Notes for Graduate Algebra

Ting Gong

Started Aug. 28, 2019, Last revision December 14, 2019

Contents

1 Group Theory 2
1.1 Aug. 28, 2019 2
1.1.1 Groups 2
1.2 Aug. 30, 2019 4
1.2.1 More on \mathbb{Z} 4
1.2.2 Order of elements 4
1.3 Sep. 2, 2019 5
1.3.1 Examples of groups 5
1.4 Sep. 4, 2019 6
1.5 Sep. 6, 2019 7
1.5.1 Cosets and Homomorphisms 8
1.6 Sep. 9, 2019 8
1.6.1 Cosetology 9
1.7 Sep. 11, 2019 10
1.7.1 Group homomorphism 10
1.8 Sep. 13, 2019 11
1.8.1 Factor Theorem 12
1.9 Sep. 16, 2019 13
1.10 Sep. 18, 2019 13
1.10.1 Products 14
1.11 Sep. 20, 2019 14
1.11.1 Group actions 15
1.12 Sep. 23, 2019 16
1.13 Sep. 25, 2019 17
1.13.1 Sylow Theorems 17
1.14 Sep. 27, 2019 17
1.15 Sep. 30, 2019 18
1.16 Oct. 2, 2019 20
1.16.1 The class equation 20
1.17 Oct. 4, 2019 21
1.18 Oct. 7, 2019 21
1.18.1 Composition Series 21
1.19 Oct. 9, 2019 22
1.19.1 Solvable groups 22
1.20 Oct. 11, 2019 23
1.20.1 Free Groups 24
1.21 Oct. 14, 2019 24
1.22 Oct. 18, 2019 24
1.22.1 Category 24
2 Ring Theory 26
2.1 Oct. 28, 2019 26
2.2 Oct. 30, 2019 27
2.2.1 Polynomial rings 28
2.3 Nov. 1, 2019 28
2.3.1 Quotient Rings 29
2.4 Nov. 4, 2019 29
2.4.1 Operation of Ideals 30
2.4.2 Isomorphism Theorems + Chinses Remainder Theorem 30
2.5 Nov. 6, 2019 31
2.5.1 Maximal ideals and prime ideals 31
2.6 Nov. 8, 2019 31
2.6.1 $R[x]$ 33
2.7 Nov. 11, 2019 33
2.8 Nov. 13, 2019 34
2.9 Nov. 15 35
2.9.1 Unique Factorization domain 35
2.10 Nov. 18, 2019 35
2.10.1 Rings of Fraction 36
2.11 Nov. 20, 2019 36
2.11.1 Lattice 36
2.12 Nov. 22, 2019 37
2.13 Nov. 25 38
2.13.1 Characteristic of a ring 39
3 Module Theory 40
3.1 Dec. 2, 2019 40
3.1.1 Direct products and direct sums 41
3.2 Dec.4, 2019 42
3.2.1 Quotient 42
3.2.2 Isomorphism Theorems 42
3.3 Dec. 6, 2019 43
3.3.1 Linear Algebra over Integral Domains 44
3.4 Dec. 9, 2019 45
3.4.1 Linear maps 45

This is the lecture notes of Prof. Sam Evens in Graduate Algebra in Fall 2019

Chapter 1

Group Theory

1.1 Aug. 28, 2019

1.1.1 Groups

Definition 1.1.1. A binary operation on a set S is a map $m: S \times S \rightarrow S$. If $a, b \in S$, we write $m(a, b)=a \star b$ or $a b$ or $a \cdot b$. $a \star b \in S$ by definition. We write (S, \star) in place of (S, m).

Definition 1.1.2. A group (G, \star) is a set G with the binary operation \star such that

1. $\forall a, b, c \in G,(a \star b) \star c=a \star(b \star c)$
2. $\exists e \in G$ such that $a \star e=a=e \star a$
3. $\forall a \in G, \exists b \in G$ such that $a \star b=e=b \star a$

Example 1.1.3. 1. $(\mathbb{Z},+), \mathbb{Z}:=$ integers
2. F be a field, $(F,+):(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$, etc.

Definition 1.1.4. A group G is abelian if $a \star b=b \star a$.
Notation: For $a_{1}, \ldots, a_{n} \in G$, set $a_{1}, \ldots, a_{n}=\left(a_{1}, \ldots, a_{n-1}\right) a_{n}$. Associativity implies that the order of the parenthesis is irrelevant

If G is a group, $a \in G$, we write $b \in G$ so that $a \star b=e=b \star a$ as $b=a^{-1}$ in abstract group. $\operatorname{In}(\mathbb{Z},+), a^{-1}=a$.

Proposition 1.1.5 (Cancellation Laws). Let G be a group, $a, b, c \in G$, then
(i) $a b=a c$ implies $b=c$
(ii) $b a=c a$ implies $b=c$

Proof. We multiply a^{-1} on the left for (i) and we multiply the same thing on the right for (ii).

Remark 1.1.6. (i) The identity e in a group G is unique. Indeed suppose $e^{\prime} \in G$ consider $e=e e^{\prime}=e^{\prime}$.
(ii) For each $a \in G, a^{-1}$ is unique. Consider cancellation laws.
(iii) $\forall a \in G,\left(a^{-1}\right)^{-1}=a$. Consider multiplication by a^{-1} and use cancellation laws

Notation If G is a group, $a \in G$, for $n>0, a^{n}=a \ldots a$, where we have n factors. $a^{0}=1$. For $n<0, a^{-n}=\left(a^{n}\right)^{-1} . a^{m+n}=a^{m} a^{n}, a^{m n}=\left(a^{m}\right)^{n}$

Definition 1.1.7. Let G be a group with operation \star, a subset H of G is called a subgroup if (H, \star) is a group.

Lemma 1.1.8. Let H be a subset of a group G, the following are equivalent
(i) H is a subgroup
(ii) H is non-empty and $a, b \in H$ implies $a b^{-1} \in H$
(iii) $e \in H, a, b \in H$ implies $a b \in H, a \in H$ implies $a^{-1} \in H$

Proof. $(i) \Rightarrow(i i) e \in H, H$ is nonempty, then the rest follows.
(ii) \Rightarrow (iii) Let $a \in H$, then $e=a a^{-1} \in H . e, a \in H$, then $e a^{-1} \in H . a, b \in H$, then $b^{-1} \in H$, then $a\left(b^{-1}\right)^{-1} \in H$. Thus $a b \in H$
$($ iii $) \Rightarrow(i)$ If $a, b, c \in H$, then $a, b, c \in G$. So associativity follows.
Remark 1.1.9. For $n \in \mathbb{Z}$, let $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$, then $n \mathbb{Z}$ is a subgroup.
Proof. $n=n \times 1 \in n \mathbb{Z}$, so $n \mathbb{Z} \neq \emptyset$. If $a=n k, b=n l$, then $a-b=n(k-l) \in n \mathbb{Z}$. Then apply lemma.

Proposition 1.1.10. Let H be a subgroup of \mathbb{Z}. Then $H=n \mathbb{Z}$ for a unique $n \in \mathbb{Z}^{+}$.
Proof. Assume well ordering principle: any subset S of $\mathbb{Z} \geq 0$ has a minimal element a so that $a \leq b$ for all $b \in S$

Assume division algorithm. If $a, b \in \mathbb{Z}, a>0$, then $\exists q, r \in \mathbb{Z}$ so that $b=q a+r$ with $0 \leq r<a$.

Let H be a subgroup. If $H=\{0\}$, then $H=0 \mathbb{Z}$. Otherwise $\exists a \neq 0, a \in H$. Since $-a \in H, H \cap \mathbb{Z}^{+} \neq \emptyset$. So $H \cap \mathbb{Z}^{+} \neq \emptyset$ has a minimal element n. Then $n \in H$. so $n \mathbb{Z} \subset H$ since $n k=n+\ldots+n \in H$.

We are going to show $H \subset n \mathbb{Z}$. For this, let $b \in H$. Then by division algorithm, $b=n q+r$ with $0 \leq r<n$. Then $r=b-q n \in H$ since $b, q n \in H, r>0$ violates the assumption that n is minimal in $H \cap \mathbb{Z}^{+} \neq \emptyset$. Therefore, $r=0$. So $b-q n=0, b=q n \in n \mathbb{Z}$.

1.2 Aug. 30, 2019

1.2.1 More on \mathbb{Z}

Let $a, b \in \mathbb{Z}, a \mathbb{Z}+b \mathbb{Z}=\{a x+b y \mid x, y \in \mathbb{Z}\} . a \mathbb{Z}+b \mathbb{Z}$ is a subgroup of $\mathbb{Z}: a \in a \mathbb{Z}+b \mathbb{Z}$. If $u=x a+y b, v=x^{\prime} a+y^{\prime} b \in a \mathbb{Z}+b \mathbb{Z}, u-v=\left(x-x^{\prime}\right) a+\left(y-y^{\prime}\right) b \in a \mathbb{Z}+b \mathbb{Z}$. Hence $a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z}$ where $d=0$ if $a=b=0$, and d is minimal in $a \mathbb{Z}+b \mathbb{Z} \cap \mathbb{Z}^{+}$.

If a, b are not both 0 . Write $d=(a, b)$ and call it the greatest common divisor (gcd) of a and b.

Notation: if $m, n \in \mathbb{Z}, m \neq 0$, write $m \mid n$ if $n=k m, k \in \mathbb{Z}$. Notate: $m \mid n$ if and only if $n \in m \mathbb{Z}$.

Then $d \mid a$. Indeed, $a \in a \mathbb{Z}+b \mathbb{Z}=d \mathbb{Z} . d \mid b$ similarly.
If $c \mid a$ and $c \mid b$, then $c \mid d$ so $d \geq c$. Indeed $c \mid a$ implies $a x \in c \mathbb{Z} . c \mid b$ implies $b y \in c \mathbb{Z}$. Then $c \mathbb{Z}$ is a subgroup implies $a x+b y \in c \mathbb{Z}$. Hence $d \in c \mathbb{Z}$ so $c \mid d$

Definition 1.2.1. If $a, b \in \mathbb{Z}$ and $(a, b)=1$ we say a and b are relatively prime.
Note: $(a, b)=1$ if and only if $\exists x, y \in \mathbb{Z}$ such that $x a+b y=1$
Proposition 1.2.2. If $a, b, c \in \mathbb{Z}$ and $a \neq 0$, and $a \mid b c$, and $(a, b)=1$ then $a \mid c$
Proof. $(a, b)=1$ implies $1=a x+b y$. Then $c=c a x+c b y$. To show $c \in a \mathbb{Z}, x a c \in a \mathbb{Z}$ and $y b c \in a \mathbb{Z}$ since $a \mid b c$. Since $a \mathbb{Z}$ is a subgroup. $c=x a c+y b c$, so $a \mid c$.

Proposition 1.2.3. Let a, b be not both 0 , then $(a /(a, b), b /(a, b))=1$.
Proof. Since $(a, b)=x a+b y$. We divide (a, b), then we have $(a /(a, b), b /(a, b))=1$. Then by our note, we get what we desired.

Proposition 1.2.4. Let $[a, b]$ be the least common multiple of a, b, then $(a, b)[a, b]=a b$.

1.2.2 Order of elements

Definition 1.2.5. Let G be a group and let $a \in G$, let $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. Easy to check $\langle a\rangle$ is a subgroup. It is called the cyclic subgroup of G generated by a.

Definition 1.2.6. If H is a group, let $|H|$ be the order of H.
Definition 1.2.7. If $a^{n} \neq e$ for all $n>0$, we say that the order $|a|$ of a is ∞. If $a^{n}=e$ for some $n>0$, we say $|a|=d$, where d is minimal in \mathbb{Z}^{+}so $a^{d}=e$.

Note: $\left\{n \in \mathbb{Z} \mid a^{n}=e\right\}$ is a subgroup of \mathbb{Z}. Indeed, $n=0 \in K$, if $n, m \in K, a^{n}=e=a^{m}$, so $a^{n-m}=e$, so $n-m \in K$. Hence, K is a subgroup. Now we are going to show $|a|=|\langle a\rangle|$ where $|a|=\infty$ iff $|\langle a\rangle|=\infty$

Proof. Case 1: $|a|=\infty$. We claim that $a^{n}=a^{m}$ for $n, m \in \mathbb{Z}$ implies $n=m$. Indeed, let $a^{n}=a^{m}$, we can assume $n \geq m$. Then $a^{n-m}=e$, and $n-m \geq 0$. Since $|a|=\infty$ implying $n-m$ is not bigger than $0, n-m=0$, which means $n=m$. Hence all elements in $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ are distinct so $|\langle a\rangle|=\infty$

Case 2: let $|a|=d<\infty$. let $S=\left\{e, a \ldots a^{n-1}\right\}$. Then $S=\langle a\rangle$. Indeed, if $a^{n} \in\langle a\rangle$, then $n=q d+r, 0 \leq r<d$ and $a^{n}=a^{q d+r}=\left(a^{q}\right)^{d} a^{r}=e a^{r}=a^{r} \in S . S \subset\langle a\rangle$ is clear, so $S=\langle a\rangle$. Let $a^{i}, a^{j} \in S$, with $j \geq i$. If $a^{i}=a^{j}$, then $a^{j-1}=e$. So $j-i=0$. Since d is minimal among $n>0$ with $a^{n}=e$, hence, S has d distinct elements. So $|S|=|\langle a\rangle|=d$, and $|a|=|\langle a\rangle|$.

Definition 1.2.8. A group G is cyclic if $G=\langle a\rangle$ for some $a \in G$.
Example 1.2.9. \mathbb{Z} is cyclic. Since $\mathbb{Z}=\langle 1\rangle$
Note: if $|a|=d$, then $\left\{n \in \mathbb{Z} \mid a^{n}=d\right\}$ is a subgroup of \mathbb{Z}, and $\left\{n \in \mathbb{Z} \mid a^{n}=e\right\}=d \mathbb{Z}$.
Proposition 1.2.10. (adaptation of Ash) Let G be a group, $a \in G$, let $a \in G$ has order $d<\infty$. Let $k \in \mathbb{Z}$, then $\left|a^{k}\right|=d /(k, d)$.
Proof. Certainly $\left(a^{k}\right)^{d /(k, d)}=a^{k d /(k, d)}=\left(a^{d}\right)^{k /(k, d)}=e$. Hence $\left|a^{k}\right| \leq d /(k, d)$. Show $\left(a^{k}\right)^{m}=e$ then $d /(k, d) \mid m$ so $\left|a^{k}\right|=d /(k, d)$ since $(k, d) \mid k$. Note $d /(k, d) \mid k /(k, d)$. From above we know that $(d /(k, d), k /(k, d))=1$ so we have what we desired.

Proposition 1.2.11. Let $G=\langle a\rangle$ be a finite cyclic group with n elements. Then $\forall k \mid n, \exists a$! subgroup H_{k} of G such that $\left|H_{k}\right|=k$ and $\left|H_{k}\right|=\left\langle a^{n / k}\right\rangle$. Every subgroup of G is H_{k} for some k dividing n.

Proof. Existence: $\left|a^{n / k}\right|=n /(n, k)$ by the last proposition, but $n / k \mid n$ so $n /(n, k)=n / k$. $\left|a^{n / k}\right|=k$. Let $H_{k}=\left\langle a^{n / k}\right\rangle$. Then $\left|H_{k}\right|=k$. Let $H \subset G$ be a subgroup, if $H=e$, then $H=\left\langle a^{n}\right\rangle=H_{1}$. If not, $\exists a^{l} \in H$ with $0<l<n$. Choose $m>0$ minimal so that $a^{m} \in H$. Then $\left\langle a^{m}\right\rangle$ in H. Show that $H=\left\langle a^{m}\right\rangle$. If $x \in H, x=a^{l} . l=q m+r$ with $0 \leq r<m$. Then $a^{l}=a^{q m+r}=a^{q m} a^{r} \leq 0 . a^{r}=\left(a^{q m}\right)^{-1} \in H$. By minimality of $m, r=0$, so $H=\left\langle a^{m}\right\rangle$. Show $m \mid n$. Let $d=(m, n), d=x m+y n, x, y \in \mathbb{Z}$. Then $a^{d}=a^{m x}$ since $a^{n}=e$. Hence $a^{d} \in H$ and $d \leq m$. By minimality of $m, m=d$. Therefore $m \mid n$.

1.3 Sep. 2, 2019

1.3.1 Examples of groups

Definition 1.3.1. A field $(F,+, \cdot)$ is a set with 2 binary operations such that

1. $(F,+)$ is an abelian group
2. $\left(F^{\prime}, \cdot\right)$ is a abelian group
3. identity 0 of F is not identity 1 of F
4. $a(b+c)=a b+a c, \forall a, b, c \in F$

Definition 1.3.2. Let F be a field, and let $n>0$, and let $u_{n}(F)=\left\{z \in F \mid z^{n}=1\right\}$, where 1 is the identity of $\left(F^{\prime}, \cdot\right)$, then $u_{n}(F)$ is a subgroup of $F^{\prime} . u_{n}(\mathbb{C})=\left\{e^{2 \pi k i / n} \mid k=1, \ldots, n-1\right\}$ is defined as the nth roots of unity, where $e^{i \theta}=\cos \theta+i \sin \theta$. Then the roots of unity in \mathbb{C} is a cyclic group of order n with generator $\zeta=e^{2 \pi i / n}$

Definition 1.3.3. The Orthogonal group $O(n, F)=\left\{A \in M(n, F) \mid A \times A^{T}=I_{n}\right\}$
Notation: Frequently write $A B$ in place of $A \times B$.
Example 1.3.4. 1. $\left(\mathbb{Z}_{n},+\right)$, where $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ integers $\bmod n$. Will assume familarity, carefully later. $\left(\mathbb{Z}_{n},+\right)$ is cyclic and 1 is the generator
2. Let F be a field $(\mathbb{Q}, \mathbb{R}, \mathbb{C})$. Let $\cdot=$ multiplication on F. Let $F^{\prime}=F-\{0\}$. Then $\left(F^{\prime}, \cdot\right)$ is a group by field axioms
3. Let F be a field, $n \in \mathbb{Z}^{+} . M(n, F)$ is the $n \times n$ matrices with entries in F. $M(n, F)$ is a group under matrix addition.
4. Let $A, B \in M(n, F)$, then $A \times B \in M(n, F)$. Set $G L(n, F)=\{A \in M(n, F) \mid A$ is invertible $\}=\{A \in M(n, F) \mid \operatorname{det}(A) \neq 0\}$. Therefore, $(G L(n, F), \times)$ is a group. Check: $A, B \in G L(n, F), A \times B \in G L(n, f)$ since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. If $n \geq 2$, then $G L(n, F)$ is nonabelian. If $|F|=q<\infty$, then $|G L(n, F)|=\prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right)$. Idea: A is invertible if each column is linearly independent. So choosing a matrix in $G L(n, F)$ is same as choosing an n-tuple of linearly independent vectors. a_{1} cannnot be chosen as 0 , and a_{2} is chosen not to be $F \cdot a_{1}$ and so on.
5. Let $A \in M(n, F)$. Let $A^{T}=$ transpose of A. The orthogonal group is a group and is a subgroup of $G L(n, F)$.

1.4 Sep. 4, 2019

If $\operatorname{det}(A)=1$, then A is a rotation, if $\operatorname{det}(A)=-1$, then A is a reflection. And $s_{\alpha}=$ $R(\alpha) s R(-\alpha)$.

Definition 1.4.1. If $f: S \rightarrow T$ is a map of sets, then f is
(i) Injective: if $f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$ for $x_{1}, x_{2} \in S$ (one to one)
(ii) Surjective: if $\forall y \in T, \exists x \in S$ such that $f(x)=y$ (Onto)
(iii) Bijective: if f is injective and surjective (one-to-one corespondence).

Lemma 1.4.2. If $f: S \rightarrow T, g: T \rightarrow W$ be maps of sets. Define $g \circ f: S \rightarrow W$ by $(g \circ f)(x)=g(f(x))$

1. f, g injective implies $g \circ f$ injective
2. f, g surjective implies $g \circ f$ surjective
3. f, g bijective implies $g \circ f$ bijective
4. If f is bijective then there exists $q: T \rightarrow S$ such that $f \circ q=q \circ f=x, q$ is called the inverse of f.

