊂ J}. We say J1 ≤ J2 if J1 ⊂ J2. Then
(S,≤) is a poset. Show every chain in S has an upper bound. Let {Ij} be a chain in S.
Let Ī = ∪Ij . Then Ī is an ideal in S. Since Ij ⊂ I, ∀j ∈ J , then I is an upper bound for
the chain in S. Hence, by Zorn’s Lemma, ∃M ∈ S such that if N ∈ S and M ⊂ N , then
M = N . Then if M ⊂ K, an ideal of R, then either K = R or K is proper. If K is proper,
then I ⊂M ⊂ K so M = K. So M is maximal. ut

Theorem 2.6.4. Let R be a commutative ring with ideal I. Then I is a maximal ideal iff
R/I is a field.

Proof. Let I be a maximal ideal. Let ā = a + I ∈ R/I − {0} so a 6= I. Consider the ideal
(a) + I, a ∈ (a) + I, so (a) + I 6= I and I ⊂ (a) + I. Since I is maximal, (a) + I = R.
1 = ra+x, for some r ∈ R, x ∈ I. Thus ra+ I = 1+ I. Thus (r+ I)(a+ I) = ra+ I = 1+ I
in R/I. And r + I is a unit of R/I. Hence R/I is a field.

Suppose R/I is a field. Then by discussion we had the only ideal of R/I are 0 + I and
R/I. Let J ∈ R be an ideal such that I ⊂ J , by the correspondence theorem, if π : R→ R/I
is π(a) = a+ I, then J = π−1π(J). And every ideal of R/I is π(I) for some J ⊃ I. Hence
J = π−1π(0 + I) or J = π−1π(R), so J = I or R, and I is maximal. ut

Example 2.6.5. F is a field, R = F [x], M is the maximal ideal of R. Conclude F [x]/M is
a field. Note: If R is a ring, R[x]/(x) ∼= R so (x) is a maximal ideal of R ⇐⇒ R is a field.

Definition 2.6.6. A proper ideal P of a commutative ring R is called a prime ideal if
ab ∈ P for a, b ∈ R, then a ∈ P or b ∈ P .

Example 2.6.7. If R = Z and M > 0, mZ is a prime ideal iff m is prime. Further {0} = 0Z
is a prime ideal.

Theorem 2.6.8. Let R be a commutative ring with proper ideal I, then I is prime iff R/I
is a integral domain.

Proof. If I is a prime ideal. Let a+ I, b+ I ∈ R/I. Suppose (a+ I)(b+ I) = 0 + I. Hence
ab+ I = 0 + I, ab ∈ I. So a ∈ I or b ∈ I. By defintion of a prime, so a+ I = I or b+ I = I.
Thus R/I is an integral domain. The other way is clear. ut

Corollary 2.6.9. If R is a commutative ring, then every ideal M is prime.

Proof. R/M is a field, so is a integral domain. So M is prime. ut

Note: R is an integral domain iff (0) is a prime ideal.

Example 2.6.10. Let R = Z[x] Z[x]/(x) ∼= Z which is a domain but not a field. So (x) is
a prime ideal but not maximal. But (2, x) is a maximal and prime ideal.
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2.6.1 R[x]

R be a ring, let φ : R → S be a ring homomorphism. let CS(φ(R)) be the centralizer of
φ(R). CS(φ(R)) is a subring.

Proposition 2.6.11 (Universal Properties). Let α ∈ CS(φ(R)). Then ∃! ring homomor-
phism eα : R[x]→ S such that eα(r) = φ(r) if r ∈ R and eα(x) = α.

2.7 Nov. 11, 2019

Example 2.7.1. Take R = Q, S = C, α = i =
√
−1, then eα : Q[x] → C, eα(

∑
rjx

j) =∑
rji

j

Definition 2.7.2. A polynomail g in R[x] is called monic if its leading coefficient is 1, i.e.,
if deg(g) = d ≥ 0 and g = a0 + a1x+ . . .+ xd.

Proposition 2.7.3. Let f, g ∈ R[x] with g monic, then ∃h, r ∈ R[x] such that f = hg + r
with deg(r) < deg(g) or r = 0 (division algorithm)

Remark 2.7.4. If g = a0 + a1x + . . . + adx
d with ad ∈ R× a unit, then g = a0g0 where

gi =
∑ ai

a0
xi ∈ R[x]. g0 is monic so any f = hg0 + r then f = h

a0
g + r, so the division

algorithm holds if l(g) = ad ∈ R×. If F is a field, then division algorithm helds for any
nonzero g.

Remark 2.7.5. Let g ∈ R[x] be monic of degree d, then R[x]/(g) = {b0 + b1x + . . . +
bd−1x

d−1 + (g(x))

Example 2.7.6. Q[x]/(x2 + 1) ∼= {a+ bx+ (x2 + 1)|a, b ∈ Q}

Example 2.7.7. Z[x]/(x3 − x+ 1) ∼= {a0 + a1x+ a2x
2 + (x3 − x+ 1)|a0, a1, a2 ∈ Z}

Example 2.7.8. Q[x]/(x2 + 1) ∼= Q[i]. pf: ei : Q[x] → C, α = i, R = Q, S = C. ei is
a ring homomorphism. ker(ei) = {f ∈ Q[x]|f(i) = 0}. x2 + 1 ∈ ker(ei). If f ∈ ker(ei),
then f = h(x2 + 1) + r. where deg r < 2. Then apply ring homomorphism, we find
r ∈ (x2 + 1). Thus ker(ei) = (x2 + 1). Then we use the first isomorphism theorem to see
Q[x]/(x2 + 1) ∼= Q[i].