Definition 1.4.3. $A(S)=\{f: S \rightarrow S \mid f$ is bijective $\}$.
Lemma 1.4.4. $A(S)$ is a group with group operation composition.
We continue the examples
Example 1.4.5. 6 The regular n-gon T_{n} is the n-gon with vertices (in polar coordinates $(1,0),(1,2 \pi / n), \ldots(1,2 \pi(n-1) / n)$. Let the dihedral group $D_{2 n}=\{A \in O(2) \mid$ a maps vertices of T_{n} to vertices of $\left.T_{n}\right\}$. $D_{2 n}=\left\{I, r, r^{2}, \ldots\right\} \cap\{s, s r, \ldots\}$. Therefore, the rotations and reflections. $D_{2 n}=\left\{s, r \mid s r=r^{-1} s, r^{n}=e, s^{2}=e\right\}$ is a subgroup of $O(2)$.

7 Symmetric Groups: Let S be a set possibly infinite. Let $S=\{1, \ldots, n\}, A(S)=S_{n}$ the symmetric group.

1.5 Sep. 6, 2019

Definition 1.5.1. If $\sigma \in S_{n}, \operatorname{supp}(\sigma)=\{i \mid \sigma(i) \neq i\}$. A k-cycle is an element with $\operatorname{supp}(\sigma)=\left\{i_{1}, \ldots, i_{n}\right\} \in\{1, \ldots, k\}$ such that $\sigma\left(i_{i}\right)=i_{2}, \ldots, \sigma\left(i_{k}\right)=\sigma\left(i_{1}\right)$. We write the above k-cycle as $\left(i_{1} i_{2} \ldots i_{k}\right)$. We call 2-cycles transpositions. A transposition τ is called simple if $\tau=(i i+1)$ for some $i \in\{1, \ldots, k\}$. If $\sigma, \tau \in S_{n}$ we say that they are disjoint if $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau)=\emptyset$.

Results:

1. If $\sigma, \tau \in S_{n}$ are disjoint, then $\sigma \tau=\tau \sigma$.
2. If $\sigma \in S_{n}$, then σ can be written as a product of disjoint cycles. $\sigma=\sigma_{1} \ldots \sigma_{k}$ where σ is a n-cycle. Further, the cycle decomposition it in a unique way up to reordering.
3. σ is a k-cycle, then $|\sigma|=k$ for this compute $\sigma^{k}=i$.
4. σ has cycles decomposition $\sigma=\sigma_{1} \ldots \sigma_{k}$, where $l(\sigma)=n$, then $|\sigma|=l c m\left(n_{1}, \ldots, n_{k}\right)$.
5. if σ is a k-cycle, then $\sigma=\left(i_{1} i_{2}\right) \ldots\left(i_{k-1} i_{k}\right)$.
6. if $\sigma \in S_{n}, \sigma$ is a product of transpositions by 2 and 5 .
7. if $\sigma \in S_{n}$ and $\tau=\left(i_{1} \ldots i_{k}\right)$ then $\sigma \tau \sigma^{-1}=\left(\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)\right)$
8. $\left|S_{n}\right|=n$!.

1.5.1 Cosets and Homomorphisms

Definition 1.5.2. Let G be a group with subgroup H. If $a \in G$, the left coset $a H=$ $\{a x \mid x \in H\}$, the right coset $H a=\{x a \mid x \in H\}$

$$
\text { Let } G / H=\{a H \mid a \in G\}, H \backslash G=\{H a \mid a \in G\}
$$

Definition 1.5.3. For $a \in G$, wite $L_{a}: G \rightarrow G$ for the map $L_{a}(x)=a x$.
Lemma 1.5.4. The map $L_{a}: H \rightarrow a H$ is bijective. In fact, $|H|=|a H|$.
Proof. Let $y \in a H$, so $y=a x$. Then $y=L_{a}(x)$. So surjective. Injective: let $x_{!}, x_{2} \in H$, $L_{a}\left(x_{1}\right)=l_{a}\left(x_{2}\right)$ implies $a x_{1}=a_{2}$, so $x_{1}=x_{2}$.

Lemma 1.5.5. Let $a, b \in G$. Then either $a H=b H$ or $a H \cap b H=\emptyset$
Proof. Suppose $a H \cap b H \neq \emptyset$. Let $y \in a H \cap b H$. Then $y=a x=b z, x, z \in H$. Therefore, $a=b z x^{-1}$, and $z x^{-1} \in H$, then $a H \subset b H$. Interchanging a and b, we get $b H \subset a H$. Therefore, $a H=b H$

Notation: Let S be a set with subsets $\left\{T_{i}\right\}$. We say $S=\sqcup T_{i}$ if $S=\cap T_{i}$ and $T_{i} \cap T_{j}=\emptyset$. Then $|S|=\sum|T|$.

If G is a group with subgroup H and $\{a H \mid i \in I\}$ are the distinct left cosets, then $G=$ $\sqcup a_{i} H$. Indeed, if $i \neq j, a_{i} H \neq a_{j} H$ by distinctness, so $a_{i} H \cap a_{j} H=\emptyset$. If $b \in G, b=b e \in b H$, then $b H=a H$.

Theorem 1.5.6. Let G be a group with subgroup $H_{i}, i \in I$, then $|G / H|=|G| /|H|$, in particular $|H|||G|$.

Proof. Let $a_{1} H, \ldots, a_{k} H$ be the distinct left cosets. By the remark, $G=a_{1} \sqcup \ldots \sqcup a_{k}$. Therefore, $|G|=\sum\left|a_{i} H\right|=k|H|$.

Corollary 1.5.7. Let G be a finite group and let $a \in G$. Then $|a| /|G|$ and $a^{|G|}=e$.
Proof. We checked that $|a|=|\langle a\rangle| \mid G$ by Lagrange Theorem. Thus $|G|=n|a|$ so $a^{|G|}=$ $e^{n}=e$.

Definition 1.5.8. The index of a subgroup H of G is $|G / H|$. We say the index of H in G is $|G: H|$.

1.6 Sep. 9, 2019

let $n \in \mathbb{Z}^{+}$, for $a, b \in \mathbb{Z}, a \equiv b \bmod n$ if $n /(a-b)$ is an equivalence notation, Let \mathbb{Z}_{n} is an equivalence class $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \ldots, n-1\}$. We observe that $\left(\mathbb{Z}_{n}^{\times}, \cdot\right)$ is a group under multiplication.

Let $\phi(n)=\left|\mathbb{Z}_{n}^{\times}\right|<n$. If p is prime, $\mathbb{Z}_{p}^{\times}=\{\overline{0}, \overline{1}, \ldots, p-1\}$. So $\phi(p)=p-1$.

Corollary 1.6.1. (Euler's Theorem) If $a \in \mathbb{Z}$ and $(a, n)=1$, then $a^{\phi(n)} \equiv 1 \bmod n$. If p is prime and $a \in \mathbb{Z}$, then $a^{p} \equiv a \bmod p$.
Proof. Since $\left|\mathbb{Z}_{n}^{\times}\right|<n$, then \mathbb{Z}_{n}^{\times}implies $\bar{a}^{\phi(n)} \equiv 1 \bmod n$. Let $a \in \mathbb{Z}, p$ is a prime, then $(a, p) \mid p$, so $(a, p)=1$ or p. If $(a, p)=p$, then $p \mid a$. if $(a, p)=1$, then $a^{p-1} \equiv 1 \bmod p$. Hence $a^{p} \equiv a \bmod p$. If $p \mid a$, then $a \equiv 0 \bmod p$ so $a^{p} \equiv 0 \equiv a \bmod p$.

1.6.1 Cosetology

Proposition 1.6.2. Let $H \subset G$ be a subgroup, let $a, b \in G$ then the following are equivalent:

1. $a H=b H$
2. $b=a x, x \in H$
3. $a^{-1} b \in H$

Proof. $1 \Rightarrow 2$ since $b=b e \in b H=a H$, so $b=a x, x \in H$
$2 \Rightarrow 1$ If $b=a x$, then $b H=a x H \in a H$ since $x \in H$. so $x H=H . a H \cap b H \neq \emptyset$, so $b H=a H$. By Lemma 2 from last time
$2 \Rightarrow 3 b=a x, a^{-1} b=a^{-1} a x=x$, similarly for the other direction,
Similarly for right cosets.
Notation: For $S \subset G$, a subset, and $a \in G$. Let $a S=\{a x \mid x \in S\}$, and $S a=\{x a \mid x \in S\}$
Remark 1.6.3. If $a, b \in G, S$ as above, then $a(b S)=(a b) S,(S a) b=S(a b), a(S b)=(a S) b$
Definition 1.6.4. For G group, H subgroup of $G,[G: H]=|G / H|$ and is called the index of H in G. $[G: H]=\infty$ is allowed.

Proposition 1.6.5. Let G be a group with subgroup H, K with $K \subset H$, then $[G: K]=$ $[G: H][H: K]$.
[This follows by Lagrange's Theorem $[G: H]=|G| /|H|$ if G is finite]
Proof. Let $\left\{a_{i} H \mid i \in I\right\}$ be the distinct left cosets of H in $G,\left\{b_{j} K \mid j \in J\right\}$ be the distinct left cosets of K in $H . S=\left\{a_{i} \mid i \in I\right\}, T=\left\{b_{j} \mid j \in J\right\}$. Then we define a map $\phi: S \times T \rightarrow G / K$ by $\phi\left(a_{i}, b_{i}\right)=a_{i} b_{j} K$. We claim that ϕ is bijective. Surjective: Let $x K \in G / K$, then $x H \in G / H$, so $x H=a_{i} H$ for some $i \in I$. By cosetology, $x=a_{i} y$ for some $y \in H$. Then $y K \in H / K$, then $y K=b_{j} K$ for some $j \in J$. Then $x=a_{i} b_{j} z$, where $y=b_{j} z, z \in K$. Therefore, $x K=a_{i} b_{j} K=\phi\left(a_{i}, b_{j}\right) . \phi$ is injective: let $\phi\left(a_{i}, b_{j}\right)=\phi\left(a_{s}, b_{t}\right), s \in I, t \in J$. Then $a_{i} b_{j} K=a_{s} b_{t} K$. Therefore, $a_{i} b_{j}=a_{s} b_{t} z$ for some $z \in K$. so $a_{i}=a_{s} b_{t} z b_{j}^{-1}$. Thus $a_{i} H=a_{s} H$ by cosetology. So $i=s$ by the choice of a_{i} being distincts of $\left\{a_{i} H\right\}$. Therefore, $a_{i} b_{j} K=a_{i} b_{t} K$, then $b_{j} K=b_{t} K$. Thus $j=t$.

Definition 1.6.6. A subgroup N of a group G is normal if $a N a^{-1} \subset N \forall a \in G . a N a^{-1}=$ $\left\{a n a^{-1} \mid x \in N\right\}$.

Remark 1.6.7. Let $N \subset G$ be a subgroup, then the following are equivalent

1. N is normal in G
2. $a N a^{-1}=N, \forall a \in G$
3. $a N=N a, \forall a \in G$.

Proof. $2 \Rightarrow 1$ is clear, $3 \Rightarrow 2$ is also clear. $1 \Rightarrow 2$ since $a N a^{-1} \subset N$, thus $a N \subset N a, \forall a \in G$. But $a^{-1} \in G$ and $a=\left(a^{-1}\right)^{-1}$, so $a^{-1} N a \subset N, \forall a \in G, \Longrightarrow a a^{-1} N a \subset a N, N a \subset a N$.

Example 1.6.8. 1. G is Abelian, then $a H=H a, \forall$ subgroups H of G, and $a \in G$, so H is normal.
2. $G=D_{2 n}, N=\langle r\rangle$. if $g \in G$, and $x \in N$, since $g x g^{-1} \in N$ since $\operatorname{det}\left(g x g^{-1}\right)=$ $\operatorname{det}(g) \operatorname{det}(x) \operatorname{det}\left(g^{-1}\right)=\operatorname{det}(x)$ since $x \in N$. Therefore, $g x g^{-1} \in N$, since N has determinant 1.

Remark 1.6.9. By problem set 2 number 12, a subgroup of index 2 is normal, so N is $E x 2$ is normal in $D_{2 n}$ automatically.

1.7 Sep. 11, 2019

If N is a normal subgroup, we can write G / N into a group. Let $a N, b N \in G / N$ be the left cosets. We'd like to define $a N b N=a b N$. To do this, we must ensure $a b N$ depends only on $a N$ and $b N$ and not on a, b. Let $a N=a_{1} N, b N=b_{1} N$. Then $a_{1}=a x, b=b y, x, y \in N$. Then $a_{1} b_{1} N=\operatorname{axby} N$. But $x b \in N b=b N$, so $x b=b x, x_{1} \in N$, thus $a_{1} b_{1} N=a b x y N=$ $a b N$, since $x, y \in N$. Thus is a well defined binary operation on G / N.

Proof that G / N is a group. Everything is ingerited from similar property on G.
Usually, computing G / N is not transparent.
Example 1.7.1. $G=\mathbb{Z}, N=n \mathbb{Z} .(\mathbb{Z} / n \mathbb{Z}, \cdot)$ is fairly transparent.
Notation: Usually we write $a N b N=a N \cdot b N$.

1.7.1 Group homomorphism

Definition 1.7.2. Let $\phi: G \rightarrow H$ be a map between two groups. ϕ is called a group homomorphism (hom) if $\phi(x y)=\phi(x) \phi(y), \forall x, y \in G$.

Example 1.7.3. 1. G be a group N normal in G. Define $\pi: G \rightarrow G / N$ by $\pi(a)=a N$. π is a group homomorphism. Check $\pi(a b)=a b N=a N b N=\pi(a) \pi(b)$.
2. M is a subgroup of G. Define $j: M \rightarrow G$, by $j(a)=a$. Clear from defition that j is a group homomorphism.
3. Let $n \in \mathbb{Z}$, define $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ by $\phi(a)=n a$. Then ϕ is a group homomorphism. Every group homomorphism $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ is $\phi=\phi_{n}$ for some n.
4. Let f be a field, define $f: S_{n} \rightarrow G L(n, F)$ as follows, for $\sigma \in S_{n}$, let $f(\sigma)$ be matrix so that $f(\sigma)(e)=e_{\sigma(i)}$. This determines $f(\sigma)$ uniquely since e_{1}, \ldots, e_{n} is a basis of F. This matrix are porentation matrices, exactly one entry of each columns is nonzero and that entry is $1 . f$ is a group homomorphism.
5. det : $G L(n, F) \rightarrow F^{\times}, A \mapsto \operatorname{det}(A)$. This is a group homomorphism since $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B), \forall A, B \in G L(n, F)$.

Remark 1.7.4. Let $\phi: G \rightarrow H$ be a group hom. Then $\phi\left(e_{G}\right)=e_{H}, \forall a \in G, \phi\left(a^{-1}\right)=$ $\phi(a)^{-1}$.

Notation: Let $\phi: G \rightarrow H$ be a group. If $X \subset G$, let $\phi(X)=\{\phi(a) \mid a \in X\}$. If $Y \subset H$ let $\phi^{-1}(Y)=\{a \in G \mid \phi(a) \in Y\}$, there doesn't exists $\phi^{-1}: H \rightarrow G$. We say ϕ is a monomorphism is ϕ is injective. We say ϕ is a epimorphism is ϕ is surjective. We say ϕ is a isomorphism is ϕ is bijective.

Remark 1.7.5. If $\phi: G_{1} \rightarrow G_{2}$ and $\psi: G_{2} \rightarrow G_{3}$ are group hom's. Then $\psi \circ \phi: G_{1} \rightarrow G_{3}$ is a group hom.

Example 1.7.6. Let $G_{1}=S_{n}, G_{2}=G L(n, F), G_{3}=F^{\times}$. Define $\operatorname{sgn}: S_{n} \rightarrow F^{\times}=\operatorname{det} \circ f$. So sgn is a group homormophism by remark.

Proposition 1.7.7. Let $\phi: G \rightarrow G_{2}$ be a group hom.
Then (i) if $H \subset G_{1}$ is a subgroupm then phi (H) is a subgroup. If $N \subset G_{1}$ is a normal subgroup, and ϕ is surjective, then $\phi(N)$ is normal in G_{2}.
(ii) If $K \subset G_{2}$ is a subgroup, then $\phi^{-1}(K)$ is a subgroup of G_{1}, If $N \subset G_{2}$ is a normal subgroup, and ϕ is surjective, then $\phi^{-1}(N)$ is normal in G_{1}. (Don't need ϕ to be surjective)

1.8 Sep. 13, 2019

Proposition 1.8.1. For a group $M,\left\{e_{M}\right\}$ and M are normal subgroups
Let $\phi: G \rightarrow H$ be a group homomorphism
Definition 1.8.2. The image of $\operatorname{im}(\phi)=\phi(G)=\{\phi(x) \mid x \in G\}$. This is a subgroup. The kernel $\operatorname{ker}(\phi)=\phi^{-1}\left(\left\{e_{H}\right\}\right)=\left\{x \in G \mid \phi(x)=e_{H}\right\} . \operatorname{ker}(\phi)$ is a normal subgroup.

Example 1.8.3. 1. Let $S L(n, F)=\{A \in G L(n, F) \mid \operatorname{det}(A)=1\} . S L(n, F)=k e r$ (det), det : $G L(n, F) \rightarrow F^{\times}, A \rightarrow \operatorname{det} A . S L(n, F)$ is normal in $G L(n, F)$ and A_{n} is normal in S_{n}.
2. $\pi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}, \pi(a)=a \bmod \pi, \pi$ is a group homomorphism and $\operatorname{ker}(\pi)=\{n \in \mathbb{Z} \mid a \equiv 0$ $\bmod n\}$

Proposition 1.8.4. Let $\phi: G \rightarrow H$ be a group homomorphism, then ϕ is injective iff $\operatorname{ker}(\phi)=\left\{e_{G}\right\}$

Proof. $\Rightarrow \phi$ is injective then $\phi\left(e_{G}\right)=e_{H}$, then $e_{G} \in \operatorname{ker}(\phi)$ If $x \in \operatorname{ker}(\phi), \phi(x)=e_{H}$, so $\phi(x)=\phi\left(e_{G}\right)$, then $x=e_{G}$
\Leftarrow Let $x, y \in G$, if $\phi(x)=\phi(y)$, Then $\phi\left(x y^{-1}\right)=e_{H}$, so $x y^{-1} \in \operatorname{ker}(\phi)=\left\{e_{G}\right\}$
Let S be a set with equivalence relation \sim. This means for $a, b, c \in S, a \sim a, a \sim b \Longrightarrow$ $b \sim a, a \sim b, b \sim c \Longrightarrow a \sim c$. For $a \in S$, let $[a]=\{b \in S \mid b \sim a\}=$ equivalence class of S. Let $S / \sim=\{[a] \mid a \in S\}$. If $\left[a_{i}\right]$ and $\left[a_{i}\right]$ are in S / \sim, then either $\left[a_{i}\right] \cap\left[a_{j}\right]=\emptyset$ or $\left[a_{i}\right]=\left[a_{j}\right]$. If $\left\{\left[a_{i}\right] i i \in I\right\}$ are distinct equivalence classes, then $S=\sqcup\left[a_{i}\right]$. Finally, define $\pi: S \rightarrow S / \sim$ by $\pi(a)=[a]$.

For S, T sets, let $\operatorname{Map}(S, T)=\{\phi: S \rightarrow T \mid \phi$ is a map $\}$. If $f: R \rightarrow S$ is a map, we get $f^{\times}: \operatorname{Map}(S, T) \rightarrow(R, T) . f^{\times}(\phi)=\phi \circ f: R \rightarrow T$. If $g: T \rightarrow U$ is a map, we get $g_{\times} \operatorname{Map}(S, T) \rightarrow(S, U), g_{\times}(\phi)=g \circ \phi$. Idea: $\operatorname{Map}(S / \sim, T)=\{\phi \in \operatorname{Map}(S, T) \mid \phi(a)=\phi(b)$ if $a \sim b\}=M a p_{\sim}(S, T)$.

Lemma 1.8.5 (Meta-Lemma). $\pi^{*}: \operatorname{Map}(S / \sim, T) \rightarrow \operatorname{Map}(S, T)$ is bijective.
S / \sim is an example of a quotient. Quotient objects should always have the meta-lemma property.