Theorem 2.7.9 (Remainder Theorem). Let f ∈ R[x] and let α ∈ R

1. ∃h ∈ R[x] such that f = h(x− α) + f(α)

2. Let R be an integral domain. Then f(α) = 0 iff x− α | f in R[x].

Definition 2.7.10. Let R be an integral domain, and let f ∈ R[x]. We say α is a root of
f if f(α) = 0. If α is a root of f , we say α is a root of multiplicity mα of (x− α)mα | f in
R[x], but (x− α) - f .

Theorem 2.7.11. Let R be a domain and let f ∈ R[x] have degree d ≥ 0, then f has at
most d roots in R.
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2.8 Nov. 13, 2019

Definition 2.8.1. A ring R is called a principal ideal ring if every ideal is principal. A
principal ideal domain (PID) is an integral domain that is a principal ideal ring.

Example 2.8.2. Z is a PID, since every ideal I is a subgroup. So I = nZ = (n).
Z[x],Z[

√
−5] are not PID’s

Definition 2.8.3. R is a Euclidean domain if ∃ψ : R − {0} → Z>0 such that if b, a ∈ R
and a 6= 0, then ∃q, r ∈ R with b = qa+ r and r = 0 or ψ(r) < ψ(a).

Example 2.8.4. R = Z, ψ(a) = |a|. F is a field, R = F [x]. Let ψ(p) = deg(p) for
p ∈ R− {0}. F [x] is a Euclidean domain.

Theorem 2.8.5. If R is a Eudclidean domain, then R is a PID.

Proof. Let I ⊂ R be an ideal. If I = {0}, I = (0). If I 6= {0}, choose a ∈ I − {0} so
ψ(a) ≤ ψ(b),∀b ∈ I − {0}. Then a ∈ I, so (a) ∈ I. Show I ∈ (a). If b ∈ I, b = qa+ r, with
q ∈ R, r ∈ Q and r = 0, then ψ(r) < ψ(a), contradiction to the choice of ψ(a). Thus r = 0,
b = qa ∈ (a). ut

Example 2.8.6. Let d ∈ {−2,−1, 2, 3}. Then Z[
√
d] is a Euclidean domain. And hence a

PID. Esp Z[i] is a PID.

Proof. Let ψ(α) = |N(α)| for α ∈ Z[
√
d]. If α, β ∈ Z[

√
d] and for α = a + b

√
d, a, b ∈ Z,

N(α) = ατ(α) where τ(α) = a − b
√
d, then N(αβ) = N(α)N(β). Similarly, one can show

the same result for α, β ∈ Q[
√
d]. Let α, β ∈ R = Z[

√
d], β 6= 0, then α/β ∈ Q[

√
d].

Thus α
β = x + y

√
d with x, y ∈ Q,∃x0, y0 ∈ Z such that |x − x0| ≤ 1

2 , |y − y0| ≤ 1
2 . Let

q = x0 + y0
√
d, then α

β = q + r. Thus α = qβ + sβ and we set r = sβ = α − qβ ∈ R. To

show ψ(r) < ψ(β). But ψ(r) = ψ(sβ). So need to show |N(s)| < 1. If γ = u + v
√
d, by

computation, |N(s)| = 1
2 < 1. ut

Remark 2.8.7. Since R is a domain, if a ∈ R− {0} and b, c ∈ R and ab = ac, then b = c.

Definition 2.8.8. 1. Let a, b ∈ R−{0}. We say a and b are associates if b = ua, u ∈ R×

2. Let a ∈ R − {0}, a /∈ R×. We say a is irreducible if a = bc with b and c ∈ R, then b
or c is a unit.

3. Let a ∈ R − {0}, a /∈ R×. We say a is prime if whenever a | bc with b, c ∈ R. Then
a | b or a | c.

Remark 2.8.9. Let a, b ∈ R− {0}.

1. a ∈ R× ⇐⇒ (a) = R

2. a and b are associates ⇐⇒ (a) = (b)
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3. a | b ∈ R ⇐⇒ b ∈ (a)

4. Let a | b. Then a and b are not associates ⇐⇒ (b) ⊂ (a) but (b) 6= (a).

Proposition 2.8.10. If x ∈ R is prime, then x is irreducible.

Definition 2.8.11. Let R be any ring. We say R satisfies the ascending chain condition
(acc) on ideals if for every sequence I1 ⊂ I2 ⊂ . . . In ⊂ . . .. ∃n0 ≥ 0 such that In = In0

(increasing sequences stabilize). We say R satisfies acc on principal ideals if the above is
true for chains I1 ⊂ I2 ⊂ . . . for principal ideals Ij . We say R is Notherian if it satisfies acc
on ideals.