1.8.1 Factor Theorem

Theorem 1.8.6. Let G be a group with a normal subgroup N. For groups M, L, let $\operatorname{Hom}(M, L)=\{\phi: M \rightarrow L \mid \phi$ is a group hom. $\}$. Let $\pi: G \rightarrow G / N$ be $\pi(a)=a N$. Let $\operatorname{Hom}_{N}(G, H)=\left\{\phi \in \operatorname{Hom}(G, H) \mid \phi(x)=e_{H}, \forall x \in N\right\}$. Then $\pi^{*}: \operatorname{Hom}(G / N, H) \rightarrow$ $H o m_{N}(G, H)$ is bijective

Proof. If $\phi \in \operatorname{Hom}(G / N, H), \pi^{*} \phi: G \rightarrow H$ is a group hom. Since $\pi^{*}(\phi)=\phi \circ \pi$ group hom. If $x \in N, \pi^{*}(\phi)(x)=e$. By meta lemma, π^{*} is bijective, π^{*} is injective if $\chi \in \operatorname{Hom}(G, H)$, $\bar{\chi}$ from meta-lemma. Then $\bar{\chi}(a N b N)=\bar{\chi}(a b N)=\chi(a) \chi(b)=\bar{\chi}(a N) \bar{\chi}(b N)$.

Theorem 1.8.7 (First Isomorphism Theorem). Let $\phi: G \rightarrow H$ be a surjective group homomorphism with $\operatorname{ker}(\phi)=K$. Then the map $\bar{\phi}: G / K \rightarrow H, \bar{\phi}(a K)=\phi(a)$ is a group isomorphism. Hence $G / K \cong H$.

Proof. We know $\bar{\phi}$ is a group homomorphism, $\bar{\phi}$ is surjective if $b \in H, b=\phi(a)=\bar{\phi}(a K) . \bar{\phi}$ is injective: let $a K \in \operatorname{ker}(\bar{\phi})$. Then $e_{H}=\bar{\phi}(a K)=\phi(a)$, so $a \in K$ and $a K=e K=e_{G / K}$. So injective.

Example 1.8.8. $\phi: \mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}, \phi(a)=a^{2}, \phi$ is a group homomorphism. $\operatorname{ker}(a)=\left\{a \mid a^{2}=\right.$ $1\}$. $i m(\phi)=\mathbb{R}_{>0}$. Can replace $\Phi: \mathbb{R}^{\times} \rightarrow \mathbb{R}_{>0}$. So $\mathbb{R}^{\times} /\{ \pm 1\} \cong \mathbb{R}_{>0}$.

More generally, if $\phi: G \rightarrow H$ is a group homomorphism, and $K=\operatorname{ker}(\phi)$, then G / K is isomorphic to $\operatorname{im}(\phi)$, in particular, $|\operatorname{im}(\phi)|=|G| /|K|,|G|$ is finite.

1.9 Sep. 16, 2019

Example 1.9.1. 1. F a field, det : $G L(n, F) \rightarrow F^{\times}$. Then $G L(n, F) / S L(n, F) \cong F^{\times}$.
2. Let sgn : $S_{n} \rightarrow \mathbb{R}^{\times}$. Then $S_{n} / A_{n} \cong \mathbb{Z}_{2}$
3. $G=\langle a\rangle$, if $|G|=\infty$, then $G \cong \mathbb{Z}$
4. $G=\langle a\rangle$, if $|G|=n<\infty$, then $G \cong \mathbb{Z} / n \mathbb{Z}$

Consequence: If p is prime, $|G|=p$, then $G \cong \mathbb{Z} / p \mathbb{Z}$.
Proof. Let $a \in G-\{e\}$, then $\langle a\rangle$ is a subgroup of G, so $|\langle a\rangle| \mid p$. Since $|\langle a\rangle| \neq 1,|\langle a\rangle|=p$. Thus $G \cong \mathbb{Z} / p \mathbb{Z}$.

Example 1.9.2. If $a \mid b$, then $a \mathbb{Z} / b \mathbb{Z} \cong \mathbb{Z} / \frac{b}{a} \mathbb{Z}$.
Theorem 1.9.3 (Second Isomorphic Theorem). Setting: G is a group, H, N are subgroups of G, N is normal in G. Let $H N=\{x y \mid x \in H, y \in N\}$. Then $H / H \cap N \cong H N / N$.

Lemma 1.9.4. $H N$ is a subgroup of G, N is normal in $H N, H \cap N$ is normal in H.
Proof to the theorem: Need $\phi: H \rightarrow H N / N, \phi(x)=x N . \phi$ is a group homomorphism as $H \rightarrow G \rightarrow G / N . \operatorname{ker}(\phi)=\{x \in H \mid x N=e N\}=\{x \in H \mid x \in N\}=H \cap N . \phi$ is surjective: let $a N \in H N / N$, so $a=x y, x \in H, y \in N$. Then $a N=x y N=x N$ since $y \in N$. Thus $a N=\phi(x)$. Thus $H / H \cap N \cong H N / N$

Let G be a group with normal subgroups H, N, and suppose $H \supset N$. Let $\pi: G \rightarrow G / N$ be $x \mapsto x N$. Then $\pi(H)=H / N$ is normal since π is surjective.

Theorem 1.9.5 (Third Isomorphism theorem). $(G / N) /(H / N) \cong G / H$.
Proof. Consider $\pi_{H}: G \rightarrow G / H . \pi_{H}(a)=a H$, quotient group homomorphism. If $x \in N$, $\pi_{H}(x)=x H=e H$ since $x \in N \subset H$. Thus $\pi_{H}(N)=e$. So by first isomorphism theorem, we have $\pi_{H}^{-}(a N)=a H$, a group homomorphism. π_{H} surjective implies $\bar{\pi}_{H}$ is surjective. $\operatorname{ker}\left(\bar{\pi}_{H}\right)=\{a N \mid a H=e H\}=H / N$. Thus we have isomorphism theorem.

1.10 Sep. 18, 2019

Theorem 1.10.1 (Correspondence Theorem). Let N be a normal subgroup of G. Then

1. Then $\phi: S_{N}(G) \rightarrow S(G / N)$ given by $\phi(H)=\pi(H)$ is bijective. Its inverse is ψ : $S(G / N) \rightarrow S_{N}(G)$ given by $\psi(\bar{H})=\pi^{-1}(H)$.
2. ϕ and ψ preverse inclusions. If $H_{1}, H_{2} \in S_{N}(G)$, then $H_{1} \subset H_{2}$ iff $\phi\left(H_{1}\right) \subset \phi\left(H_{2}\right)$ and similarly for $\bar{H}_{1}, \bar{H}_{2} \in S(G / H)$
3. If $H \in S_{N}(G)$, then H is normal in G iff $\pi(H)$ is normal in G / N.

Proof. (i) Show $\psi_{e}(H)=H$, and $\psi \psi(\bar{H})=\bar{H}$. Then ϕ is bijective and inverse of ψ.
Set theory: let $f: X \rightarrow Y$ be a map of sets. Let $Z \subset X, X \subset Y$. Then

1. $Z \subset f^{-1} f(Z)$ with equality if f is injective.
2. $f f^{-1}(V) \subset V$.

Since $\phi \psi(\bar{H})=\pi \pi^{-1}(\bar{H})=\bar{H}$. By (ii) above since π is surjective. $\psi \phi(H)=\pi^{-1} \pi(H)$ by (ii) above let $a \in \pi^{-1} \pi(H)$ so $\pi(a)=\pi(b)$ so $b \in H$. So $a b^{-1} \in \operatorname{ker}(\pi) \subset N$. Therefore we have $\pi^{-1} \pi(H)=H$
(ii) $H_{1} \subset H_{2}$, therefore $\pi\left(H_{1}\right) \subset \pi\left(H_{2}\right)$ is clear. Conversely, if $\pi\left(H_{1}\right) \subset \pi\left(H_{2}\right)$, then $\pi^{-1} \pi\left(H_{1}\right) \subset \pi^{-1} \pi\left(H_{2}\right)$. But in proof of (1), we showed $N \subset H_{i}$ implies $\pi^{-1} \pi\left(H_{1}\right)=H_{1}$. Thus $H_{1} \subset H_{2}$
(iii) If $H \in S_{N}(G)$, is normal in G, then $\pi(H)$ is normal in G / N. If $\pi(H)$ is normal, $H=\pi^{-1} \pi(H)$ is normal.

Remark 1.10.2. Subgroups of a finite cyclic group is cyclic. Alternative proof: Let $H=\langle a\rangle$ be cyclic of order n, then $\phi: \mathbb{Z} \rightarrow H, \phi(n)=a^{n}$ is a surjective group homomorphism with kernel $n \mathbb{Z}$. Then $\mathbb{Z} / n \mathbb{Z} \cong H$, but all subgroups of \mathbb{Z} are cyclic, so all subgroups of $\mathbb{Z} / n \mathbb{Z}$ are $\pi(k), k$ is cyclic so $\pi(k)$ is cyclic.

1.10.1 Products

Let G_{1}, \ldots, G_{n} be groups, let $G=G_{1} \times \ldots \times G_{n}=\left\{\left(g_{1}, \ldots, g_{n}\right) \mid g_{i} \in G_{i}\right\}$. Then G has a binary operation, $\left(g_{1}, \ldots, g_{n}\right)\left(x_{1} \ldots, x_{n}\right)=\left(g_{1} x_{1}, \ldots, g_{n} x_{n}\right) .(G, \cdot)$ is a group.

Example 1.10.3. $G=(\mathbb{R},+)$, then $G_{1} \times \ldots \times G_{n}=\left(\mathbb{R}^{n},+\right)$. Can take $G_{i}=\mathbb{Z}$. Then $G_{1} \times \ldots \times G_{n}=\mathbb{Z}^{n}$.

More generally, if $\left\{G_{i}\right\}_{i \in I}$ is a family of groups, we can let $G=\prod_{i \in I} G_{i}\left\{\left(x_{i}\right) \mid x \in G\right\}$, then $\left(x_{i}\right) \cdot\left(y_{i}\right)=\left(x_{i} y_{i}\right)$. Then G is a group. $e=\left(e_{i}\right),\left(x_{i}\right)^{-1}=\left(x_{i}^{-1}\right)$.

Let $G=\prod G_{i}$ has a group homomorphism $\phi: G \rightarrow G_{j}$ given by $\phi\left(x_{i}\right)=x_{j}$. Also we have a group homomorphism $i_{j}: G \rightarrow G$, such that $i_{j}\left(x_{j}\right)=\left(y_{j}\right)$ wjere $y_{j}=x_{j}$, or $y_{j}=e_{G_{i}}$. Thus we know $G_{1}, \ldots G_{n}$ are normal in G.

1.11 Sep. 20, 2019

Remark 1.11.1. Let G be a group, $x, y \in G$, we let $[x, y]=x y x^{-1} y^{-1}$ be the commutator of G, then $[x, y]=e$ iff $x y=y x$.

Remark 1.11.2. let G be a group with normal subgroups H, K with $H \cap K$, then if $x \in H, y \in K$, then $x y=y x$

Proof. Consider $[x, y] \in K$, and $[x, y] \in H$. Then $[x, y] \in H \cap K=e$. Thus $x y=y x$.

Proposition 1.11.3. let G be a group with normal subgroups H, K, with $H \cap K$. Define $m: H \times K \rightarrow G$ by $m(h, k)=h k$, with $h \in H, k \in K$. Then

1. m is an injective group homomorphism and $\operatorname{im}(m)=H K$. So $H \times K \cong H K$
2. If $G=H K$, then m is an isomorphism

Proof. 2 is clear from 1. Proof of 1. Let $x_{1}=\left(h_{1}, k_{1}\right), x_{2}=\left(h_{2}, k_{2}\right) \in H \times K$. Then $m\left(x_{1}, x_{2}\right)=m\left(h_{1} h_{2}, k_{1} k_{2}\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}=m\left(x_{1}\right) m\left(X_{2}\right)$. Thus m is a group homomorphism, and $\operatorname{ker}(m)=\{(h, k) \mid h k=e\}$. If $h k=e$, then $h=k^{-1}=e$. Thus, $k e r(m)=e$. Thus injective. Then $\operatorname{im}(m)=H K$.

Application: Let G be a group of order 4 , then either $G \cong \mathbb{Z}_{4}$ or $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. let $a \in G$, then $a^{4}=e$. Thus $|a| \mid 4$. And $a \neq e$. Thus $|a|=2$, 4. If $|a|=4$, then $|\langle a\rangle|=|G|$, so $\langle a\rangle=G$. So G is cyclic and $G \cong \mathbb{Z}_{4}$. Otherwise, $a^{2}=e$. If so, let $c, b \in G-\{e\}$, then $|b|=|c|=2$. Let $H=\langle b\rangle, K=\langle c\rangle$. Then H and K have index 2 . So $H=\{e, b\}, K=\{e, c\}$. Then by proposition, we have $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Remark 1.11.4. Let G be a group, $g \in G$. Define $c_{g}: G \rightarrow G$ by $c_{g}(x)=g x g^{-1}$ conjugation by $g . c_{g} c_{h}=c_{g h}, c_{e}=i d(G)$. So c_{g} is bijective. Finally $c_{g}: G \rightarrow G$ is a group homomorphism. Since $c_{g}(x y)=c_{g}(x) c_{g}(y)$. Hence, if $A(G)=c_{g}, A(g) \in A u t(G)$. Then $A: G \rightarrow A u t(G), A(g)=c_{g}$ and A is a group homomorphism. $\operatorname{ker}(A)=\left\{g \in G \mid c_{g}=i d\right\}=$ $\left\{g \in G \mid g x g^{-1}=x\right\}$. Thus $g x=x g$. We call this the center $Z(G)=\{g \in G \mid g x=x g, \forall x \in$ $G\}$. Conclude that the center is the normal subgroup of G.

1.11.1 Group actions

Let G be a group, S be a set.
Definition 1.11.5. A G-action on X is a map $\alpha: G \times X \rightarrow X$, write as $\alpha(g, x)=g \cdot x$ such that

1. if $g_{!}, g_{2} \in G, x \in X$, then $\left(g_{1} g_{2}\right) x=g_{!}\left(g_{2} x\right)$
2. $e \cdot x=x, \forall x \in X$.

Example 1.11.6. 1. If G is a group, $X=G$, then $\alpha(g, x)=g x$.
2. Let G be a group, $X=G$. Then $\alpha(g, x)=g x g^{-1}$.
3. $G=S_{n}, X=\{1, \ldots, n\} . \alpha(\sigma, i)=\sigma(i), i \in X$.
4. $G=G L(n, F), F$ field. $X=F^{n}$. Then $\alpha(g, r)=g(r)$.

Remark 1.11.7. A group action on a set X is the same as a group homomorphism ϕ : $G \rightarrow A(X)$. Let $g \in G$, define $\phi(g): X \rightarrow X$ by $\phi(g)(x)=g x . \phi(g h)=\phi(g) \phi(h), \forall g, h \in G$, then $\phi(g) \in A(x)$ because $\phi(g) \circ \phi\left(g^{-1}\right)=\phi(e)$. And thus we have a group homomorphism $\phi: G \rightarrow A(G)$. Converse is true as well.

1.12 Sep. 23, 2019

Theorem 1.12.1 (Cayley's Theorem). If G is a finite group, G is isomorphic to subgroup of S_{n} for some n

Proof. use the left multiplication of G on itself, this gives $\phi: G \rightarrow A(G), \phi(g)=l g$, $l_{g}(x)=g x$. Then $\operatorname{ker}(\phi)=\{g \in G \mid g x=x\}=\{e\}$. Therefore, $G \cong \operatorname{im}(\phi)$ a subgroup of $A(G)$. Since G is finite, $A(G)=S_{n}$. Thus, G is isomorphic to a subgroup of $S_{|G|}$.

Example 1.12.2. Let $G=D_{8}, G$ acts on vertices of a polygon T_{4}, so G can be regarded as a subgroup of S_{4}. So $D_{8} \subset S_{4}$. But by Cayley's Theorem, $D_{8} \subset S_{8}$
G can also acts on G using right multiplication, $(a, x) \rightarrow x a^{-1}$. This is also a group action. Every left action can be converted to a right action by taking the inverse.

Example 1.12.3. G acts on G by conjugation $(g, x) \rightarrow g x g^{-1}$.
Example 1.12.4. G a group, H its subgroup let $X=G / H=\{a H \mid a \in G\}$, where $(g, a H) \rightarrow g a H$. This is a group action.

Example 1.12.5. Suppose G is a group of order 36 with a subgroup H of order 9 . We get $\phi: G \rightarrow A(G / H)$. But $|G / H|=|G| /|H|=4$. Therefore, $|G|=36, A(G / H) \cong S_{4}$, so $|A(G / H)|=4!=24$. Hence ϕ is not injective. But $\operatorname{ker}(\phi) \subset H$, so $|\operatorname{ker}(\phi)| /|H|=9$. Thus $|\operatorname{ker}(\phi)|=3,9$. Conclude that G has a proper normal subgroup of order 3 or 9

Definition 1.12.6. Let G act on X, let $x \in X$, (i) the orbit $G \cdot x$ is $G \cdot x=\{g x \mid g \in G\}$. The stablizer $G_{x}=\{g \in G \mid g x=x\}, G \cdot x$ is called $B(x)$ and G_{x} is called $\left.G(x)\right)$

Remark 1.12.7. The stablizer is a subgroup of G. Indeed, $e \cdot x=x$ so $e \in G_{x}$, let $g, h \in G_{x}$. If $g \in G_{x}, g \cdot x=x$, then $g^{-1} g x=g^{-1} x$ so $g^{-1} \in G_{x}$.

Theorem 1.12.8. let G act on a set X, and let $x \in X$. Then the map $\phi: G / G_{x} \rightarrow X$, $\phi\left(g G_{x}\right)=G \cdot x$ is a well-defined bijection.

Proof. ϕ is well defined, ϕ depends only on $g G_{x}$, not on G. If $g G_{x}=h G_{x}$, then $h \in G_{x}$, $h=g a$, so $h \cdot x=(g a) \cdot x=g \cdot(a \cdot x)$. Then $\phi\left(h G_{x}\right)=\phi\left(g G_{x}\right), g, h \in G$. Then $g \cdot x=h \cdot x$. Thus $g^{-1} h \in G_{x}$. So $h G_{x}=g G_{x}$. Thus injective. Surjective is clear.

We write the above as $G / G_{x} \cong G \cdot x$. Note: if G is finite, $|G| /\left|G_{x}\right|=|G \cdot x|$. Helps answer the questions: How can we descrive G / H ? Answer: if we find G action on X and $x \in X$ with $G_{x} \cong H$, then G / H is bijective to $G \cdot x$.

Definition 1.12.9. G action on X is called transitive, if $\exists x \in X$ with $G \cdot x=X$, if so, $G \cdot x=X$, for all $x \in X$.

Example 1.12.10. S_{n} acts on $X=\{1, \ldots, n\}$ by $(\sigma, i) \rightarrow \sigma(i)$ with a subgroup. Let $x=n \in X, G \cdot x=S_{n} \cdot x=X$. Transitivity. Indeed, can take $\sigma=(i, n)$ so $\sigma(n)=i$. $G_{n}=\left\{\sigma \in S_{n} \mid \sigma(n)=n\right\} \cong S_{n-1}$, embedded in S_{n} as permutations fixing n. Conclude $S_{n} / S_{n-1} \cong\{1, \ldots, n\}$

Example 1.12.11. Let $G=D_{2 n}$ acts on vertices $\left\{x_{1}, \ldots, x_{n}\right\}$ at T_{n} by dihedral group action. Set $x_{1}=(1,0) . G_{x}=\left\{\sigma \in D_{2 n} \mid \sigma\left(x_{1}\right)=x_{1}\right\}=\{e, s\} . G \cdot x_{j}=\left\{x_{1}, \ldots, x_{n}\right\}$ via rotations, bijection to $D_{2 n} /\{e, s\} \cong\left\{x_{1}, \ldots, x_{n}\right\}$

Example 1.12.12. A matrix $A=\left(a_{i j}\right)$ is upper triangular. Let $B(n, F)=$ upper triangular matrices. Instead, we'll find an action on $G L(n, F)$ on a set X such that $\exists x \in X$ with $G L(n, F)_{x}=B(n, F)$ so $B(n, F)$ is a subgroup of stablizers.