Theorem 2.8.12. If R is a PID, then R is Noetherian.

2.9 Nov. 15

2.9.1 Unique Factorization domain

Definition 2.9.1. A Unique factorization domain (UFD) is an integral domain R satisfying
the following properties:

1. Every nonzero element a ∈ R can be expressed as a = up1 . . . pn, where u is a unit
and the pi’s are irreducible

2. If a has another factorization, say a = vq1 . . . qm,where v is a unit and the qi’s are
irreducible, then n = m and, after reordering if necessary, pi and qi are associates for
each i.

Remark 2.9.2. Let a ∈ Z[
√
d, d is square free integer < 0. Then if N(a) = p is a prime in

Z, then α is irreducible (N(a) = aā).

Theorem 2.9.3. Let R be an integral domain

1. If R is a UFD, and (a1) ⊂ (a2) ⊂ . . . ⊂ (an) ⊂ . . . is an increasing chain with ai ∈ R,
then ∃n0 ≥ 0 such that if n ≥ n0, (an) = (an0).

2. If R is a PID, then R is a UFD.

2.10 Nov. 18, 2019

Proposition 2.10.1. Let R be a UFD. Then if a ∈ R is irreducible, a is prime.

Remark 2.10.2. To prove that a PID is a UFD, we essentially showed that if R satisfies
acc on principal ideals, then R is a UFD. Then converse is also true. R is a PID iff R is a
UFD and every nonzero prime ideal is maximal. We essentially proved the converse is also
true.
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2.10.1 Rings of Fraction

Definition 2.10.3. Let S ⊂ R be a subset, we say S is multiplicatively closed if 0 /∈ S,
1 ∈ S, a, b ∈ S, then ab ∈ S.

Example 2.10.4. a ∈ R is not nilpotent, so an 6= 0,∀n > 0. Let S = {an|n ≥ 0}, where
an = 1. S is multiplicative closed since anam = am+n

Example 2.10.5. Let P ⊂ R be a prime ideal. Let S = R− P = {a ∈ R|a /∈ P}. Since P
is prime, a, b /∈ P, ab /∈ P . S is multiplicatively closed.

Example 2.10.6. Let R be an integral domain. Then S = R − {0} is multiplicatively
closed since (0) = {0} is a prime ideal.

Goal: Deinfe a new ring S−1R whose elements are written a
s , a ∈ R, s ∈ S. Consider

the set R × S = {(a, s)|a ∈ R, s ∈ S}. If (a, s), (a1, s1) ∈ R × S, we say (a, s) ∼ (a1, s1)
if ∃t ∈ S such that ts1a = tsa1. Claim, ∼ is an equivalent relation. This is easy to prove.
We let S−1R = Equivalence classes of pairs (a, s) in R× S. Write a/s = [(a, s)] equivalent
class in S−1R of (a, s).

Theorem 2.10.7. (S−1R,+, ·) is a ring.

Note: If s ∈ S, 0
s = 0

1 . Set 0S−1R = 0
1 . Associativity of multiplication and distributive

property are routine.

Remark 2.10.8. If a ∈ S, and s ∈ S, then a
s is a unit of S−1R. Indeed, s

a ∈ S
−1R since

a ∈ S, and a
s
s
a = 1

1 = 1S−1R

If R is a domain, and S = R = {0}. Then S−1R is a field. Indeed, let r ∈ R, s ∈ S. If
f /∈ 0, then r /∈ 0, so r ∈ S = R− {0}. By (i), r

s ∈ (S−1R)×, so S−1R is a field.

Notation: Let Frac(R) = S−1R, S = R − {0}, and call Frac(R) the fraction field of
R.

Note: If R is a domain, we don’t need the definition of S−1R.

2.11 Nov. 20, 2019

2.11.1 Lattice

Define S−1R = { rs |r ∈ R, s ∈ S} where S ⊂ R is a multiplicative closed subset.

Proposition 2.11.1. The map f : R → S−1R given by f(a) = a/1 is a ring homomor-
phism, and ker(f) = {r ∈ R|∃s ∈ S such that sr = 0}. If S has no zero devisors, then f is
injective. Hence, f is injective if R is an integral domain.

Example 2.11.2. let R = Z6, S = (3), f : R→ S−1R, f(r) = r/1, ker(f) = {r ∈ Z6|3r =
0} = {0, 2, 4}

Note: Ideals of S−1R are essentially the ideals of R which doesn’t meet S.
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Remark 2.11.3. Let A be a ring and let a ∈ A, unit of A. Then ∃b ∈ A such that ba = 1
and b ∈ A×. Since A× is a group under multiplication, then the element b is unique since
it is the inverse of a. Hence we can write b = a−1

Theorem 2.11.4 (Universal Property of localization). Let R be a ring with multiplicatively
closed set S. Let φ : R → A be a ring homomorphism such that φ(s) ∈ A×,∀s ∈ S. Then
∃! ring homomorphism φ̄ : S−1R→ A such that φ̄ ◦ f = φ. In fact, ¯φ(r/s) = φ(s)−1φ(r).

Let R be a ring (assume commutativity). Let R[x1, . . . , xn] = {
∑
aix

i|ai ∈ R} If
p =

∑
aix

i, q =
∑
bix

i ∈ R[x1, . . . , xn], then we define addition and multiplication as we
do in one variable polynomial. then (R[x1, . . . , xn],+, ·). If a1, . . . , an ∈ S, and φ : R → S
is a ring homomorphism, ∃! evaluation ring homomorphism, ea : R[x1, . . . , xn] → S, such
that ea(

∑
aix

i) =
∑
φ(ai)a

i, where ai = ai11 . . . a
in
n . Verifying this is like te case n = 1,

as a consequence, R[x1, . . . , xn] ∼= R[x1, . . . , xn−1][xn]. Hence R[x1, . . . , xn] ∼= R[x1] . . . [xn].
Hence is R is a integral domain, R[x1, . . . , xn] is likewise.

Let R be a UFD. Let F = frac(r) and regard R ⊂ F via f : R → F . Let {pi|i ∈ I}
be the nonzero principal prime ideals of r, for each p1, choose a prime pi of R such that
pi = (pi). pi is unique up to a unit. If (pi) = (pj), then pi = pj by choice. Note each pj is
irreducible. Let P = {pi|i ∈ I}. If R = Z, P = { primes p > 0}. If R = k[x], k is a field,
take P = {f |f monic irreducible polynomial}.

Remark 2.11.5. Let p ∈ P , if α ∈ F×, then α = pea/b, with a, b ∈ R, p - a, p - b. And
e ∈ Z, e is independent of choices.

Definition 2.11.6. Set ordp(α) = e. ∀α ∈ F×, ordp(α) = 0 except for a finite set of p, so
we can define c(α) =

∏
p∈P p

ordp(α). Thus e(α) = uα, somce u ∈ R×. Set ordp(0) = ∞,
∀k ∈ Z.

2.12 Nov. 22, 2019

Definition 2.12.1. If f ∈ R[x]− {0}, then we say f is primitive if c(f) = 1.

Remark 2.12.2. Let f ∈ F [x]− {0}. Then f = c(f)f0, where fn is primitive and in R[x]

Theorem 2.12.3 (Gauss Lemma). Let R be a UFD, F = frac(R) let f, g ∈ F [x] − {0}.
Then c(fg) = c(f)c(g).

Proof. Let f = c(f)f0, g = c(g)g0 with f0, g0 primitive. Then fg = c(f)c(g)f0g0, so c(fg) =
c(f)c(g)c(f0g0). Suffices to show that if f0, g0 are primitive in R[x], then c(f0g0) = 1. Since
f0 is primitive in R[x], ∃ prime p in P , p - f0. πp(f0) 6= 0. Similarly, ∀p ∈ P , πp(g0) 6= 0. But
π(f0g0) = π(f0)π(g0) 6= 0 since R/(p)[x] is a domain. Thus ∀p ∈ P, p - f0g0, so p - c(f0g0)
so c(f0g0) = 1. ut

Proposition 2.12.4. Let f ∈ R[x] and assume deg(f) > 0. Then f is irreducible in R[x]
iff R is primitive in F [x].
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Theorem 2.12.5. Let R be a UFD, then R[x] is a UFD.

Proof. Let f ∈ R[x] − {0}. But f ∈ F [x] − {0}, and F [x] is a PID. So f = af1 . . . fn with
a ∈ F×, t1 . . . , td ∈ F [x] − {0} irreducible. By a remark, ti = c1fi with ci = c(ti), thus
f = ac1 . . . cdf1 . . . fd. But each fi = 1

c1
ti is irreducible in F [x] since 1

ci
∈ F×. And each fi is

primitive in R[x], so each fi is irreducible in R[X]. Thus f = acf1 . . . fd, with c = c1 . . . cn.
But c(f) = c(ac)c(f1 . . . fn), and by Gauss lemma and easy induction, c(f1, . . . fn) = 1.
Thus c(f) = c(ac) = uac. So ac ∈ R. Since ac ∈ R− {0}, we can write ac = uq1 . . . qd with
u ∈ R×, q1, . . . , qn irreducibles of R. Each irreducible qi ∈ R. ut

Corollary 2.12.6. If R is a UFD, then R[x1, . . . , xn] is a UFD

Proof. By induction. ut

Example 2.12.7. Z[x1, . . . , xn] and F [x1, . . . , xn] are UFD’s.

Note: Z[x1, . . . , xn] is not a PID if n ≥ 1, and F [x1, . . . , xn] is not a PID if n ≥ 2.

2.13 Nov. 25

Theorem 2.13.1 (Eisenstein Criterion). Let R be a UFD with quotient field F ,and let
f(X) = anX

n + . . . + a1X + a0 be a polynomial in R[X], with n ≥ 1 and an 6= 0. If p is
prime in R, p divides ai for 0 ≤ i < n, but p does not divide an and p2 does not divide a0,
then f is irreducible over F . Thus,if f is primitive then f is irreducible over R.

Example 2.13.2. Let p be a prime. Let f(x) = 1 + x+ . . . xp−1. Then f is irreducible in
Q[x]. To see this, we show that f(x + 1) is eisenstein, And f(x) is irreducible in Q[x] iff
f(x+ 1) is irreducible in Q[x].