1.13 Sep. 25, 2019

Let $\left\{e_{1}, \ldots e_{n}\right\}$ be the standard basis of F^{n}. Let V_{i} be generated by the basis. $V_{i} \in G r\left(i, F^{n}\right)$. Note $V_{1} \subset V_{2} \subset \cdots \subset V_{n}=F^{n}$. If $G=G L(n, F), G$ acts on $G r\left(1, F^{n}\right) \times G r\left(2, F^{n}\right) \times \cdot \times$ $G r\left(n, F^{n}\right)$, by $\left(g,\left(U_{1}, \ldots, U_{n}\right)\right)=\left(g\left(U_{1}\right), \ldots, g\left(U_{n}\right)\right)$. Can check this is a group action. We claim that $B(n, F)=G_{x}=\{g \in G \mid g \cdot x=x\}$. Hence $B(n, F)$ is a subgroup of G.

1.13.1 Sylow Theorems

Definition 1.13.1. Let G be a group of order $n=p^{r} m$ as above. We say a subgroup P of G is a p-Sylow subgroup if $|P|=p^{r}$

We are going to prove that if G is finite and p is prime, G has a p-Sylow subgroup.
Remark 1.13.2. If $F=\mathbb{Z}_{p}, N(n, F)$ is a p-Sylow subgroup of $G L(n, F)$. $|G L(n, F)|=$ $\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)$. Thus $|G L(n, F)|=p^{n(n-1) / 2} m$ with $(p, m)=1$, then $N(n, F)$ is a p-Sylow subgroup of $G L(n, F)$.

Definition 1.13.3. A group H is called a p-group of p prime, $|H|=p^{k}$ for some k.
Lemma 1.13.4. let p be a prime, $n=p^{r} m$ with $(p, m)=1$. Let $t=p^{k}$. Then $t=p^{r}$ iff $t \mid n$ and $(n / t, p)=1$. Let $|G|=p^{r} m$ as above, let $H \subset G$ be a subgroup, which is a p-group, then H is a p-Sylow subgroup if $(|G| /|H|, p)=1$

Theorem 1.13.5. 1. Every finite group G has a p-Sylow subgroup for each prime p
2. Let p be prime, let G be a finite group with a p-Sylow subgroup. Let H be a p-subgroup of G. Then H has a p-Sylow subgroup.

The proof of this uses the injection of G / P.

1.14 Sep. 27, 2019

Remark 1.14.1. G be a group with subgroup S. G acts on $X=G / S$ by $g(x S)=g x S$. $G_{x S}=x S x^{-1}$: indeed, $g \in G_{x S}$ iff $g x S=x S$ iff $x^{-1} g x S=S$. Thus $x^{-1} g x \in S . g \in x S x^{-1}$. If $A \subset G$ is another subgroup, then A acts on $X=G / S$ by $g(x S)=g x S$ for $g \in A$. $A_{x S}=G_{x S} \cap A=A \cap x S x^{-1}$

Remark 1.14.2. Let G be a group, with subgroup H. Then $g H g^{-1}=c_{g}(H) . c_{g}(x)=$ $g x g^{-1}$, since c_{g} is an automorphism of $G, g H g^{-1}=c_{g}(H)$ is a subgroup of G, and $|H|=$ $\left|g \mathrm{Hg}^{-1}\right|$. For $k \in \mathbb{Z}_{>0}$, let $S_{k}=\{$ subgroups H by the above comments. It's easy to check this is a group action. The stabiliser G_{H} of a subgroup H is $G_{H}=\left\{g \in G \mid g H g^{-1}\right\}$. We call $G_{H}=N_{G}(H)$, normalizer of H in $G . N_{G}(H)$ is a subgroup of G since it is a stabilizer.

Proposition 1.14.3. Let G be finite, with a p-Sylow subgroup P. Let $H \subset G$ be a subgroup. Then H has a p-Sylow subgroup Q
Proof. If $g \in G$ and $P \subset G$ is a p-Sylow subgroup. $g P g^{-1}=c_{g}(P)$ is also a p-Sylow subgroup. By the orbit remark, $X=X_{1} \sqcup \ldots \sqcup X_{k}$, where they are H-orbits of X. And $|X|=\sum\left|X_{i}\right|$. But $|X|=|G| /|P|=p^{r} m / p^{r}=m$. So $p \nmid|X|$. There exists j such that $p \neq\left|X_{j}\right|$. But if $X_{j}=H_{j} P,\left|X_{j}\right|=|H| /\left|H \cap g P g^{-1}\right|$ by stabilizer Remark. But $H \cap g P g^{-1}$ is a subgroup of $g P g^{-1}$, so $\left|H \cap g P g^{-1}\right|\left|\left|g P g^{-1}\right|=|P|=p^{r}\right.$. So $H \cap g P g^{-1}$ is a p-subgroup of H. By Lemma, we have $H \cap g P g^{-1}$ is a p subgroup of G.

Theorem 1.14.4 (Sylow 1). . Let $|G|=p^{r} m,(p, m)=1$. Then G has a p-Sylow subgroup
Proof. We have a injection group homomorphism $G \rightarrow S_{n}$ with $n=|G|$. For $F=\mathbb{Z}_{p}$, we have a injection group homomorphism $p: S_{n} \rightarrow G l(n, F)$. This is a injection homomorphism: $G \rightarrow G L(n, p)$. And this group has a p-Sylow subgroup.

Lemma 1.14.5. Let H be a p-group, for p prime. Let H act on a finite set X. Let $X^{H}=\{x \in X \mid g x=x, \forall g \in H\}$, the fixed points of H. Then $|X|=\left|X^{H}\right| \bmod p$.

Proof. Observe that if $x \in X$, then $x \in X^{H}$ iff $H x=\{x\}$ iff $|H x|=1$. Indeed, $x \in X^{H}$ then $g x=x, \forall g \in H$,so $H x=\{x\}$ is similar $H x=\{x\}$ iff $|H x|=1$ because $x \in H x$. By the orbit remark, $|X|=\sum\left|H x_{i}\right|$ where $H x_{1}, \ldots, H x_{l}$ are distinct orbits number so $\left|H x_{1}\right|=1$. And $\left|H x_{i}\right|<1$ for $i>q$. Then $|X|=\sum 1+\left|H x_{i}\right|$. but $\left|H x_{i}\right|=|H| /\left|H_{x_{i}}\right|$. H is a p-group, so $|H|=p^{a}$, since $\left|H x_{i}\right|=p^{a}$ some $a_{i} \leq a$. For $i=q+1, \ldots, k,\left|H x_{i}\right|>1$. So $|X|=\left|X^{H}\right|+\sum p^{a_{i}}$ so $|X|=\left|X^{H}\right| \bmod p$. Since $p^{a}=0 \bmod p$ for $a_{i}>0$.

Theorem 1.14.6. Let $|G|=p^{r} m$ with $(p, m)=1$. (i) Let P, Q are Sylow p subgroups, then $P=x Q x^{-1}$

Proof. H act on $X=G / P$ by $a_{i}(x P)=a x P, a \in A, x \in G$. Then $|X|=|G| /|P|=m$. So $p \nmid|X|$, but $|X|=\left|X^{H}\right| \bmod p$. $\left|X^{H}\right| \neq 0 \bmod p$. So $\left|X^{H}\right| \neq 0, X^{H} \neq \emptyset$. Let $g P \in X^{H}$. Then $a g P=g P, \forall a \in H$ so $H \subset G_{P}$. But $G_{g P}=g P g^{-1}$ by stabilizer remark. So $H \subset g P g^{-1}$. Similarly one can prove the other side.

1.15 Sep. 30, 2019

Lemma 1.15.1. Let $P, Q \in \operatorname{Syl}_{p}$, If $P \subset N_{G}(Q)$, then $P=Q$.
We consider the Q action on $S y l_{p}$, by $(g, Q) \rightarrow g Q g^{-1} . S y l^{Q}=\left\{Q_{1} \in S y l_{p} \mid g Q_{1}=Q_{1}\right\}$. By the lemma, $S y l^{Q}=Q$.

Theorem 1.15.2. Let $|G|=p^{r} m$ with p a prime, $(p, m)=1$ as above. Let $n_{p}=\left|S y l_{p}\right|$, the number of Sylow subgroups of G. Then $n_{p} \mid m, n_{p} \equiv 1 \bmod p$.

Proof. We know G acts transitively on $S y l_{p}$, and $\left|S y l_{p}\right|=n_{p}$. Therefore, \exists a bijection by orbit-stablizer theorem, $G / N_{G}(P) \cong S_{p} l_{p}$. Therefore, $n_{p}=\left|S y l_{p}\right|=|G| /\left|N_{G}(P)\right|=$ $|G| /\left|N_{G}(P)\right| \cdot\left|N_{G}(P)\right||P|$. Thus $n_{p} \mid m$. Then by the lemma from last time, for action of p-group A on a finite set $X,|X| \equiv\left|X^{A}\right| \bmod p$. Apply to P action on $S y l_{p} . P$ is a p-Sylow subgroup. Conclude that $n_{p} \equiv 1 \bmod p$.

Remark 1.15.3. Often the third Sylow theorem is sufficient to compute n_{p} to show $n_{p}=1$.
Example 1.15.4. If $|G|=63=3^{2} 7$, then $n_{7}=1$ since $n_{7} \equiv 1 \bmod 7, n_{7} \mid 9$, so $n_{7}=1$
Remark 1.15.5. Let G be a finite group, $p\left||G|\right.$. Then $n_{p}=1$ iff any p-Sylow subgroup of G is normal.

Proof. If $n_{p}=1$, then $g \in G, g Q g^{-1}$ is a p Sylow subgroup. Thus $Q=g Q g^{-1}$. Let Q, P be p-Sylow subgroups with Q normal. Then by the second Sylow theorem, $\exists g \in G$ such that $Q=g P g^{-1}$, but $Q=g Q g^{-1}$. Thus $Q=P$.

Conclude: A group of order 63 has a normal 7-Sylow subgroup.
Definition 1.15.6. A group G is simple if it has no proper normal subgroups, i.e., no normal subgroups besides the trivial subgroup and the group itself.

Hence a group of order 63 is not simple.
Example 1.15.7. \mathbb{Z}_{p} is simple for p-prime. A_{n} is simple for $n \geq 5$.
Example 1.15.8. Let G be a group of order 6 . Then either $G \cong S_{3}$ or $G \cong \mathbb{Z}_{6}$.
Proof. Let A be a 2-Sylow subgroup, B a 3-Sylow subgroup. $|A|=2, A=\langle 2\rangle,|a|=2$. $B=\langle b\rangle,|b|=3$. Then G acts on $G / A=\Psi$. Then $|\Psi|=3$, we get a homomorphism $\Phi: G \rightarrow A(\Psi)$. So $\Phi(g)=g \times A$. Then $A(\Psi) \cong S_{3}$. If $k e r(\Phi)=1$. Then $\Phi: G \rightarrow \operatorname{Im}(\Phi)$. Thus $\operatorname{Im}(\Phi)=A(\Psi)$. Thus we get $G \cong A(\Psi) \cong S_{3}$. If $\operatorname{ker}(\Phi)=A$, then $a b \Psi=b \Psi$. So we know that the order is 2 . Thus A is normalized by B. Therefore, $\left\{e, a, b, b^{2}\right\} \subset N_{G}(A)$. so $\left|N_{G}(A)\right| \geq 4$. So $\left|N_{G}(A)\right|=6$. Also, B is normal since the index is 2 . Thus $|A \times B|=G$. Thus $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong G \cong \mathbb{Z}_{6}$.

Corollary 1.15.9 (Cauchy's Theorem). Let G be finite, p be prime. Then $p||G|$ iff $\exists a \in G$ such that $|a|=p$.

Proof. One way is clear since $|\langle a\rangle|||G|$. The other way gives, if $Q \subset G$ be a p-Sylow subgroup. So $|Q|=p^{r}, r>0$ since $p||G|$. Let $x \in Q$. Then $| X|||Q|$, so $| x|=p^{k}$. Thus, $\left|x^{p^{k}-1}\right|=p$.

1.16 Oct. 2, 2019

Corollary 1.16.1. If G is a finite, then G is a p-group if and only if $\forall a \in G,|a|=p^{k_{a}}$
Proof. If $|G|=p^{n}$, If $a \in G,|a|| | G \mid=p^{n}$, thus $|a|=p^{k_{a}}$ for some k_{a}.
By contradiction, if $|G|=p^{n}, \exists$ a prime $q \neq p$ so $q||G| . \exists a \in G$ such that $| a \mid=q$, contradicting right handside.

Definition 1.16.2. A group G is called a p-group of $\forall a \in G, \exists k_{a}$ such that $|a|=p^{k_{a}}$
Example 1.16.3. $G=\mathbb{Z}_{p} \times \ldots \times \mathbb{Z}_{p}=\mathbb{Z}_{p}^{\infty}$. If $a \in G, a^{f}=e$, so G is a p-group.

1.16.1 The class equation

Let a group A act on a finite set $X . X^{A}=\{x \in X \mid g \cdot x=x, \forall g \in A\}$. Then $|X|=\left|X^{A}\right|+$ $\sum_{i=1}^{r}\left|X_{i}\right|$, where X_{1}, \ldots, X_{r} are the distinct A-orbits such that $\left|X_{i}\right|>1$. Indeed, we saw $|X|=\sum\left|X_{j}\right|$ as X_{j} ranges over distinct A-orbits. $\left|X_{j}\right|=1$ if and only if $X_{j}=\left\{x_{j}\right\}, x_{j} \in X$.

Apply G-action on $X=G$ by $(g, x) \rightarrow g x g^{-1}, g \in G, x \in X$. If $x \in X$, the G-orbit $G \cdot x=\left\{g x g^{-1} \mid g \in G\right\}=C(x)$, the conjugacy class of x. By orbit stablizer theorem, $G / G_{x} \cong G \cdot x . G_{x}=\left\{g \in G \mid g x g^{-1}=x\right\}=C_{G}(x)$ the centralizer of x in G. Conclude, \exists a bijection $G / C_{G}(x) \cong C_{x}, g C_{G}(x) \rightarrow g x g^{-1}$

And $X^{G}=\{x \in X \mid g \cdot x=x\}=\left\{x \in G \mid g x g^{-1}=x\right\}=Z(G)$ center of G normal subgroup. Distinct G-orbits a X are distinct conjugacy classes. By generality with $G=$ $A, X=X$, conclude $|X|=|Z(G)|+\sum|C(x)|$, where the sum is over distinct conjugacy classes. This is called the class equation.

Proposition 1.16.4. Let G be a finite p-group. Then $Z(G) \neq\{e\}$. In fact, $p||Z(G)|$
Proof. Let $|G|=p^{n}$. Write down the class equation $p^{n}=|Z(G)|+\sum\left|C_{x_{i}}\right|$. But $\left|C_{x_{i}}\right|=$ $\left(|G| /\left|C_{G}\left(x_{i}\right)\right|\right) \mid G=p^{n}$, thus $\left|C_{x_{i}}\right|=p^{a}$. Thus $p^{n} \equiv|Z(G)|+\sum p^{a} \bmod p$, then $|Z(G)| \equiv 0$ $\bmod p$, so $p||Z(G)|$.

Proposition 1.16.5. Let G be a group of order $p q$ with p, q primes, and $p<q$. Then G has a normal p-Sylow subgroup, and $q \not \equiv 1 \bmod p$, then G is cyclic.

Proof. Let n_{q} be the number of q-Sylow subgroups $|G|=q m$, where $m=p$. $\quad n_{q} \equiv 1$ $\bmod p, n_{q} \mid m=p$, thus $n_{q}=1$. Thus there is a normal q-Sylow subgroup. Suppose $q \not \equiv 1$ $\bmod p,|G|=p m$, with $m=q$. By Sylow theorem, $n_{p}=1$. Since the intersection is trivial, $G=C_{q} \times C_{p}$

Corollary 1.16.6. If $|G|=p q$, then G is not simple.
Proposition 1.16.7. Let p, q be distinct primes and let $|G|=p^{2} q$, then G has a normal p-Sylow subgroup or a normal q-Sylow subgroup.

1.17 Oct. 4, 2019

Proposition 1.17.1. The alternating group A_{5} is a simple group, i.e, it has no proper normal subgroups.

Proof. $60=5 \cdot 12$, then $n_{5} \mid 12, n_{5} \equiv 1 \bmod 5$, so $n_{5}=1,6$. In fact, $n_{5}=6$. Let $\sigma=\left(\begin{array}{ll}1 & 234\end{array}\right)$, then $\langle\sigma\rangle$ has order of 5. If $\tau=\left(\begin{array}{ll}1 & 3\end{array} 4_{5}\right) \notin\langle\sigma\rangle$. Thus $\langle\tau\rangle$ is distinct from that of σ. So $n_{5}=6$. Now assume $G=A_{5}$ is not simple, then find a contradiction. Show \exists a proper normal subgroup H of G such that $5||H|$. By assumption, \exists a proper normal subgroup N of G. Since $|N|||G|=60,|N|=2,3,4,5,6,10,12,15,20,30$. If $|N|=5,10,15,20,30$, we take $H=N$. If not $|N|=2,3,4,6,12$, if $|N|=6$, then N has a normal 3 -Sylow subgroup H_{1}. And if $|N|=12$, then N has a normal 3 or 4 Sylow subgroup H_{1}. The subgroup H_{1} of G of N is normal in G. Hence if $5 \nmid|N|$, then G has a normal subgroup of order $2,3,4$. If $|N|=6,12$, take $N_{1}=H_{1}$, if $|N|=2,3,4$, then take $N_{1}=N$. Let $\bar{G}=G / N_{1}$, and $\pi: G \rightarrow \bar{G}$. Then $|\bar{G}|=20,30,15$. If $|\bar{G}|=30$, then \bar{G} has normal 5 -Sylow subgroup by remark 1 . If $\bar{G}=20$, then \bar{G} has normal 5 -Sylow subgroup. Hence \bar{G} has a normal 5 -Sylow subgroup. $\bar{Q},|\bar{Q}|=5$. Then take $H=\pi^{-1}(\bar{Q})$. Then $H / N \cong \bar{Q}$, H is normal in G by the correspondence theorem. then $|H|=|N||\bar{Q}|=5|N|$, so $5||H|$ and H is proper since $\left|N_{1}\right|=2,3,4$. Hence \exists a proper normal subgroup H of G such that $5||H|$. Thsu $| H \mid=5,10,15,20,30$. By problem set $8(\mathrm{i})$, every 5 -Sylow subgroup of H is contained in G. Therefore H has 6 distinguished 5 -Sylow subgroups, so by argument H has 24 element of order 5 . thus $|H|=30$. However, a group of order 30 has a unique 5 -Sylow subgroup Q. Since H is normal in G, by problem set 6: 8 (ii), G has a unique 5 -Sylow subgroup. But $n_{5}=1$, thus $n_{5}=6$. Thus a contradiction. Thus A_{5} is simple.

Theorem 1.17.2. A_{n} is simple if $n \geq 5$.
The proof is inductive.

1.18 Oct. 7, 2019

1.18.1 Composition Series

Definition 1.18.1. Let G be a group a composition series for G is a sequence of subgroup $e \subset G_{0} \subset \ldots \subset G_{r}=G$ such that $G_{i-1} \unlhd G_{i}$ and G_{i} / G_{i-1} is simple.

Notation: Given a composition series $G_{0}=e \subset G_{1} \subset \ldots \subset G_{r}=G$, we say that the length of the composition series is r and the composition factors are G_{i} / G_{i-1}

Theorem 1.18.2 (Jordan Holder Theorem). Let G be a group with composition series $e=G_{0} \subset G_{1} \subset \ldots \subset G_{g}=G$ and $e=H_{0} \subset H_{1} \subset \ldots \subset H_{r}=H$. and $G=H$. Then $r=g$. Further more is $\bar{G}_{i}=G_{i} / G_{i-1}$, and $\bar{H}_{i}=H_{i} / H_{i-1}$, then $\exists \sigma(i)$ such that $\bar{G}_{\sigma(i)}=\bar{H}_{i}$. In other words, the composition factors are are the same up to permutation.

Example 1.18.3. Let $n \in \mathbb{Z}_{>0}, n=p_{1}^{e_{1}} \ldots p_{n}^{e_{n}}$ be the prime factorization. Then \exists a composition series of G of length $e_{1} \ldots e_{k}$ with the composition factors of $\mathbb{Z}_{p_{1}} \ldots \mathbb{Z}_{p_{n}}$. By Jordan Holder theorem, we see that the prime factorization is unique.