Proof. Let R be a commutative ring, and let a ∈ R. Let Ta : R[x] → R[x] be the unique
ring homomorphism such that Ta(r) = r, ∀r ∈ R, and Ta(x) = x + a. If b ∈ R, then
TaTb(r) = r, ∀r ∈ R And TaTb(x) = x + a + b. Ta+b = Ta ◦ Tb on R and x, and sine these
generate R[x] as a ring, then Ta+b = Ta ◦ Tb on R[x]. But T0 = IdR[x], so Ta : R[x]→ R[x]
is an isomorphism of R[x]. Hence f(x) ∈ R[x] is irreducible iff Taf(x) is irreducible. ut

Example 2.13.3. Let f = f(x, y) = y5−x3y4 +x2y+ 2xy in C[x, y]. Then f is irreducible
in C[x, y].

Proof. Regard f ∈ R[y] = C[x][y] = C[x, y], where R = C[x]. Then f = y5 + (−x3)y4 +
(x2)y+(2x)y. R is a UFD, and x is irreducible in R. So x is prime in R. And f is Eisenstein
for the prime x. Let F = C[x] = Frac(C[x]). Therefore, f is irreducible in F [x] = C(X)[y].
But f is primitive in R[y] since a5 = 1, so f is irreducible in R[y] = C[x, y]. ut

Example 2.13.4. f = x21 + x22 + x23 is irreducible in C[x1, x2, x3]
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Proof. Let R = C[x2, x3], so C[x1, x2, x3] = R[x1], f = x21 + a0. Note R is a UFD. Find a
prmitive R so that f is Eisenstein for p. Our a0 = (x2 + ix3)(x2 − ix3), and x2 + ix3 is
irreducible in R since it is prime. Then f is Eisenstein for p = x2 + ix3, and f is irreducible
in F [x1] where F = C(x2, x3). f is irreducible in R[x1]. ut

2.13.1 Characteristic of a ring

Let R be a ring. Consider the unique ring homoomrphism φ : Z→ R, φ(n) = n · 1R. Then
ker(φ) is a proper ideal of Z, so ker(φ) = nZ, n 6= 1, n ≥ 0

Definition 2.13.5. The characteristic Char(R) of R is n.

In R, n · a = 0,∀a ∈ R, since n · a = (1n)a = 0a = 0. If R is an integral domain, then
Char(R) = a prime or 0.

Example 2.13.6. Char(Z/nZ) = n, ∀n 6= 1, Char(R[x]) = Char(R).

Remark 2.13.7. If Char(R) = p is prime, and a, b ∈ R, and ab = ba, then (a+b)p = ap+bp.
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Chapter 3

Module Theory

3.1 Dec. 2, 2019

Definition 3.1.1. Let R be a ring, not necessarily commutative. A (left) R-module is an
abelian group (M,+) with a map R ×M → M , with (r,m) 7→ r ·m, such that ∀s, r ∈ R,
m, r ∈M ,

1. r(m+ n) = rm+ rn

2. (r + s)m = rn+ sm

3. (rs)m = r(sm)

4. 1m = m

Remark 3.1.2. If R is a field, a R-module is the same as a vector space.

Remark 3.1.3. Z modules are same as abelian groups. Indeed, given a Z−module (M,+)
is an abelian group structure. Conversely, if (M,+) is an abelian group, we define a map
Z×M →M by (m,n) 7→ mn = n+ . . .+n if n > 0, setting 0m = 0,∀m ∈M and if n < 0,
set nm = (−n)m. Check this makes M a Z−module.

Proposition 3.1.4. let 0R = 0 in R, 0M = 0 in M . Then ∀r ∈ R, m ∈M

1. r0M = 0M

2. 0Rm = 0M

3. (−r)m = r(−m)

4. if r ∈ R× and rm = 0M , then m = 0M

Let Rn = {(x1, . . . , xn|xi ∈ R}, Rn is an abelian group via component wise operations.
If r ∈ R, x = (x1, . . . , xn) ∈ Rn, let rx = (rx1, . . . , rxn) can check Rn is a R−module. If
n = 1, Rn = R which is a R-module by (r, x) 7→ rx.
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Definition 3.1.5. Let M be a R-module, a subset N of M is called a submordule if N is
a subgroup of (M,+), and ∀r ∈ R, x ∈ N, rx ∈ N . Can check N itself is a R-module.

Example 3.1.6. R = Z, N = {(x1, x2) ∈ Z2|x1 + x2 ∈ 2Z}. Can check easily that N is a
submodule.

Remark 3.1.7. If R is a ring, then the left ideals I of R are the submodules of R. Indeed,
if I ⊂ R is an left ideal, I is a subgroup of (R,+), and if r ∈ R and x ∈ I, then rx ∈ I
by definition of left ideal, so I is a submodule. Converse is similar. If R is commutative,
submodules are the same as ideals.

Definition 3.1.8. Let M,N be R-modules, a map f : M → N is called a R-module
homomorphism, if f(x+ y) = f(x) + f(y), f(rx) = rf(x),∀r ∈ R, x, y ∈M .