Proposition 1.18.4. Let G be a non-trivial finite group, then G has a composition series.
Proof. We use induction on $|G|$. If $|G|$ is 2 , then $G \cong \mathbb{Z}_{2}$ which is simple. Thus $G_{0}=e$, $G_{1}=\mathbb{Z}_{2}$. Thus G is a composition series. Let $|G|=n$, and assume $|H|<n$, then H has a composition series. Case 1: if G is simple, $G_{0}=e, G_{1}=G$. So we have a composition series. Case 2: if G is not simple, then G has a proper normal subgroup, say N. By induction hypothesis, N has a composition series. And $\bar{G}=G / N$, then \bar{G} has a composition series. Thus G has a composition series.

1.19 Oct. 9, 2019

1.19.1 Solvable groups

Let G be a group, let $X \subset G$ be a subset. $\langle X\rangle=$ smallest subgroup of G containing X. We call $\langle X\rangle$ the subgroup of G generated by X.

Remark 1.19.1. $\langle X\rangle=\left\{x_{1}^{n_{1}} \ldots x_{k}^{n_{k}} \mid k \geq 0, x_{1}, \ldots, x_{k} \in X\right.$ not necessarily distinct $\}$. Let this be H_{x}, it is easy to see that H_{x} is a subgroup, and $X \subset H_{x}$, so $\langle x\rangle \subset H_{x}$. Conversely, $X \subset H$ and H a group, $H_{x} \subset H$, so $H_{x} \in\langle X\rangle$. Thus $H_{x}=\langle X\rangle$.

Definition 1.19.2. If $H, K \subset G$ are subgroups, $[H, K]$ is the subgroup of G generated by all $[a, b], a \in H, b \in K$. Especially if $H=G, K=G$, then $[G, G]=\langle[a, b] \mid a, b \in G\rangle .[G, G]$ is called the commutator subgroup of G.

Remark 1.19.3. let $X \subset G$ be a subset, and let $g \in G$. Then $\left\langle g X g^{-1}\right\rangle=g\langle X\rangle g^{-1}$ by remark. Hence, if $g X g^{-1} \subset X, \forall g \in G$, then $g\langle X\rangle g^{-1}=\left\langle g X g^{-1}\right\rangle \subset\langle X\rangle$. Thus $\langle X\rangle$ is normal.

Lemma 1.19.4. 1. If H, K are normal subgroups of G, then $[H, K]$ is normal.
2. $[G, G]$ is a normal subgroup of G.
3. G is abelian iff $[G, G]=\{e\}$
4. $G^{(1)}=[G, G]$, then $G / G^{(1)}$ is abelian.
5. If $N \subset G$ is normal, G / N is abelian, iff $G^{(1)} \subset N$.

Proof. 1. Let $\left.a \in H, b \in K, a[a, b] g^{-1}=g\left(a b a^{-1} b^{-1}\right) g^{-1}=g a g^{-1} g b g^{-1} g a^{-1} g^{-1} g b^{-1}\right) g^{-1}=$ $\left[g a g^{-1}, g b g^{-1}\right]$. Hence, it is in $[H, K]$ since H, K are normal.
4. Let $a G^{(1)}, b G^{(1)} \in G / G^{(1)}$. Then $a G^{(1)} b G^{(1)}=a b G^{(1)}=a b\left[b^{-1}, a^{-1}\right] G^{(1)}=b a G^{(1)}$.
5. Suppose $G^{(1)}$ is not in $N, \exists a, b \in G$ such that $[a, b] \notin N$. So $[a, b] N \neq N$. But $[a, b] N=a b a^{-1} b^{-1} N=[a N, b N]$. So $[a N, b N] \neq N$. So G / N is not abelian.

Remark 1.19.5. Let $\phi: G \rightarrow H$ be a group homomorphism. $\phi([G, G])=[\phi(G), \phi(G)]$.
Remark 1.19.6. Let $G_{0}=G, G^{(1)}=[G, G]$, and we continue inductively. By lemma 1, $G^{(1)}$ is normal in $G, G^{(2)}$ is similarly normal in $G^{(1)}$. And $G^{(i)}$ is normal in G. We have a sequence of normal subgroup $G=G^{0} \supset G^{(1)} \ldots$..

Definition 1.19.7. A group G is solvable if $\exists r>0$ such that $G^{(r)}=1$.
Example 1.19.8. If G is abelian, then $G^{(1)}=e$. Thus G is solvable. If G is non-abelian and simple, then G is not solvable. Indeed $G^{(1)}$ is a normal subgroup of G, and G is not abelian, then $G^{(1)} \neq e$. G simple implies $G=G^{(1)}=\ldots$. Hence $A_{n}, n \geq 5$ is not solvable.

Theorem 1.19.9. If G is a finite group, G is solvable, then it has a composition series with abelian composition factors.

1.20 Oct. 11, 2019

Proposition 1.20.1. Let G be a group, the the following are equivalent

1. G is solvable
2. \exists a sequence $G=G_{0} \supset G_{1} \supset G_{2} \ldots \supset G_{r}=\{e\}$ of normal subgroups of G such that for G_{i} / G_{i+1} is abelian
3. Same as 2 except we only assume G_{i+1} is normal in G.

Proof. $1 \Rightarrow 2$ Since $G^{(i)}$ is normal in G, we set the sequence to be $G^{(i)}$. $2 \Rightarrow 3$ is trivial. $3 \Rightarrow 1$. Given $G_{i+1} \supset G^{(i)}$ since G_{i} / G_{i+1} is abelian. Then by induction, we have a sequence of $G^{(i)}$.

Proposition 1.20.2. Let G be a group: (i) if G is solvable, and $A \subset G$ is a subgroup, then A is solvable. (ii) Let $N \subset G$ be normal, then G is solvable iff N and G / N are solvable.

Proof. $A \subset G$, then $A^{(i)} \subset G^{(i)}$. Therefore if $G^{(r)}$ is trivial then $A^{(r)}$ is trivial.
Consider the quotient homomorphism. Then $\pi\left(G^{(i)}\right)=\pi(G)^{(i)}$. So if $G^{(r)}$ is trivial then $G / N^{(r)}$ is trivial.

Since G / N is solvable, then if $G / N^{(r)}$ is trivial, $\pi^{-1}\left(G / N^{(r)}\right) \subset N$. But N is solvable. So G is solvable.

Definition 1.20.3. A group G is nilpotent if $\exists r>0$ such that $G_{(r)}=\left[G, G_{i-1}\right]=e$
Theorem 1.20.4. If $G / Z(G)$ is nilpotent, then G is nilpotent
Proof. Let π be the quotient group homomorphism. $\forall \phi: G \rightarrow H$ group homomorphism, $\phi\left(G_{i}\right)=\phi(G)_{i}$. Then $G / Z(G)$ is nilpotent then $\pi(G)$ is nilpotent, so there is an r such that $G_{r} \subset Z(G)$, but $[G, Z(G)]=1$. So G is nilpotent.

Corollary 1.20.5. A finite p-group G is nilpotent, and hence solvable.
Proof. let $|G|=p^{r}$, use induction on r. If $r=0$, then G is nilpotent. Assume for a nilpotent group A if $|A|=p^{k}, k<r$. G has nontrivial $Z(G)$, so $|Z(G)|=p^{t}, t>0$. Thus $|G / Z(G)|=p^{r-t}<p^{r}$. Thus $G / Z(G)$ is nilpotent. thus G is nilpotent. Hence G is solvable.

1.20.1 Free Groups

Definition 1.20.6. Let S be a set, a free group G on S is a group G with a map $\underset{\sim}{g}: S \rightarrow G$ such that if $\phi: \underset{\sim}{S} \rightarrow H$ is a map to a group H, \exists a unique group homomorphism $\tilde{\phi}: G \rightarrow H$ such that $\phi=\tilde{\phi} \circ j$.

Example 1.20.7. $S=\{x\},|S|=1$. We take $G=\mathbb{Z}, j: S \rightarrow \mathbb{Z}$ is $j(x)=1$. (\mathbb{Z}, j) is a free group on S.

1.21 Oct. 14, 2019

Definition 1.21.1. Let $k \geq 0$, a word of length k on S is a formal expression $x_{1}^{\varepsilon_{1}} \ldots x_{k}^{\varepsilon_{k}}$ with $x_{i} \in S, \varepsilon= \pm 1$. And if $x_{j}=x_{j+1}$, then $\varepsilon_{j}=\varepsilon_{j+1}$. A word of length 0 is the empty set.

Definition 1.21.2. $F(S)$ is the collection of all words in S of length $x \geq 0$. If a is a word of length k and b is a word of length l, we define $a b$ by appending b to the end of a and cancelling all expressions $x_{i}^{-1} x_{i}$ or $x_{i} x_{i}^{-1}$ that result.

Define $c: S \rightarrow F(S)$ by $c(x)=x^{c}$ for $x \in S$
Proposition 1.21.3. (i) $F(S)$ is a group. (ii) $(F(S), c)$ is a free group on S.
Free groups exist; formally, they are objects in group theory, but they are best studied using topology or logic

Corollary 1.21.4. Let H be a group, then \exists a free group $(F(S), c)$ and a surjective group homomorphism $\psi: F(S) \rightarrow H$. Hence, $H \cong F(S) / \operatorname{ker}(\psi)$

Suppose $H \cong F(S) / \operatorname{ker}(\psi), R \subset \operatorname{ker}(\psi)$ is a subset so that $\operatorname{ker}(\psi)$ is the smallest normal subgroup of $F(S)$ containing R. Then we call R the relations of $F(S)$.

1.22 Oct. 18, 2019

1.22.1 Category

Definition 1.22.1. A category C consists a collection of objects $\operatorname{Ob}(C)$, and $\forall x, y \in$ $O b(C)$, a collection of morphisms $\operatorname{Hom}_{C}(x, y)$ such that if $x, y, z \in O b(C)$, there is a map
$\operatorname{Hom}_{C}(y, z) \times \operatorname{Hom}_{C}(x, y) \rightarrow \operatorname{Hom}_{C}(x, z)$ written $(g, f) \rightarrow g \circ f$ called composition, satisfying axioms (i) $\forall x \in C, \exists \operatorname{Hom}_{C}(X, X)$ such that if $f \in \operatorname{Hom}_{C}(x, y), g \in \operatorname{Hom}_{C}(z, x)$, then $f \circ i d_{x}=f$ and $i d_{x} \circ g=g$. (ii) $\forall x, y, z, w \in O b(C)$ and $f \in \operatorname{Hom}_{C}(x, y), g \in \operatorname{Hom}_{C}(y, z)$, $h \in \operatorname{Hom}_{C}(z, w)$ then $(h \circ g) \circ f=h \circ(g \circ f)$

Note: $x \in O b(C)$ need not be a set, say $i d_{x}: x \rightarrow x$ is the identity map of x. Often we write $x \in C$ in place of $x \in O b(C)$ and $\operatorname{Hom}(x, y)$ for $\operatorname{Hom}_{C}(x, y)$ when C is understand.

Example 1.22.2. $C=$ Sets. $O b(C)=$ Sets. If $x, y \in$ Sets, then $\operatorname{Hom}_{\text {Sets }}(x, y)=\{f: x \rightarrow$ $y \mid f$ is a map $\}$

Example 1.22.3. $C=$ Groups, then $O b(C)=$ Groups. If G, H are groups, $H_{\text {Gom }}^{\text {Groups }}(G, H)=$ $\{f$ is a group homomorphism $\}$. If G, H are groups, they are also sets, but Hom Groups \neq $H o m_{S e t s}(G, H)$ execept when $H=1$.

There will be category of rings, a category of R-modules for R a ring.
Definition 1.22.4. A category C is called small if $\forall x, y \in C, \operatorname{Hom}_{C}(x, y)$ is a set.
Definition 1.22.5. Let C be a category, $x, y \in C$, and $f: x \rightarrow y$ in $\operatorname{Hom}_{C}(x, y)$, then f is an isomorphism if $\exists g \in \operatorname{Hom}_{C}(y, x)$ such that $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$. If so, we write $x \cong y$.

A small category with 1 object for which every morphism is an isomorphism is the same as a group.

Definition 1.22.6. Let C be a category, and object $X_{0} \in C$ is called an initial object if $\forall x \in O b(C), \exists$ a unique element $f_{x} \in \operatorname{Hom}_{C}\left(x_{0}, x\right)$. An object X_{1} is called final if $\forall x \in O b(C), \exists$! element $g_{x} \in \operatorname{Hom}_{C}\left(x, x_{1}\right)$

Lemma 1.22.7. Let C be a category, if x_{0}, yo are initial objects, there is an $\cong f_{0}: x_{0} \rightarrow x_{0}$. If $x, y \in C_{0}$ are final objects, there is an $\cong f_{x_{1}}: x_{1} \rightarrow y_{1}$.

Chapter 2

Ring Theory

2.1 Oct. 28, 2019

Definition 2.1.1. A ring $(R,+, \cdot)$ is a set R with 2 binary operations, written as $(a, b) \rightarrow$ $a+b$ and $(a, b) \rightarrow a b$ such that

1. $(R,+)$ is an abelian group
2. $\forall a, b, c \in R,(a b) c=a(b c)$
3. $\forall a, b, c \in R,(a+b) c=a c+b c$ and $c(a+b)=c a+c b$
4. $\exists 1_{R} \in R, 1_{R} \neq 0_{R}$ where 0_{R} is identity of $(R,+)$ such that $1_{R} a=a 1_{R}=a$.

Remark 2.1.2. One can check that $\forall a, b, c \in R$

1. $a 0_{R}=0_{R} a=0_{R}$,
2. $(-a) b=a(-b)=-a b$
3. $1_{R} 1_{R}=1_{R}$
4. $(-a)(-b)=a b$
5. $b-c=b+(-c)$
6. $(a-b) c=a c-b c$
7. $c(a-b)=c a-c b$
8. 1_{R} is the unique element with the identity property.

Therefore, usual rules of arithmetic apply in a ring, except those that use $a b=b a$ or existence of multiplicative inverses. If we allowed $1_{R}=0_{R}$, then $R=\left\{0_{R}\right\}$ since $a 1=a=$ $a 0=0$.

Proposition 2.1.3. Let $(R,+, \cdot)$ be a ring. Let $R^{\times}=\{a \in R \mid \exists b \in R$ with $a b=1=b a\}$. Then R^{\times}is a group with identity 1_{R}

Definition 2.1.4. If $a, b \in R-\{0\}$ but $a b=0$, then we call a, b zero divisors. We call the elements of R^{\times}the units of $R . R$ is called commutative if $a b=b a \forall a, b \in R$. If $R^{\times}=R-\{0\}$, we call R a division ring. We call commutative division ring a field. This agrees with our earlier definition of a field.

Definition 2.1.5. Let R be a ring with operations + and \cdot. If $S \subset R$ is a subset, we say S is a subring if $(S,+, \cdot)$ is a ring and $1_{R} \in S$

Remark 2.1.6. A subset S is a subring iff (1) ($S,+$) is a subgroup, (2) $a, b \in S, a b \in S$ (3) $1_{R} \in S$.

Example 2.1.7. Let $R=\mathbb{C}$, complex numbers, then \mathbb{Z} is a subring of \mathbb{C}.
Let $d \in \mathbb{Z}-\{0,1\}$, we say d is square free if $n^{2} \mid d$, then $n= \pm 1$ for $n \in \mathbb{Z}$. Let $\mathbb{Q}[\sqrt{d}]=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}, \mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\}$. These are both subrings of \mathbb{C}. And $\mathbb{Z}[i]=\mathbb{Z}[\sqrt{-1}] . \mathbb{Z}[\sqrt{-5}]$

Definition 2.1.8. A commutative ring R is an integral domain if it has no zero divisors. A field F is an integral domain. Let $a, b \in F, a b=0$, and $a \neq 0$ then $\exists 1 / a \in F$. And $1 / a(a b)=1 b=b$, so $b=0$. Thus $a b=0$ in $R \subset F$, then $a b=0$ implies a or b is 0 .

Remark 2.1.9. A subring of an integral domain is an integral domain. Hence $\mathbb{Z}[\sqrt{d}]$ and $\mathbb{Q}[\sqrt{d}]$ are integral domains. Moreover, $\mathbb{Q}[\sqrt{d}]$ is a field.

Example 2.1.10. Let $n \in \mathbb{Z}_{>1}, \mathbb{Z}_{n}=\{0, \ldots, n-1\}$. Then \mathbb{Z}_{n} is a ring. In particular, \mathbb{Z}_{p}^{\times} is a field iff p is a prime.

Remark 2.1.11. Let R be a finite integral domain. Then R is a field.
Proof. Assume $|R|<\infty$ for $a \in R$, define $L_{a}: R \rightarrow R$ by $L_{a}(x)=a x$. Then $L_{a}:(R,+) \rightarrow$ $(R,+)$ is a group homomorphism. Indeed if $x, y \in R, L_{a}(x+y)=a(x+y)=a x+a y=$ $L_{a}(x)+L_{a}(y)$. But $\operatorname{ker}\left(L_{a}\right)=\{x \in R \mid a x=0\}=\{0\}$. Since R is an integral domain. Hence, L_{a} is injective, so $|i m(L)|=|R|$, so since $i m\left(L_{a}\right) \subset R$, and $|R|<\infty, i m\left(L_{a}\right)=R$. But $1 \in R$, so $1 \in \operatorname{im}\left(L_{a}\right)$, so $\exists x \in R$ s.t. $a x=1$. Hence $R^{\times}=R-\{0\}$, so R is an integral domain.

We apply this to \mathbb{Z}_{n}, so for p a prime, \mathbb{Z}_{p} is a field, otherwise \mathbb{Z}_{n} is not a integral domain.

2.2 Oct. 30, 2019

Let R be a ring, $M(n, R)=\left\{A=\left(a_{i j} \mid a_{i j} \in R\right\} . M(n, R)\right.$ is a ring using usual addition and multiplication of matrices.

Remark 2.2.1. If $R=F$ is a field, then $M(n, F)^{\times}=G L(n, F)$

Definition 2.2.2. let $R=M(2, \mathbb{C})$, let $S=\left\{\left.\left[\begin{array}{cc}u & v \\ -\bar{v} & \bar{u}\end{array}\right] \right\rvert\, u, v \in \mathbb{C}\right\} \subset M(2, \mathbb{C})$ is a subring. We write $\mathbb{H}=S$, and call \mathbb{H} the quarternions. And the quarternions is a noncommutative division ring.

2.2.1 Polynomial rings

Let R be a ring, define $R[x]=\left\{p=\sum_{i=0} a_{i} x^{i} \mid \exists d(p) \geq 0\right.$ such that $\left.a=0, \forall i>d(p)\right\}$. When we write p, we typically omit terms of form $0 x^{i}$. We claim that ($\left.R[x],+, \cdot\right)$ is a ring.

Definition 2.2.3. Let $p=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[x], p \neq 0$. Then $p=a_{0}+a_{1} x+\ldots+a_{d} x^{d}$ with $a_{d} \neq 0$. We set $\operatorname{deg}(p)=d$ and $l(p)=a_{d}$ (leading coefficients). We set $\operatorname{deg}(0)=-\infty$.

We claim that if R is an integral domain, and $q, p \in R[x]-\{0\}$, then $\operatorname{deg}(p q)=\operatorname{deg}(p)+$ $\operatorname{deg}(q)$ and $l(p q)=l(p) l(q)$

Example 2.2.4. Let R be a ring, $R[[x]]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i} \mid a_{i} \in \mathbb{R}\right\}$. Then $R[[x]]$ is a ring using the same formulas for + and \cdot as for $R[x]$.

Proposition 2.2.5. Let R be a ring. Let $a, b \in R$. Assume $a b=b a$, then $(a+b)^{n}=$ $\sum\binom{n}{k} a^{k} b^{n-k}$.

Proof. Use induction and binomial coefficient identity.
Definition 2.2.6. Let R, S be rings. A map $f: R \rightarrow S$ is called a ring homomorphism if $f(a+b)=f(a)+f(b), f(a b)=f(a) f(b), f\left(1_{R}\right)=1_{S}$

Example 2.2.7. Let $R=\mathbb{C}$, then $\tau: R \rightarrow R$, and $\tau(x)=\bar{x} . \tau$ is a ring homomorphism

2.3 Nov. 1, 2019

Definition 2.3.1. Let I be a subset of the ring R, consider

1. I is an additive subgroup of R
2. If $a \in I$ and $r \in R$, then $r a \in I$
3. If $a \in I$ and $r \in R$, then $a r \in I$.