Remark 3.1.9. Let Q ⊂M be a submodule, f : M → N be an R-module homomorphism.
Then f(Q) is a submodule of N . Indeed, f(Q) is a subgroup of N by 1.3. If r ∈ R, y ∈ f(Q),
y = f(x), some x ∈ Q, so ry = rf(x) = f(rx) ∈ f(Q).

Let P ⊂ N be a submodule, and let f : M → N be a R-module homomorphism. Let
f−1(P ) = {x ∈M |f(x) ∈ P}. Then f−1(P ) is a submodule of M , f−1(P ) is a subgroup of
M by group theory. And if x ∈ f−1(P ), and r ∈ R, then f(rx) = rf(x) ∈ P since P is a
submodule, so rx ∈ f−1(P ).

Remark 3.1.10. If M is a R-module, then {0} and M are always submodules. Hence if
f : M → N is a R-module homomorphism, then Im(f) = f(M) is a submodule of N and
ker(f) = f−1({0}) is a submodule of M .

Notation: If M,N are R-modules, then HomR(M,N) = {f : M → N |f is a R-module
homomorphism}.

Example 3.1.11. Let R = F [x, y], F is a field, let N = (x, y) = {rx + sy|r, s ∈ R} =
ideal generated by x, y. We can define f : R2 → N by f(r, s) = rx + sy. Can check that
f ∈ HomR(R2, N), f is surjective.

Remark 3.1.12. If M is a R-module, and v ∈M . Then Rv = {rv|r ∈ R} is a submodule
of M . Further, f : R→ Rv, f(r) = rv is a R-module homomorphism.

Definition 3.1.13. AnnR(v) = {r ∈ R|rv = 0} = ker(f).

3.1.1 Direct products and direct sums

Let {Mi} be a family of R-modules. Let
∏
Mi = {(xi)|xi ∈ Mi} = set theory product

of M . Define ∀j ∈ I, pj :
∏
Mi → Mj , where pj((xi)) = xj . If I = {1 . . . , n},

∏
Mi =

M1 × . . .×Mn.
Let

⊕
Mi = {(xi) ∈

∏
M |xi = 0,∀i outside of finite subset of I}. If I = Z>0, and each

Mi = R, then
∏
Mi = {(xi)|xi ∈ R} and

⊕
Mi = {(x1, . . . , xn, 0, . . .)|xi ∈ R,∃n0 > 0 such

that xn = 0∀n ≥ n0}
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Note: ∀I,
⊕
M is a submodule of

∏
Mi. Indeed, if x = (xi) ∈

∏
Mi, set supp(x) =

{i ∈ I|xi 6= 0}, then x ∈
⊕
M ⇐⇒ supp(x) is finite. If x, y ∈

∏
M and r ∈ R, then

supp(X + y) ⊂ supp(x) ∪ supp(y), supp(rx) ∈ supp(x). Hence
⊕
M is a submodule of∏

M . Further
⊕
Mi =

∏
Mi iff I is finite.

Universal property of
∏
Mi. Suppose we are given a R-module N and ∀j ∈ I, we are

given fj : N →Mj . Then ∃!R−module homomrophism N →
∏
Mi such that pj ◦fj , ∀j ∈ I

if y ∈ N, f(y) = (fi(y))
Universal property of

⊕
Mi for j ∈ I, define qj : Mj →

⊕
Mi by qj(x) = {(Xj)|xi =

0, xj = x} then qj is a R−module homomorphism. Given gj : Mj → N, ∀j. Then ∃!
R-module homomrophism g : N →

⊕
Mi such that g ◦ gj = qj .

3.2 Dec.4, 2019

3.2.1 Quotient

Let M be a R-module, with submodule N . Then M/N = {x + N |x ∈ M} is a R-module
via action (r, x + N) → rx + N , for r ∈ R, x ∈ M . Well-defined: if x + N = y + N , then
y = z+x, where z ∈ N . And r(y+N) = r(x+ z) +N = rx+ rz+N = rx+N = r(x+N).
Checking M/N is a R-module is routine. π : M → M/N , π(x) = x + N is a R-module
homomorphism. ker(f) = N and π is surjective.

Example 3.2.1. R = Z,M = Z2.N = {(x, y)|x+ y ∈ 2Z}.

Remark 3.2.2. Let M,N,P be R-modules, let f ∈ HomR(M,N), g ∈ HomR(N,P ). Then
g ◦ f ∈ HomR(M,R). Check is routine

3.2.2 Isomorphism Theorems

LetM,N,P beR-modules, N ⊂M is a submodule. LetHomR(M,P )N = {f ∈ HomR(M,P )|N ⊂
ker(f). Define π∗ : HomR(M/N,P ) → HomR(M,P ) by π∗(f) = f ◦ π ∈ HomR(M,P ) by
last remark.

Theorem 3.2.3. π∗ : HomR(M/N,P ) → HomR(M,P )N is a bijection. In particular,
if g ∈ HomR(M,P )N then g = π∗(ḡ), for unique ḡ ∈ HomR(M/N,P ), and ḡ(x + N) =
g(x), ∀x ∈M .

Theorem 3.2.4 (First Isomorphism Theorem). If f ∈ HomR(M,P ) and K = ker(f), then
f̄ : M/N → im(f) is a R-module isomorphism, where f̄(x+K) = f(x). If f is surjective,
then M/K is isormophic to P .

Let {Mi} be a family of submodules of M . ∀j ∈ I, we have αj : Mj → M , αj(x) = x.
By universal property of

⊕
M , we get !R-module homomorphism α :

⊕
Mi →M , α((x)) =∑

xi. Let
∑
Mi = im(α), so

∑
M = {x1 + . . .+xi}. Conclude that

∑
Mi is a submordule

of M as image of R-modules.
If S is also a submodule of M , then N + S = {x+ y|x ∈ N, y ∈ S}. As above, N + S is

a submodule. So is N ∩ S.
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Theorem 3.2.5 (Second Isomorphism Theorem). (N + S)/N ∼= S/(S ∩N)

Theorem 3.2.6 (Third Isomorphism Theorem). Let N ⊂ S submodules of M . Then
M/N ∼= (M/N)/(S/N). S/N = π(S), π : M →M/S.

Theorem 3.2.7 (Correspondence theorem). Let S(M) be the submodules of M . Let SN (M)
be the submodules P of M such that N ⊂ P ; Let π : M →M/N , π(x) = x+N . Then π−1 :
S(M/N)→ SN (M), P → π−1(P ) is bijective. Its inverse is Q→ π(Q) for Q ∈ SN (M).

Recall: If M is a R-module, and r ∈ M , AnnR(x) = {r ∈ R|rx = 0}. φv : R → Rv,
φv(r) = rv is a R-module homormophism and ker(φv) = AnnR(v). Note: AnnR(v) is a left
ideal of R.

Let AnnR(M) = {r ∈ R|ru = 0, ∀u ∈M} = ∩AnnR(u).AnnR(M) is a 2-sided ideal.

Lemma 3.2.8. 1. R/AnnR(v) ∼= Rv as a R-module

2. If R is commutative, AnnR(v) = AnnR(Rv) so R/AnnR(Rv) ∼= Rv

Definition 3.2.9. A R-module M is cyclic if ∃v ∈M such that M = Rv.

Example 3.2.10. R ring, I ⊂ R left ideal, then R/I = R(1+I) is cyclic. AnnR(1+I) = J .

Example 3.2.11. F field, R = M(n, F ). Take M = Fn = {(a1, . . . , an)|ai ∈ F}. R acts
on M by (A, v)→ A(v). M = Ren. AnnR(en) 6= AnnR(M).

Definition 3.2.12. Let M be a R-module, let S = {xi} be a subset of M . We say M is
linearly independent over R if for n ≥ 0, ri1 , . . . , rin , ri1xi1 + . . .+ rinxin = 0 if each rij = 0
where i1, . . . , in ∈ I. We say S spans M over r if M =

∑
Rxi. We say S is a basis over M

if S spans M and S is linearly independent.

Remark 3.2.13. A maximal linearly independent set need not be a basis.

Example 3.2.14. R = Z, M = R, S = {2} is maximal linearly independent over Z, but
2R = 2Z 6= Z so S doesn’t span.

3.3 Dec. 6, 2019

Definition 3.3.1. M is a finitely generated R-module if ∃ a finite S that spans M over R.

Definition 3.3.2. We say M is a free R-module if M has a basis.

Remark 3.3.3. Let S be a R-basis of M . Let R⊕I = {(ri)|ri ∈ R and ri = 0 for all i
outside of a finite subset of I}. R⊕I =

⊕
Ri we define αS : R⊕I →M by α((ri)) =

∑
riyi.

Claim: αS is a R-module isomorphism, i.e. a free R-module is exactly a module
isomorphism to a direct sum of copies of R. Let T ⊂ M be a subset. Define αT : R⊕I →
M by αT ((ri)) =

∑
riyi. Im(αI) =

∑
Ryi, so αT is surjective iff T spans M over R.

ker(αT ) = {(ri)|αT ((ri)) = 0} = {(ri)|
∑
riyi. Hence, αT is injective iff

∑
riyi = 0 then

ri = 0 iff T is lineraly independent in R.
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Example 3.3.4. Let I = {1 . . . , n}, S = {xr1 , . . . , xrn}, αS : Rn → M,αS(r1, . . . , rn) =∑
rixi. By above, if S is a basis of M , αS is an isomoprhism. Rn has basis {e1, . . . , en}. A

basis of M determines an isomorphism from Rn to M by αS(ei) = xi.

Proposition 3.3.5. Let M be a R-module, with submorudles {Mi}, define α :
⊕
Mi →M

by α((xi)) =
∑
xi and note α is a R-module homomorphism by universal property

⊕
Mi,

αi : Mi →Mj and α is R-module homomorphism induced from then

1. α is surjective iff M =
∑
Mi

2. α is injective iff ∀j ∈ I,Mj ∩
∑

i 6=jMi = 0

3. α is an isomorphism iff M =
∑
Mi and (2) is satisfied.