If 1 and 2 hold, then I is a left ideal of R if 1 and 3 hold, then I is a right ideal of R. If all satisfies then I is an ideal of R. Let $I \neq R$ then I is a proper ideal of R.

Let R be a ring and let $a \in R, a \in R$, then we know $R a R$ is an ideal, $a R$ is a left ideal and $R a$ is a right ideal.

If R is commutative, ideals $=$ left ideals $=$ right ideals.

Definition 2.3.2. Let $(a)=R a$ for $a \in R$, then we call I principal if $I=(a)$ for some $a \in R$.

If R is not commutative then we call an ideal a two-sided ideal.
Definition 2.3.3. If R is an integral domain, and $a \in R-\{0\}$ and $b \in R$, we say $a \mid b$ if $b=c a$ for some $c \in R$. Note $a \mid b$ iff $b \in(a)$.
Remark 2.3.4. If $p, q \in R[x]$, and R is a domain, and $p \mid q$. Then $\operatorname{deg}(q) \geq \operatorname{deg}(p)$ if $q \neq 0$.
Definition 2.3.5. Let $f: R \rightarrow S$ be a ring homomorphism. Define ker $f=\{a \in R \mid f(a)=$ $0\}$ and $\operatorname{im}(f)=\{f(a) \mid a \in R\} \subset S$.

Proposition 2.3.6. (1) $\operatorname{ker}(f)$ is a proper ideal of R. (ii) $i m(f)$ is a subring of S.
Remark 2.3.7. If I is an ideal of R, then $I=R$ iff \exists a unit a in I
Definition 2.3.8. $f: R \rightarrow S$ a ring homomorphism is called a ring isomorphism if $\exists g$: $S \rightarrow R$ a ring homormophism such that $g \circ f=i d_{R}$ and $f \circ g=i d_{S}$.

Remark 2.3.9. A ring homomorphism $f: R \rightarrow S$ is an isomorphism iff f is bijective.

2.3.1 Quotient Rings

Let R be a ring with proper ideal I. We define a new $\operatorname{ring}(R / I,+, \cdot)$ as follows. I is a normal subgroup of the abelian group R, so $(R / I,+)$ is the usual quotient group, i.e. $a, b \in R,(a+I)+(b+I)=(a+b)+I$. To define multiplication, let $a, b \in R$. Want to set $(a+I)(b+I)=a b+I$. Moreover, the map $\pi: R \rightarrow I, \pi(a)=a+I$ is a ring homomorphism by construction. And $\operatorname{ker}(\pi)=I$ by group theory.

2.4 Nov. 4, 2019

Remark 2.4.1. If R is a field, the only ideals are $\{0\}$ and R
Proof. Let $I \subset R$ be a nonzero ideal. Then $\exists a \in I-\{0\}$. So $\exists b \in R$ such that $b a=1$, but so $1 \in I, I=R$

Remark 2.4.2. If R is a division ring, then only two-sided ideals are $\{0\}$ and R
Proposition 2.4.3. Let $f: R \rightarrow S$ be a ring homomorphism, and R is a division ring, then R is injective.

Proof. $\operatorname{ker}(f)$ is an ideal of $R, \operatorname{ker}(f) \neq R$ since $\operatorname{ker}(f)$ is a proper ideal. Thus $\operatorname{ker}(f)=0$, so f is injective.

2.4.1 Operation of Ideals

Addition: Let I, J be ideals. Then $I+J=\{x+y \mid x \in I, y \in J\}$ is an ideal. Further if $\left\{I_{j}\right\}$ is a family of ideals, and $\sum I_{j}=\left\{x_{j 1}+\ldots+x_{j k} \mid x_{j i} \in I_{j i}\right\}$, then $\sum I_{j}$ is an ideal. This holds for left and right ideals.

Example 2.4.4. $R=\mathbb{Z}, I=m \mathbb{Z}, J=n \mathbb{Z} . I+J=m \mathbb{Z}+n \mathbb{Z}=(m, n) \mathbb{Z}$.
If R is commutative, and $a_{1}, \ldots, a_{n} \in R$, then $\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}\right)+\ldots\left(a_{n}\right)$
Multiplication of ideals: Assume R is commutative (unnecessary). Let I, J be ideals. $I J=I \cdot J=\left\{\sum x_{k} y_{k} \mid x_{k} \in I, y_{k} \in J\right\} . I J$ is an ideal.

Let $I=(a), J=(b), I J=\left\{\sum x_{k} y_{k} \mid x_{k} \in(a), j_{k} \in(b)\right\} . x_{k}=r_{k} a, y_{k}=s_{k} b$, so $\sum x_{k} y_{k}=\sum r_{k} s_{k} a b$. Thus $I J \subset(a b) .(a b) \subset I J$ is clear, so $(a)(b)=(a b)$.

2.4.2 Isomorphism Theorems + Chinses Remainder Theorem

Theorem 2.4.5 (Factor Theorem). Let R be a ring and I be an ideal. Then if S is a ring, there is an bijection between $\{f: R \rightarrow S \mid f(I)=0\}$, f is a ring homomorphism, and $\{f: R / I \rightarrow S\}$ is a ring homomorphism.

Proof. Hence $\pi: R \rightarrow R / I, \pi(a)=a+I$. We know π is a ring homomorphism. If $f: R / I \rightarrow S$ is a ring homomorphism, consider $f \circ \pi: R \rightarrow S$ is a ring homomorphism since \bar{f} and π are ring homomorphisms. That $g: R \rightarrow S$ is a map with $I \subset \operatorname{ker}(g)$. Then define $\bar{g}: R / I \rightarrow S$ by $\bar{g}(a+I)=g(a)$. We checked that \bar{g} is a ring homomorphism by construction. Thus by the same proof for groups, we prove the factor theorem.

Theorem 2.4.6. Let $f: R \rightarrow S$ be a ring homomorphism. Recall $\operatorname{im}(f)=\{f(x) \mid x \in R\}$. Then $R / \operatorname{ker}(f) \cong i m(f)$ via ring \bar{f}, where $\bar{f}(a+\operatorname{ker}(f))=f(a)$.

Proof. This is the same as proof of first isomorphism theorem of groups.
Example 2.4.7. $\mathbb{R}[x] /\left(x^{2}+1\right) \exists$ a ring homomorphism $\operatorname{er}: \mathbb{R}[x] \rightarrow \mathbb{C}$ given $\operatorname{er}(p)=p(i)$, where $i=\sqrt{-1}$. $\operatorname{ker}(e r)=\left(x^{2}+1\right)$. Thus $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$.

Theorem 2.4.8. Let R be a ring, I, J be ideals. Let $J \subset I$, then $R / I \cong(R / I) /(I / J)$
Proof. The proof is similar to that of the third isomorphism theorem of groups.
Theorem 2.4.9. Let R be a ring, $I \subset R$ ideal, and $S \subset R$ subring. Then $S+I$ is a subring of R. I is an ideal of $S+I$. $S \cap I$ is an ideal of S. If $I \subset R$ is proper, $I \subset S+I$ is proper, $S \cap I \subset I$ is proper, and $S / S \cap I \cong(S+I) / I$.

Theorem 2.4.10 (Correspondence Theorem). let R be a ring with proper ideal I, Then $S \rightarrow S / I$ gives a bijection from R to all R / I. The inverse map is π^{-1} where π is the canonicle map.

2.5 Nov. 6, 2019

Let $\left\{R_{i}\right\}$ be a family of rings. Let $\prod R_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in R_{i}\right\}$, the Cartisian product of the R_{i}. Then $\prod R_{i}$ is a ring. If $x=\left(x_{i}\right), y=\left(y_{i}\right) \in \prod R_{i}$, define multiplication and addition coordinate wise. $p_{i}\left(\prod R_{i}\right) \rightarrow R_{i}$, then each p_{i} is a ring homomorphism. There is a group homomorphism $J_{i}: R_{i} \rightarrow R$, but J_{i} is not a ring homomorphism.
Definition 2.5.1. Let I, J be ideals of a ring R, we say I, J are relatively prime if $I+J=R$.
Remark 2.5.2. If I, J are ideals of a commutative ring, then $I J \subset I \cap J$. If $I+J=R$, then $I J=I \cap J$.

Theorem 2.5.3 (Chinses Remainder Theorem). Let R be a ring with ideas $I_{1}, \ldots I_{n}$. Assume that if $1 \leq i, j \leq n$ and $i \neq j$, then $I_{i}+I_{j}=R$. Consider the map f : $R \rightarrow R / I_{1} \times \ldots \times R / I_{n}, f(a)=\left(a+I_{1}, \ldots, a+I_{n}\right)$, Then f is a ring homomorphism. $\operatorname{ker}(f)=I_{1} \cap \ldots \cap I_{n}$, and f is surjective.

Remark 2.5.4. As a consequence, $R / I_{1} \cap \ldots \cap I_{n} \cong R / I_{1} \times \ldots \times R / I_{n}$ by first isomorphism theorem. For $R=F[x]$ where F is a field, we will see that the CRT implies if $b_{1}, \ldots, b_{n} \in$ $F, \exists f \in F[x]$ such that $f\left(a_{i}\right)=b_{i}, \forall i$ and $a_{1}, \ldots, a_{n} \in F, a_{i} \neq a_{j}$ if $i \neq j$.

2.5.1 Maximal ideals and prime ideals

Definition 2.5.5. Let R be a ring. A proper ideal I of R is called maximal if whenever $I \subset J, J$ ideal of R, then $J=I$ or $J=R$.

Example 2.5.6. $R=\mathbb{Z}, I=p \mathbb{Z}$ is maximal iff p is prime.
Theorem 2.5.7. Every proper ideal is contained in a maxiaml idea.
Definition 2.5.8. Let S be a set. A partial order \leq on S is a relation such that (i) $a \leq a, \forall a \in S$ (ii) $a \leq b$ and $b \leq a$, then $a=b$. (iii) $a \leq b \leq c$, then $a \leq c$.

A set S with partial order \leq is called a partially ordered set or poset.
Remark 2.5.9. A subset of a poset is a poset.

2.6 Nov. 8, 2019

Definition 2.6.1. Let (S, \leq) be a poset.

1. A subset T of S is called a chain (or totally ordered) if $\forall x, y \in T, x \leq y$ or $y \leq x$
2. An element $x \in S$ is called an upper bound of a subset T if $\forall y \in T, y \leq x$
3. And element x of S is called maximal if $y \in S$ and $x \leq y$ implies $x=y$

Lemma 2.6.2 (Zorn's Lemma). Let S be a nonempty poset. Then if every chain in S has an upper bound in S, then S has a maximal element.

Zorn's lemma will be treated as an axiom, and is equivalent to the axiom of choice which says every product of nonempty sets is nonempty.
Theorem 2.6.3. Let I be a proper ideal of a ring R, Then \exists a maximal ideal M of R such that $M \supset I$.

Proof. Let $S=\{$ proper ideals J of R such that $I \subset J\}$. We say $J_{1} \leq J_{2}$ if $J_{1} \subset J_{2}$. Then (S, \leq) is a poset. Show every chain in S has an upper bound. Let $\left\{I_{j}\right\}$ be a chain in S. Let $\bar{I}=\cup I_{j}$. Then \bar{I} is an ideal in S. Since $I_{j} \subset I, \forall j \in J$, then I is an upper bound for the chain in S. Hence, by Zorn's Lemma, $\exists M \in S$ such that if $N \in S$ and $M \subset N$, then $M=N$. Then if $M \subset K$, an ideal of R, then either $K=R$ or K is proper. If K is proper, then $I \subset M \subset K$ so $M=K$. So M is maximal.

Theorem 2.6.4. Let R be a commutative ring with ideal I. Then I is a maximal ideal iff R / I is a field.

Proof. Let I be a maximal ideal. Let $\bar{a}=a+I \in R / I-\{0\}$ so $a \neq I$. Consider the ideal $(a)+I, a \in(a)+I$, so $(a)+I \neq I$ and $I \subset(a)+I$. Since I is maximal, $(a)+I=R$. $1=r a+x$, for some $r \in R, x \in I$. Thus $r a+I=1+I$. Thus $(r+I)(a+I)=r a+I=1+I$ in R / I. And $r+I$ is a unit of R / I. Hence R / I is a field.

Suppose R / I is a field. Then by discussion we had the only ideal of R / I are $0+I$ and R / I. Let $J \in R$ be an ideal such that $I \subset J$, by the correspondence theorem, if $\pi: R \rightarrow R / I$ is $\pi(a)=a+I$, then $J=\pi^{-1} \pi(J)$. And every ideal of R / I is $\pi(I)$ for some $J \supset I$. Hence $J=\pi^{-1} \pi(0+I)$ or $J=\pi^{-1} \pi(R)$, so $J=I$ or R, and I is maximal.

Example 2.6.5. F is a field, $R=F[x], M$ is the maximal ideal of R. Conclude $F[x] / M$ is a field. Note: If R is a ring, $R[x] /(x) \cong R$ so (x) is a maximal ideal of $R \Longleftrightarrow R$ is a field.
Definition 2.6.6. A proper ideal P of a commutative ring R is called a prime ideal if $a b \in P$ for $a, b \in R$, then $a \in P$ or $b \in P$.

Example 2.6.7. If $R=\mathbb{Z}$ and $M>0, m \mathbb{Z}$ is a prime ideal iff m is prime. Further $\{0\}=0 \mathbb{Z}$ is a prime ideal.

Theorem 2.6.8. Let R be a commutative ring with proper ideal I, then I is prime iff R / I is a integral domain.

Proof. If I is a prime ideal. Let $a+I, b+I \in R / I$. Suppose $(a+I)(b+I)=0+I$. Hence $a b+I=0+I, a b \in I$. So $a \in I$ or $b \in I$. By defintion of a prime, so $a+I=I$ or $b+I=I$. Thus R / I is an integral domain. The other way is clear.

Corollary 2.6.9. If R is a commutative ring, then every ideal M is prime.
Proof. R / M is a field, so is a integral domain. So M is prime.
Note: R is an integral domain iff (0) is a prime ideal.
Example 2.6.10. Let $R=\mathbb{Z}[x] \mathbb{Z}[x] /(x) \cong \mathbb{Z}$ which is a domain but not a field. So (x) is a prime ideal but not maximal. But $(2, x)$ is a maximal and prime ideal.

2.6.1 $R[x]$

R be a ring, let $\phi: R \rightarrow S$ be a ring homomorphism. let $C_{S}(\phi(R))$ be the centralizer of $\phi(R) . C_{S}(\phi(R))$ is a subring.

Proposition 2.6.11 (Universal Properties). Let $\alpha \in C_{S}(\phi(R))$. Then \exists ! ring homomorphism $e_{\alpha}: R[x] \rightarrow S$ such that $e_{\alpha}(r)=\phi(r)$ if $r \in R$ and $e_{\alpha}(x)=\alpha$.

2.7 Nov. 11, 2019

Example 2.7.1. Take $R=\mathbb{Q}, S=\mathbb{C}, \alpha=i=\sqrt{-1}$, then $e_{\alpha}: \mathbb{Q}[x] \rightarrow \mathbb{C}, e_{\alpha}\left(\sum r_{j} x^{j}\right)=$ $\sum r_{j}{ }^{j}$

Definition 2.7.2. A polynomail g in $R[x]$ is called monic if its leading coefficient is 1 , i.e., if $\operatorname{deg}(g)=d \geq 0$ and $g=a 0+a_{1} x+\ldots+x^{d}$.

Proposition 2.7.3. Let $f, g \in R[x]$ with g monic, then $\exists h, r \in R[x]$ such that $f=h g+r$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ or $r=0$ (division algorithm)

Remark 2.7.4. If $g=a_{0}+a_{1} x+\ldots+a_{d} x^{d}$ with $a_{d} \in R^{\times}$a unit, then $g=a_{0} g_{0}$ where $g_{i}=\sum \frac{a_{i}}{a_{0}} x^{i} \in R[x] . g_{0}$ is monic so any $f=h g_{0}+r$ then $f=\frac{h}{a_{0}} g+r$, so the division algorithm holds if $l(g)=a_{d} \in R^{\times}$. If F is a field, then division algorithm helds for any nonzero g.
Remark 2.7.5. Let $g \in R[x]$ be monic of degree d, then $R[x] /(g)=\left\{b_{0}+b_{1} x+\ldots+\right.$ $b_{d-1} x^{d-1}+(g(x))$
Example 2.7.6. $\mathbb{Q}[x] /\left(x^{2}+1\right) \cong\left\{a+b x+\left(x^{2}+1\right) \mid a, b \in \mathbb{Q}\right\}$
Example 2.7.7. $\mathbb{Z}[x] /\left(x^{3}-x+1\right) \cong\left\{a_{0}+a_{1} x+a_{2} x^{2}+\left(x^{3}-x+1\right) \mid a_{0}, a_{1}, a_{2} \in \mathbb{Z}\right\}$
Example 2.7.8. $\mathbb{Q}[x] /\left(x^{2}+1\right) \cong \mathbb{Q}[i]$. pf: $e_{i}: \mathbb{Q}[x] \rightarrow \mathbb{C}, \alpha=i, R=\mathbb{Q}, S=\mathbb{C}$. e_{i} is a ring homomorphism. $\operatorname{ker}\left(e_{i}\right)=\{f \in \mathbb{Q}[x] \mid f(i)=0\} . x^{2}+1 \in \operatorname{ker}\left(e_{i}\right)$. If $f \in \operatorname{ker}\left(e_{i}\right)$, then $f=h\left(x^{2}+1\right)+r$. where $\operatorname{deg} r<2$. Then apply ring homomorphism, we find $r \in\left(x^{2}+1\right)$. Thus $\operatorname{ker}\left(e_{i}\right)=\left(x^{2}+1\right)$. Then we use the first isomorphism theorem to see $Q[x] /\left(x^{2}+1\right) \cong \mathbb{Q}[i]$.
Theorem 2.7.9 (Remainder Theorem). Let $f \in R[x]$ and let $\alpha \in R$

1. $\exists h \in R[x]$ such that $f=h(x-\alpha)+f(\alpha)$
2. Let R be an integral domain. Then $f(\alpha)=0$ iff $x-\alpha \mid f$ in $R[x]$.

Definition 2.7.10. Let R be an integral domain, and let $f \in R[x]$. We say α is a root of f if $f(\alpha)=0$. If α is a root of f, we say α is a root of multiplicity m_{α} of $(x-\alpha)^{m_{\alpha}} \mid f$ in $R[x]$, but $(x-\alpha) \nmid f$.

Theorem 2.7.11. Let R be a domain and let $f \in R[x]$ have degree $d \geq 0$, then f has at most d roots in R.

2.8 Nov. 13, 2019

Definition 2.8.1. A ring R is called a principal ideal ring if every ideal is principal. A principal ideal domain (PID) is an integral domain that is a principal ideal ring.

Example 2.8.2. \mathbb{Z} is a PID, since every ideal I is a subgroup. So $I=n \mathbb{Z}=(n)$. $\mathbb{Z}[x], \mathbb{Z}[\sqrt{-5}]$ are not PID's

Definition 2.8.3. R is a Euclidean domain if $\exists \psi: R-\{0\} \rightarrow \mathbb{Z}_{>0}$ such that if $b, a \in R$ and $a \neq 0$, then $\exists q, r \in R$ with $b=q a+r$ and $r=0$ or $\psi(r)<\psi(a)$.

Example 2.8.4. $R=\mathbb{Z}, \psi(a)=|a|$. F is a field, $R=F[x]$. Let $\psi(p)=\operatorname{deg}(p)$ for $p \in R-\{0\} . F[x]$ is a Euclidean domain.

Theorem 2.8.5. If R is a Eudclidean domain, then R is a PID.
Proof. Let $I \subset R$ be an ideal. If $I=\{0\}, I=(0)$. If $I \neq\{0\}$, choose $a \in I-\{0\}$ so $\psi(a) \leq \psi(b), \forall b \in I-\{0\}$. Then $a \in I$, so $(a) \in I$. Show $I \in(a)$. If $b \in I, b=q a+r$, with $q \in R, r \in Q$ and $r=0$, then $\psi(r)<\psi(a)$, contradiction to the choice of $\psi(a)$. Thus $r=0$, $b=q a \in(a)$.