3.3.1 Linear Algebra over Integral Domains

Assume R is a domain, let F = frac(R).Rn ⊂ Fn since R ⊂ F

Example 3.3.6. Zn ⊂ Qn

Remark 3.3.7. If V ⊂ Rn, let FV = {
∑∞

k=1 αkuk|αk ∈ F, uk ∈ V }. Then FV is a F -vector
space over F . Indeed, F is closed under addition and F scalar multiplication. We call FV
the F -vector space generated by V , and it is the smallest F -vector space containing V .

Definition 3.3.8. rk(V ) = rkR(V ) = dimF (FV ) since FV ⊂ Fn,dimF (FV ) ≤ n, so
rk(V ) ≤ n.

Lemma 3.3.9. 1. Let S = {si} be in Rn. Then S is linearly independent over R in Rn

iff S is linearlyh independent over F in Fn

2. Let M1, . . . ,Mk be R submodules of Rn, then M1 + . . .+Mk is direct in Rn iff FM1 +
. . .+ FMK is direct in Fn

Lemma 3.3.10. Let M ⊂ R be a R-submodule, let S ⊂M . Then S is a maximal linearly
independent set for R iff S is a maximal linear independent set over F in FM .

Lemma 3.3.11. 1. If S = {x1, . . . , xn} spans M in Rn, then S spans FM in Fn

2. F (M1 + . . .+Mk) = FM1 + . . .+ FMk

Consequence: If M ⊂ Rn is a submodule and M is free with basis S, then by lemmas,
FM is free with basis S, rk(M) = dimF (FM) = |S|. In particular if T is another basis of
M , then |T | = |S|.
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3.4 Dec. 9, 2019

Definition 3.4.1. Let M be a free R-module, and let α : M → Rn be a R-module
isomorphism. If N ⊂M is a submodule, let rk(N) = rk(α(N)) = dimF Fα(N).

Proposition 3.4.2. Let α : M → Rn and β : M → RS be R-module isomorphism. Then
rk(α(N)) = rk(β(N)) by definition rk(N) is independent of choices.

Proof. Let γ = β ◦ α−1 : Rn → RS be R-module isormophism. Let S ⊂ α(N) to be
maximal R linearly independent. Then γ(S) ⊂ β(N) is maximally R-linearly independent.
By lemma 3 from last time, S is maximally linear independent set in Fα(N) and γ(S) is a
maximal F -linear independent set in Fβ(N), . . . , rk(α(N)) = |S| = |γ(S)| = rk(β(N)). ut

Remark 3.4.3. Let N1, N2 ⊂ M be submodule of a free finitely generated R-module M .
Assume N1 +N2 is directed. Then

1. rk(N1 +N2) = rk(N1) + rk(N2)

2. if N1 is free with basis x1, . . . , xk N2 is free with basis y1, . . . , yl, then N1 +N2 is free
with basis x1, . . . , xk, y1, . . . , yl

3.4.1 Linear maps

Let M,N be R-modules. Recall HomR(M,N).
Claim: HomR(M,N) is a R-module. If f, g ∈ HomR(M,N), define f + g : M → N

by (f + g)(x) = f(x) + g(x) for x ∈ M if r ∈ R, set (r ◦ f)(x) = r(f(x)) for x ∈ M ,
f ∈ HomR(M,N). Once can check this makes HomR(M,N) into a R-module. One step is
(r ◦ f)(ax) = a(r ◦ f)(x).

Example 3.4.4. Let M be a free R-module with basis x1, . . . , xn. Then if x ∈ M, r =∑
rixi for !r1, . . . , rn. Define for j = 1, . . . , n, qj : M → R by qj(

∑
rjxi) = rj .

We call HomR(M,R) = MX the dual R-module to M . Conclude M free of rank n
implies MX is a free module of rank n.

Theorem 3.4.5. Let R be a PID. let M be a free R module of rank n. Let M ′ ⊂ M be a
submodule. Then

1. M ′ is free of rank q ≤ n.

2. if M ′ 6= {0}, ∃ a basis x1, . . . , xn of M and nonzero r1, . . . , rq ∈ R such that r1x1, . . . , rqxq
is a basis of M and r1 | r2 | . . . | rq ∈ R.

Remark 3.4.6. If R is not a PID, this is false. Ex: R = F [x, y],M ′ = (x, y). Then M is
free of rank 1, but M ′ is not free. since any subset S with > 1 element is not r linearly
independent, and M ′ = Rv as M is not a principal ideal.
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Corollary 3.5.1. Let N be a finitely generated R-module, with R a PID. Then ∃n, q ∈ Z>0,
with n ≥ q, and a1, . . . , aq ∈ R such that a1 | a2 | . . . | aq such that N ∼= R/(a1) ⊕ . . . ⊕
R/(aj)⊕Rn−q.

Corollary 3.5.2. If G is a finite abelian group. Then ∃n1 | n2 | . . . | nq in Z such that
G ∼= Zn1 ⊕ . . .⊕ Znq

Remark 3.5.3. Solution to problem to Problem set 1. Let G be a finite abelian group, let
m = lcm(|a|a∈G), then ∃b ∈ G such that |b| = m.
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