Example 2.8.6. Let $d \in\{-2,-1,2,3\}$. Then $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain. And hence a PID. Esp $\mathbb{Z}[i]$ is a PID.
Proof. Let $\psi(\alpha)=|N(\alpha)|$ for $\alpha \in \mathbb{Z}[\sqrt{d}]$. If $\alpha, \beta \in \mathbb{Z}[\sqrt{d}]$ and for $\alpha=a+b \sqrt{d}, a, b \in \mathbb{Z}$, $N(\alpha)=\alpha \tau(\alpha)$ where $\tau(\alpha)=a-b \sqrt{d}$, then $N(\alpha \beta)=N(\alpha) N(\beta)$. Similarly, one can show the same result for $\alpha, \beta \in \mathbb{Q}[\sqrt{d}]$. Let $\alpha, \beta \in R=\mathbb{Z}[\sqrt{d}], \beta \neq 0$, then $\alpha / \beta \in \mathbb{Q}[\sqrt{d}]$. Thus $\frac{\alpha}{\beta}=x+y \sqrt{d}$ with $x, y \in \mathbb{Q}, \exists x_{0}, y_{0} \in \mathbb{Z}$ such that $\left|x-x_{0}\right| \leq \frac{1}{2},\left|y-y_{0}\right| \leq \frac{1}{2}$. Let $q=x_{0}+y_{0} \sqrt{d}$, then $\frac{\alpha}{\beta}=q+r$. Thus $\alpha=q \beta+s \beta$ and we set $r=s \beta=\alpha-q \beta \in R$. To show $\psi(r)<\psi(\beta)$. But $\psi(r)=\psi(s \beta)$. So need to show $|N(s)|<1$. If $\gamma=u+v \sqrt{d}$, by computation, $|N(s)|=\frac{1}{2}<1$.

Remark 2.8.7. Since R is a domain, if $a \in R-\{0\}$ and $b, c \in R$ and $a b=a c$, then $b=c$.
Definition 2.8.8. 1. Let $a, b \in R-\{0\}$. We say a and b are associates if $b=u a, u \in R^{\times}$
2. Let $a \in R-\{0\}, a \notin R^{\times}$. We say a is irreducible if $a=b c$ with b and $c \in R$, then b or c is a unit.
3. Let $a \in R-\{0\}, a \notin R^{\times}$. We say a is prime if whenever $a \mid b c$ with $b, c \in R$. Then $a \mid b$ or $a \mid c$.

Remark 2.8.9. Let $a, b \in R-\{0\}$.

1. $a \in R^{\times} \Longleftrightarrow(a)=R$
2. a and b are associates $\Longleftrightarrow(a)=(b)$
3. $a \mid b \in R \Longleftrightarrow b \in(a)$
4. Let $a \mid b$. Then a and b are not associates $\Longleftrightarrow(b) \subset(a)$ but $(b) \neq(a)$.

Proposition 2.8.10. If $x \in R$ is prime, then x is irreducible.
Definition 2.8.11. Let R be any ring. We say R satisfies the ascending chain condition (acc) on ideals if for every sequence $I_{1} \subset I_{2} \subset \ldots I_{n} \subset \ldots . . \exists n_{0} \geq 0$ such that $I_{n}=I_{n_{0}}$ (increasing sequences stabilize). We say R satisfies acc on principal ideals if the above is true for chains $I_{1} \subset I_{2} \subset \ldots$ for principal ideals I_{j}. We say R is Notherian if it satisfies acc on ideals.

Theorem 2.8.12. If R is a PID, then R is Noetherian.

2.9 Nov. 15

2.9.1 Unique Factorization domain

Definition 2.9.1. A Unique factorization domain (UFD) is an integral domain R satisfying the following properties:

1. Every nonzero element $a \in R$ can be expressed as $a=u p_{1} \ldots p_{n}$, where u is a unit and the p_{i} 's are irreducible
2. If a has another factorization, say $a=v q_{1} \ldots q_{m}$, where v is a unit and the q_{i} 's are irreducible, then $n=m$ and, after reordering if necessary, p_{i} and q_{i} are associates for each i.

Remark 2.9.2. Let $a \in \mathbb{Z}[\sqrt{d}, d$ is square free integer <0. Then if $N(a)=p$ is a prime in \mathbb{Z}, then α is irreducible $(N(a)=a \bar{a})$.

Theorem 2.9.3. Let R be an integral domain

1. If R is a UFD, and $\left(a_{1}\right) \subset\left(a_{2}\right) \subset \ldots \subset\left(a_{n}\right) \subset \ldots$ is an increasing chain with $a_{i} \in R$, then $\exists n_{0} \geq 0$ such that if $n \geq n_{0},\left(a_{n}\right)=\left(a_{n_{0}}\right)$.
2. If R is a PID, then R is a UFD.

2.10 Nov. 18, 2019

Proposition 2.10.1. Let R be a UFD. Then if $a \in R$ is irreducible, a is prime.
Remark 2.10.2. To prove that a PID is a UFD, we essentially showed that if R satisfies acc on principal ideals, then R is a UFD. Then converse is also true. R is a PID iff R is a UFD and every nonzero prime ideal is maximal. We essentially proved the converse is also true.

2.10.1 Rings of Fraction

Definition 2.10.3. Let $S \subset R$ be a subset, we say S is multiplicatively closed if $0 \notin S$, $1 \in S, a, b \in S$, then $a b \in S$.

Example 2.10.4. $a \in R$ is not nilpotent, so $a^{n} \neq 0, \forall n>0$. Let $S=\left\{a^{n} \mid n \geq 0\right\}$, where $a^{n}=1 . S$ is multiplicative closed since $a^{n} a^{m}=a^{m+n}$

Example 2.10.5. Let $P \subset R$ be a prime ideal. Let $S=R-P=\{a \in R \mid a \notin P\}$. Since P is prime, $a, b \notin P, a b \notin P$. S is multiplicatively closed.

Example 2.10.6. Let R be an integral domain. Then $S=R-\{0\}$ is multiplicatively closed since $(0)=\{0\}$ is a prime ideal.

Goal: Deinfe a new ring $S^{-1} R$ whose elements are written $\frac{a}{s}, a \in R, s \in S$. Consider the set $R \times S=\{(a, s) \mid a \in R, s \in S\}$. If $(a, s),\left(a_{1}, s_{1}\right) \in R \times S$, we say $(a, s) \sim\left(a_{1}, s_{1}\right)$ if $\exists t \in S$ such that $t s_{1} a=t s a_{1}$. Claim, \sim is an equivalent relation. This is easy to prove. We let $S^{-1} R=$ Equivalence classes of pairs (a, s) in $R \times S$. Write $a / s=[(a, s)]$ equivalent class in $S^{-1} R$ of (a, s).
Theorem 2.10.7. $\left(S^{-1} R,+, \cdot\right)$ is a ring.
Note: If $s \in S, \frac{0}{s}=\frac{0}{1}$. Set $0_{S^{-1} R}=\frac{0}{1}$. Associativity of multiplication and distributive property are routine.
Remark 2.10.8. If $a \in S$, and $s \in S$, then $\frac{a}{s}$ is a unit of $S^{-1} R$. Indeed, $\frac{s}{a} \in S^{-1} R$ since $a \in S$, and $\frac{a s}{s} \frac{s}{a}=\frac{1}{1}=1_{S^{-1} R}$

If R is a domain, and $S=R=\{0\}$. Then $S^{-1} R$ is a field. Indeed, let $r \in R, s \in S$. If $f \notin 0$, then $r \notin 0$, so $r \in S=R-\{0\}$. By $(i), \frac{r}{s} \in\left(S^{-1} R\right)^{\times}$, so $S^{-1} R$ is a field.

Notation: Let $\operatorname{Frac}(R)=S^{-1} R, S=R-\{0\}$, and call $\operatorname{Frac}(R)$ the fraction field of R.

Note: If R is a domain, we don't need the definition of $S^{-1} R$.

2.11 Nov. 20, 2019

2.11.1 Lattice

Define $S^{-1} R=\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\}$ where $S \subset R$ is a multiplicative closed subset.
Proposition 2.11.1. The map $f: R \rightarrow S^{-1} R$ given by $f(a)=a / 1$ is a ring homomorphism, and $\operatorname{ker}(f)=\{r \in R \mid \exists s \in S$ such that sr=0\}. If S has no zero devisors, then f is injective. Hence, f is injective if R is an integral domain.

Example 2.11.2. let $R=\mathbb{Z}_{6}, S=(3), f: R \rightarrow S^{-1} R, f(r)=r / 1, \operatorname{ker}(f)=\left\{r \in \mathbb{Z}_{6} \mid 3 r=\right.$ $0\}=\{0,2,4\}$

Note: Ideals of $S^{-1} R$ are essentially the ideals of R which doesn't meet S.

Remark 2.11.3. Let A be a ring and let $a \in A$, unit of A. Then $\exists b \in A$ such that $b a=1$ and $b \in A^{\times}$. Since A^{\times}is a group under multiplication, then the element b is unique since it is the inverse of a. Hence we can write $b=a^{-1}$

Theorem 2.11.4 (Universal Property of localization). Let R be a ring with multiplicatively closed set S. Let $\phi: R \rightarrow A$ be a ring homomorphism such that $\phi(s) \in A^{\times}, \forall s \in S$. Then \exists ! ring homomorphism $\bar{\phi}: S^{-1} R \rightarrow A$ such that $\bar{\phi} \circ f=\phi$. In fact, $\phi(\bar{r} / s)=\phi(s)^{-1} \phi(r)$.

Let R be a ring (assume commutativity). Let $R\left[x_{1}, \ldots, x_{n}\right]=\left\{\sum a_{i} x^{i} \mid a_{i} \in R\right\}$ If $p=\sum a_{i} x^{i}, q=\sum b_{i} x^{i} \in R\left[x_{1}, \ldots, x_{n}\right]$, then we define addition and multiplication as we do in one variable polynomial. then $\left(R\left[x_{1}, \ldots, x_{n}\right],+, \cdot\right)$. If $a_{1}, \ldots, a_{n} \in S$, and $\phi: R \rightarrow S$ is a ring homomorphism, \exists ! evaluation ring homomorphism, $e_{a}: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow S$, such that $e_{a}\left(\sum a_{i} x^{i}\right)=\sum \phi\left(a_{i}\right) a^{i}$, where $a^{i}=a_{1}^{i_{1}} \ldots a_{n}^{i_{n}}$. Verifying this is like te case $n=1$, as a consequence, $R\left[x_{1}, \ldots, x_{n}\right] \cong R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$. Hence $R\left[x_{1}, \ldots, x_{n}\right] \cong R\left[x_{1}\right] \ldots\left[x_{n}\right]$. Hence is R is a integral domain, $R\left[x_{1}, \ldots, x_{n}\right]$ is likewise.

Let R be a UFD. Let $F=\operatorname{frac}(r)$ and regard $R \subset F$ via $f: R \rightarrow F$. Let $\left\{p_{i} \mid i \in I\right\}$ be the nonzero principal prime ideals of r, for each p_{1}, choose a prime p_{i} of R such that $p_{i}=\left(p_{i}\right) . p_{i}$ is unique up to a unit. If $\left(p_{i}\right)=\left(p_{j}\right)$, then $p_{i}=p_{j}$ by choice. Note each p_{j} is irreducible. Let $P=\left\{p_{i} \mid i \in I\right\}$. If $R=\mathbb{Z}, P=\{$ primes $p>0\}$. If $R=k[x], k$ is a field, take $P=\{f \mid f$ monic irreducible polynomial $\}$.

Remark 2.11.5. Let $p \in P$, if $\alpha \in F^{\times}$, then $\alpha=p^{e} a / b$, with $a, b \in R, p \nmid a, p \nmid b$. And $e \in \mathbb{Z}, e$ is independent of choices.

Definition 2.11.6. Set $\operatorname{ord}_{p}(\alpha)=e . \forall \alpha \in F^{\times}, \operatorname{ord}_{p}(\alpha)=0$ except for a finite set of p, so we can define $c(\alpha)=\prod_{p \in P} p^{\text {ord }_{p}(\alpha)}$. Thus $e(\alpha)=u \alpha$, somce $u \in R^{\times}$. Set $\operatorname{ord}_{p}(0)=\infty$, $\forall k \in \mathbb{Z}$.

2.12 Nov. 22, 2019

Definition 2.12.1. If $f \in R[x]-\{0\}$, then we say f is primitive if $c(f)=1$.
Remark 2.12.2. Let $f \in F[x]-\{0\}$. Then $f=c(f) f_{0}$, where f_{n} is primitive and in $R[x]$
Theorem 2.12.3 (Gauss Lemma). Let R be a UFD, $F=\operatorname{frac}(R)$ let $f, g \in F[x]-\{0\}$. Then $c(f g)=c(f) c(g)$.

Proof. Let $f=c(f) f_{0}, g=c(g) g_{0}$ with f_{0}, g_{0} primitive. Then $f g=c(f) c(g) f_{0} g_{0}$, so $c(f g)=$ $c(f) c(g) c\left(f_{0} g_{0}\right)$. Suffices to show that if f_{0}, g_{0} are primitive in $R[x]$, then $c\left(f_{0} g_{0}\right)=1$. Since f_{0} is primitive in $R[x], \exists$ prime p in $P, p \nmid f_{0} . \pi_{p}\left(f_{0}\right) \neq 0$. Similarly, $\forall p \in P, \pi_{p}\left(g_{0}\right) \neq 0$. But $\pi\left(f_{0} g_{0}\right)=\pi\left(f_{0}\right) \pi\left(g_{0}\right) \neq 0$ since $R /(p)[x]$ is a domain. Thus $\forall p \in P, p \nmid f_{0} g_{0}$, so $p \nmid c\left(f_{0} g_{0}\right)$ so $c\left(f_{0} g_{0}\right)=1$.

Proposition 2.12.4. Let $f \in R[x]$ and assume $\operatorname{deg}(f)>0$. Then f is irreducible in $R[x]$ iff R is primitive in $F[x]$.

Theorem 2.12.5. Let R be a UFD, then $R[x]$ is a UFD.
Proof. Let $f \in R[x]-\{0\}$. But $f \in F[x]-\{0\}$, and $F[x]$ is a PID. So $f=a f_{1} \ldots f_{n}$ with $a \in F^{\times}, t_{1} \ldots, t_{d} \in F[x]-\{0\}$ irreducible. By a remark, $t_{i}=c_{1} f_{i}$ with $c_{i}=c\left(t_{i}\right)$, thus $f=a c_{1} \ldots c_{d} f_{1} \ldots f_{d}$. But each $f_{i}=\frac{1}{c_{1}} t_{i}$ is irreducible in $F[x]$ since $\frac{1}{c_{i}} \in F^{\times}$. And each f_{i} is primitive in $R[x]$, so each f_{i} is irreducible in $R[X]$. Thus $f=a c f_{1} \ldots f_{d}$, with $c=c_{1} \ldots c_{n}$. But $c(f)=c(a c) c\left(f_{1} \ldots f_{n}\right)$, and by Gauss lemma and easy induction, $c\left(f_{1}, \ldots f_{n}\right)=1$. Thus $c(f)=c(a c)=u a c$. So $a c \in R$. Since $a c \in R-\{0\}$, we can write $a c=u q_{1} \ldots q_{d}$ with $u \in R^{\times}, q_{1}, \ldots, q_{n}$ irreducibles of R. Each irreducible $q_{i} \in R$.

Corollary 2.12.6. If R is a UFD, then $R\left[x_{1}, \ldots, x_{n}\right]$ is a UFD
Proof. By induction.
Example 2.12.7. $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $F\left[x_{1}, \ldots, x_{n}\right]$ are UFD's.
Note: $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is not a PID if $n \geq 1$, and $F\left[x_{1}, \ldots, x_{n}\right]$ is not a PID if $n \geq 2$.

2.13 Nov. 25

Theorem 2.13.1 (Eisenstein Criterion). Let R be a UFD with quotient field F, and let $f(X)=a_{n} X^{n}+\ldots+a_{1} X+a_{0}$ be a polynomial in $R[X]$, with $n \geq 1$ and $a_{n} \neq 0$. If p is prime in R, p divides a_{i} for $0 \leq i<n$, but p does not divide a_{n} and p^{2} does not divide a_{0}, then f is irreducible over F. Thus, if f is primitive then f is irreducible over R.

Example 2.13.2. Let p be a prime. Let $f(x)=1+x+\ldots x^{p-1}$. Then f is irreducible in $\mathbb{Q}[x]$. To see this, we show that $f(x+1)$ is eisenstein, And $f(x)$ is irreducible in $\mathbb{Q}[x]$ iff $f(x+1)$ is irreducible in $\mathbb{Q}[x]$.

Proof. Let R be a commutative ring, and let $a \in R$. Let $T_{a}: R[x] \rightarrow R[x]$ be the unique ring homomorphism such that $T_{a}(r)=r, \forall r \in R$, and $T_{a}(x)=x+a$. If $b \in R$, then $T_{a} T_{b}(r)=r, \forall r \in R$ And $T_{a} T_{b}(x)=x+a+b . T_{a+b}=T_{a} \circ T_{b}$ on R and x, and sine these generate $R[x]$ as a ring, then $T_{a+b}=T_{a} \circ T_{b}$ on $R[x]$. But $T_{0}=I d_{R[x]}$, so $T_{a}: R[x] \rightarrow R[x]$ is an isomorphism of $R[x]$. Hence $f(x) \in R[x]$ is irreducible iff $T_{a} f(x)$ is irreducible.

Example 2.13.3. Let $f=f(x, y)=y^{5}-x^{3} y^{4}+x^{2} y+2 x y$ in $\mathbb{C}[x, y]$. Then f is irreducible in $\mathbb{C}[x, y]$.

Proof. Regard $f \in R[y]=\mathbb{C}[x][y]=\mathbb{C}[x, y]$, where $R=\mathbb{C}[x]$. Then $f=y^{5}+\left(-x^{3}\right) y^{4}+$ $\left(x^{2}\right) y+(2 x) y . R$ is a UFD, and x is irreducible in R. So x is prime in R. And f is Eisenstein for the prime x. Let $F=\mathbb{C}[x]=\operatorname{Frac}(\mathbb{C}[x])$. Therefore, f is irreducible in $F[x]=\mathbb{C}(X)[y]$. But f is primitive in $R[y]$ since $a_{5}=1$, so f is irreducible in $R[y]=\mathbb{C}[x, y]$.

Example 2.13.4. $f=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ is irreducible in $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$

Proof. Let $R=\mathbb{C}\left[x_{2}, x_{3}\right]$, so $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]=R\left[x_{1}\right], f=x_{1}^{2}+a_{0}$. Note R is a UFD. Find a prmitive R so that f is Eisenstein for p. Our $a_{0}=\left(x_{2}+i x_{3}\right)\left(x_{2}-i x_{3}\right)$, and $x_{2}+i x_{3}$ is irreducible in R since it is prime. Then f is Eisenstein for $p=x_{2}+i x_{3}$, and f is irreducible in $F\left[x_{1}\right]$ where $F=\mathbb{C}\left(x 2, x_{3}\right) . f$ is irreducible in $R\left[x_{1}\right]$.

2.13.1 Characteristic of a ring

Let R be a ring. Consider the unique ring homoomrphism $\phi: \mathbb{Z} \rightarrow R, \phi(n)=n \cdot 1_{R}$. Then $\operatorname{ker}(\phi)$ is a proper ideal of \mathbb{Z}, so $\operatorname{ker}(\phi)=n \mathbb{Z}, n \neq 1, n \geq 0$

Definition 2.13.5. The characteristic $\operatorname{Char}(R)$ of R is n.
In $R, n \cdot a=0, \forall a \in R$, since $n \cdot a=(1 n) a=0 a=0$. If R is an integral domain, then $\operatorname{Char}(R)=$ a prime or 0 .

Example 2.13.6. $\operatorname{Char}(\mathbb{Z} / n \mathbb{Z})=n, \forall n \neq 1, \operatorname{Char}(R[x])=\operatorname{Char}(R)$.
Remark 2.13.7. If $\operatorname{Char}(R)=p$ is prime, and $a, b \in R$, and $a b=b a$, then $(a+b)^{p}=a^{p}+b^{p}$.

Chapter 3

Module Theory

3.1 Dec. 2, 2019

Definition 3.1.1. Let R be a ring, not necessarily commutative. A (left) R-module is an abelian group $(M,+)$ with a map $R \times M \rightarrow M$, with $(r, m) \mapsto r \cdot m$, such that $\forall s, r \in R$, $m, r \in M$,

1. $r(m+n)=r m+r n$
2. $(r+s) m=r n+s m$
3. $(r s) m=r(s m)$
4. $1 m=m$

Remark 3.1.2. If R is a field, a R-module is the same as a vector space.
Remark 3.1.3. \mathbb{Z} modules are same as abelian groups. Indeed, given a \mathbb{Z}-module $(M,+)$ is an abelian group structure. Conversely, if $(M,+)$ is an abelian group, we define a map $\mathbb{Z} \times M \rightarrow M$ by $(m, n) \mapsto m n=n+\ldots+n$ if $n>0$, setting $0 m=0, \forall m \in M$ and if $n<0$, set $n m=(-n) m$. Check this makes M a \mathbb{Z}-module.

Proposition 3.1.4. let $0_{R}=0$ in $R, 0_{M}=0$ in M. Then $\forall r \in R, m \in M$

1. $r 0_{M}=0_{M}$
2. $0_{R} m=0_{M}$
3. $(-r) m=r(-m)$
4. if $r \in R^{\times}$and $r m=0_{M}$, then $m=0_{M}$

Let $R^{n}=\left\{\left(x_{1}, \ldots, x_{n} \mid x_{i} \in R\right\}, R^{n}\right.$ is an abelian group via component wise operations. If $r \in R, x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, let $r x=\left(r x_{1}, \ldots, r x_{n}\right)$ can check R^{n} is a R-module. If $n=1, R^{n}=R$ which is a R-module by $(r, x) \mapsto r x$.

Definition 3.1.5. Let M be a R-module, a subset N of M is called a submordule if N is a subgroup of $(M,+)$, and $\forall r \in R, x \in N, r x \in N$. Can check N itself is a R-module.

Example 3.1.6. $R=\mathbb{Z}, N=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2} \mid x_{1}+x_{2} \in 2 \mathbb{Z}\right\}$. Can check easily that N is a submodule.

Remark 3.1.7. If R is a ring, then the left ideals I of R are the submodules of R. Indeed, if $I \subset R$ is an left ideal, I is a subgroup of $(R,+)$, and if $r \in R$ and $x \in I$, then $r x \in I$ by definition of left ideal, so I is a submodule. Converse is similar. If R is commutative, submodules are the same as ideals.

Definition 3.1.8. Let M, N be R-modules, a map $f: M \rightarrow N$ is called a R-module homomorphism, if $f(x+y)=f(x)+f(y), f(r x)=r f(x), \forall r \in R, x, y \in M$.

Remark 3.1.9. Let $Q \subset M$ be a submodule, $f: M \rightarrow N$ be an R-module homomorphism. Then $f(Q)$ is a submodule of N. Indeed, $f(Q)$ is a subgroup of N by 1.3. If $r \in R, y \in f(Q)$, $y=f(x)$, some $x \in Q$, so $r y=r f(x)=f(r x) \in f(Q)$.

Let $P \subset N$ be a submodule, and let $f: M \rightarrow N$ be a R-module homomorphism. Let $f^{-1}(P)=\{x \in M \mid f(x) \in P\}$. Then $f^{-1}(P)$ is a submodule of $M, f^{-1}(P)$ is a subgroup of M by group theory. And if $x \in f^{-1}(P)$, and $r \in R$, then $f(r x)=r f(x) \in P$ since P is a submodule, so $r x \in f^{-1}(P)$.

Remark 3.1.10. If M is a R-module, then $\{0\}$ and M are always submodules. Hence if $f: M \rightarrow N$ is a R-module homomorphism, then $\operatorname{Im}(f)=f(M)$ is a submodule of N and $\operatorname{ker}(f)=f^{-1}(\{0\})$ is a submodule of M.

Notation: If M, N are R-modules, then $\operatorname{Hom}_{R}(M, N)=\{f: M \rightarrow N \mid f$ is a R-module homomorphism $\}$.

Example 3.1.11. Let $R=F[x, y], F$ is a field, let $N=(x, y)=\{r x+s y \mid r, s \in R\}=$ ideal generated by x, y. We can define $f: R^{2} \rightarrow N$ by $f(r, s)=r x+s y$. Can check that $f \in \operatorname{Hom}_{R}\left(R^{2}, N\right), f$ is surjective.
Remark 3.1.12. If M is a R-module, and $v \in M$. Then $R v=\{r v \mid r \in R\}$ is a submodule of M. Further, $f: R \rightarrow R v, f(r)=r v$ is a R-module homomorphism.

Definition 3.1.13. $A n n_{R}(v)=\{r \in R \mid r v=0\}=\operatorname{ker}(f)$.

3.1.1 Direct products and direct sums

Let $\left\{M_{i}\right\}$ be a family of R-modules. Let $\prod M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in M_{i}\right\}=$ set theory product of M. Define $\forall j \in I, p_{j}: \prod M_{i} \rightarrow M_{j}$, where $p_{j}\left(\left(x_{i}\right)\right)=x_{j}$. If $I=\{1 \ldots, n\}, \prod M_{i}=$ $M_{1} \times \ldots \times M_{n}$.

Let $\bigoplus M_{i}=\left\{\left(x_{i}\right) \in \prod M \mid x_{i}=0, \forall i\right.$ outside of finite subset of $\left.I\right\}$. If $I=\mathbb{Z}_{>0}$, and each $M_{i}=R$, then $\prod M_{i}=\left\{\left(x_{i}\right) \mid x_{i} \in R\right\}$ and $\bigoplus M_{i}=\left\{\left(x_{1}, \ldots, x_{n}, 0, \ldots\right) \mid x_{i} \in R, \exists n_{0}>0\right.$ such that $\left.x_{n}=0 \forall n \geq n_{0}\right\}$

Note: $\forall I, \bigoplus M$ is a submodule of $\prod M_{i}$. Indeed, if $x=\left(x_{i}\right) \in \prod M_{i}$, set $\operatorname{supp}(x)=$ $\left\{i \in I \mid x_{i} \neq 0\right\}$, then $x \in \bigoplus M \Longleftrightarrow \operatorname{supp}(x)$ is finite. If $x, y \in \prod M$ and $r \in R$, then $\operatorname{supp}(X+y) \subset \operatorname{supp}(x) \cup \operatorname{supp}(y), \operatorname{supp}(r x) \in \operatorname{supp}(x)$. Hence $\bigoplus M$ is a submodule of $\prod M$. Further $\bigoplus M_{i}=\prod M_{i}$ iff I is finite.

Universal property of $\prod M_{i}$. Suppose we are given a R-module N and $\forall j \in I$, we are given $f_{j}: N \rightarrow M_{j}$. Then $\exists!R-$ module homomrophism $N \rightarrow \prod M_{i}$ such that $p_{j} \circ f_{j}, \forall j \in I$ if $y \in N, f(y)=\left(f_{i}(y)\right)$

Universal property of $\bigoplus M_{i}$ for $j \in I$, define $q_{j}: M_{j} \rightarrow \bigoplus M_{i}$ by $q_{j}(x)=\left\{\left(X_{j}\right) \mid x_{i}=\right.$ $\left.0, x_{j}=x\right\}$ then q_{j} is a R-module homomorphism. Given $g_{j}: M_{j} \rightarrow N, \forall j$. Then \exists ! R-module homomrophism $g: N \rightarrow \bigoplus M_{i}$ such that $g \circ g_{j}=q_{j}$.

3.2 Dec.4, 2019

3.2.1 Quotient

Let M be a R-module, with submodule N. Then $M / N=\{x+N \mid x \in M\}$ is a R-module via action $(r, x+N) \rightarrow r x+N$, for $r \in R, x \in M$. Well-defined: if $x+N=y+N$, then $y=z+x$, where $z \in N$. And $r(y+N)=r(x+z)+N=r x+r z+N=r x+N=r(x+N)$. Checking M / N is a R-module is routine. $\pi: M \rightarrow M / N, \pi(x)=x+N$ is a R-module homomorphism. $\operatorname{ker}(f)=N$ and π is surjective.

Example 3.2.1. $R=\mathbb{Z}, M=\mathbb{Z}^{2} . N=\{(x, y) \mid x+y \in 2 \mathbb{Z}\}$.
Remark 3.2.2. Let M, N, P be R-modules, let $f \in \operatorname{Hom}_{R}(M, N), g \in \operatorname{Hom}_{R}(N, P)$. Then $g \circ f \in \operatorname{Hom}_{R}(M, R)$. Check is routine

3.2.2 Isomorphism Theorems

Let M, N, P be R-modules, $N \subset M$ is a submodule. Let $\operatorname{Hom}_{R}(M, P)_{N}=\left\{f \in \operatorname{Hom}_{R}(M, P) \mid N \subset\right.$ $\operatorname{ker}(f)$. Define $\pi^{*}: \operatorname{Hom}_{R}(M / N, P) \rightarrow \operatorname{Hom}_{R}(M, P)$ by $\pi^{*}(f)=f \circ \pi \in \operatorname{Hom}_{R}(M, P)$ by last remark.

Theorem 3.2.3. $\pi^{*}: \operatorname{Hom}_{R}(M / N, P) \rightarrow \operatorname{Hom}_{R}(M, P)_{N}$ is a bijection. In particular, if $g \in \operatorname{Hom}_{R}(M, P)_{N}$ then $g=\pi^{*}(\bar{g})$, for unique $\bar{g} \in \operatorname{Hom}_{R}(M / N, P)$, and $\bar{g}(x+N)=$ $g(x), \forall x \in M$.

Theorem 3.2.4 (First Isomorphism Theorem). If $f \in \operatorname{Hom}_{R}(M, P)$ and $K=\operatorname{ker}(f)$, then $\bar{f}: M / N \rightarrow \operatorname{im}(f)$ is a R-module isomorphism, where $\bar{f}(x+K)=f(x)$. If f is surjective, then M / K is isormophic to P.

Let $\left\{M_{i}\right\}$ be a family of submodules of $M . \forall j \in I$, we have $\alpha_{j}: M_{j} \rightarrow M, \alpha_{j}(x)=x$. By universal property of $\bigoplus M$, we get $!R$-module homomorphism $\alpha: \bigoplus M_{i} \rightarrow M, \alpha((x))=$ $\sum x_{i}$. Let $\sum M_{i}=\operatorname{im}(\alpha)$, so $\sum M=\left\{x_{1}+\ldots+x_{i}\right\}$. Conclude that $\sum M_{i}$ is a submordule of M as image of R-modules.

If S is also a submodule of M, then $N+S=\{x+y \mid x \in N, y \in S\}$. As above, $N+S$ is a submodule. So is $N \cap S$.

Theorem 3.2.5 (Second Isomorphism Theorem). $(N+S) / N \cong S /(S \cap N)$
Theorem 3.2.6 (Third Isomorphism Theorem). Let $N \subset S$ submodules of M. Then $M / N \cong(M / N) /(S / N) . S / N=\pi(S), \pi: M \rightarrow M / S$.

Theorem 3.2.7 (Correspondence theorem). Let $S(M)$ be the submodules of M. Let $S_{N}(M)$ be the submodules P of M such that $N \subset P ;$ Let $\pi: M \rightarrow M / N, \pi(x)=x+N$. Then π^{-1} : $S(M / N) \rightarrow S_{N}(M), P \rightarrow \pi^{-1}(P)$ is bijective. Its inverse is $Q \rightarrow \pi(Q)$ for $Q \in S_{N}(M)$.

Recall: If M is a R-module, and $r \in M, A n n_{R}(x)=\{r \in R \mid r x=0\} . \phi_{v}: R \rightarrow R v$, $\phi_{v}(r)=r v$ is a R-module homormophism and $\operatorname{ker}\left(\phi_{v}\right)=A n n_{R}(v)$. Note: $A n n_{R}(v)$ is a left ideal of R.

Let $A n n_{R}(M)=\{r \in R \mid r u=0, \forall u \in M\}=\cap A n n_{R}(u) \cdot A n n_{R}(M)$ is a 2-sided ideal.
Lemma 3.2.8. 1. $R / A n n_{R}(v) \cong R_{v}$ as a R-module
2. If R is commutative, $A n n_{R}(v)=A n n_{R}(R v)$ so $R / A n n_{R}(R v) \cong R v$

Definition 3.2.9. A R-module M is cyclic if $\exists v \in M$ such that $M=R v$.
Example 3.2.10. R ring, $I \subset R$ left ideal, then $R / I=R(1+I)$ is cyclic. $A n n_{R}(1+I)=J$.
Example 3.2.11. F field, $R=M(n, F)$. Take $M=F^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in F\right\}$. R acts on M by $(A, v) \rightarrow A(v) . M=R e_{n} . A n n_{R}\left(e_{n}\right) \neq A n n_{R}(M)$.
Definition 3.2.12. Let M be a R-module, let $S=\left\{x_{i}\right\}$ be a subset of M. We say M is linearly independent over R if for $n \geq 0, r_{i_{1}}, \ldots, r_{i_{n}}, r_{i_{1}} x_{i_{1}}+\ldots+r_{i_{n}} x_{i_{n}}=0$ if each $r_{i_{j}}=0$ where $i_{1}, \ldots, i_{n} \in I$. We say S spans M over r if $M=\sum R x_{i}$. We say S is a basis over M if S spans M and S is linearly independent.
Remark 3.2.13. A maximal linearly independent set need not be a basis.
Example 3.2.14. $R=\mathbb{Z}, M=R, S=\{2\}$ is maximal linearly independent over \mathbb{Z}, but $2 R=2 \mathbb{Z} \neq \mathbb{Z}$ so S doesn't span.

3.3 Dec. 6, 2019

Definition 3.3.1. M is a finitely generated R-module if \exists a finite S that spans M over R.
Definition 3.3.2. We say M is a free R-module if M has a basis.
Remark 3.3.3. Let S be a R-basis of M. Let $R^{\oplus I}=\left\{\left(r_{i}\right) \mid r_{i} \in R\right.$ and $r_{i}=0$ for all i outside of a finite subset of $I\} . R^{\oplus I}=\bigoplus R_{i}$ we define $\alpha_{S}: R^{\oplus I} \rightarrow M$ by $\alpha\left(\left(r_{i}\right)\right)=\sum r_{i} y_{i}$.

Claim: α_{S} is a R-module isomorphism, i.e. a free R-module is exactly a module isomorphism to a direct sum of copies of R. Let $T \subset M$ be a subset. Define $\alpha_{T}: R^{\oplus I} \rightarrow$ M by $\alpha_{T}\left(\left(r_{i}\right)\right)=\sum r_{i} y_{i} . \operatorname{Im}\left(\alpha_{I}\right)=\sum R y_{i}$, so α_{T} is surjective iff T spans M over R. $\operatorname{ker}\left(\alpha_{T}\right)=\left\{\left(r_{i}\right) \mid \alpha_{T}\left(\left(r_{i}\right)\right)=0\right\}=\left\{\left(r_{i}\right) \mid \sum r_{i} y_{i}\right.$. Hence, α_{T} is injective iff $\sum r_{i} y_{i}=0$ then $r_{i}=0$ iff T is lineraly independent in R.

Example 3.3.4. Let $I=\{1 \ldots, n\}, S=\left\{x_{r_{1}}, \ldots, x_{r_{n}}\right\}, \alpha_{S}: R^{n} \rightarrow M, \alpha_{S}\left(r_{1}, \ldots, r_{n}\right)=$ $\sum r_{i} x_{i}$. By above, if S is a basis of M, α_{S} is an isomoprhism. R^{n} has basis $\left\{e_{1}, \ldots, e_{n}\right\}$. A basis of M determines an isomorphism from R^{n} to M by $\alpha_{S}\left(e_{i}\right)=x_{i}$.

Proposition 3.3.5. Let M be a R-module, with submorudles $\left\{M_{i}\right\}$, define $\alpha: \bigoplus M_{i} \rightarrow M$ by $\alpha\left(\left(x_{i}\right)\right)=\sum x_{i}$ and note α is a R-module homomorphism by universal property $\bigoplus M_{i}$, $\alpha_{i}: M_{i} \rightarrow M_{j}$ and α is R-module homomorphism induced from then

1. α is surjective iff $M=\sum M_{i}$
2. α is injective iff $\forall j \in I, M_{j} \cap \sum_{i \neq j} M_{i}=0$
3. α is an isomorphism iff $M=\sum M_{i}$ and (2) is satisfied.

3.3.1 Linear Algebra over Integral Domains

Assume R is a domain, let $F=\operatorname{frac}(R) \cdot R^{n} \subset F^{n}$ since $R \subset F$
Example 3.3.6. $\mathbb{Z}^{n} \subset \mathbb{Q}^{n}$
Remark 3.3.7. If $V \subset \mathbb{R}^{n}$, let $F V=\left\{\sum_{k=1}^{\infty} \alpha_{k} u_{k} \mid \alpha_{k} \in F, u_{k} \in V\right\}$. Then $F V$ is a F-vector space over F. Indeed, F is closed under addition and F scalar multiplication. We call $F V$ the F-vector space generated by V, and it is the smallest F-vector space containing V.

Definition 3.3.8. $r k(V)=r k_{R}(V)=\operatorname{dim}_{F}(F V)$ since $F V \subset F^{n}, \operatorname{dim}_{F}(F V) \leq n$, so $r k(V) \leq n$.

Lemma 3.3.9. 1. Let $S=\left\{s_{i}\right\}$ be in R^{n}. Then S is linearly independent over R in R^{n} iff S is linearlyh independent over F in F^{n}
2. Let M_{1}, \ldots, M_{k} be R submodules of R^{n}, then $M_{1}+\ldots+M_{k}$ is direct in R^{n} iff $F M_{1}+$ $\ldots+F M_{K}$ is direct in F^{n}

Lemma 3.3.10. Let $M \subset R$ be a R-submodule, let $S \subset M$. Then S is a maximal linearly independent set for R iff S is a maximal linear independent set over F in $F M$.

Lemma 3.3.11. 1. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ spans M in R^{n}, then S spans $F M$ in F^{n}
2. $F\left(M_{1}+\ldots+M_{k}\right)=F M_{1}+\ldots+F M_{k}$

Consequence: If $M \subset R^{n}$ is a submodule and M is free with basis S, then by lemmas, $F M$ is free with basis $S, r k(M)=\operatorname{dim}_{F}(F M)=|S|$. In particular if T is another basis of M, then $|T|=|S|$.

3.4 Dec. 9, 2019

Definition 3.4.1. Let M be a free R-module, and let $\alpha: M \rightarrow R^{n}$ be a R-module isomorphism. If $N \subset M$ is a submodule, let $r k(N)=r k(\alpha(N))=\operatorname{dim}_{F} F \alpha(N)$.

Proposition 3.4.2. Let $\alpha: M \rightarrow R^{n}$ and $\beta: M \rightarrow R^{S}$ be R-module isomorphism. Then $r k(\alpha(N))=r k(\beta(N))$ by definition $r k(N)$ is independent of choices.

Proof. Let $\gamma=\beta \circ \alpha^{-1}: R^{n} \rightarrow R^{S}$ be R-module isormophism. Let $S \subset \alpha(N)$ to be maximal R linearly independent. Then $\gamma(S) \subset \beta(N)$ is maximally R-linearly independent. By lemma 3 from last time, S is maximally linear independent set in $F \alpha(N)$ and $\gamma(S)$ is a maximal F-linear independent set in $F \beta(N), \ldots, r k(\alpha(N))=|S|=|\gamma(S)|=r k(\beta(N))$.

Remark 3.4.3. Let $N_{1}, N_{2} \subset M$ be submodule of a free finitely generated R-module M. Assume $N_{1}+N_{2}$ is directed. Then

1. $r k\left(N_{1}+N_{2}\right)=r k\left(N_{1}\right)+r k\left(N_{2}\right)$
2. if N_{1} is free with basis $x_{1}, \ldots, x_{k} N_{2}$ is free with basis y_{1}, \ldots, y_{l}, then $N_{1}+N_{2}$ is free with basis $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}$

3.4.1 Linear maps

Let M, N be R-modules. Recall $\operatorname{Hom}_{R}(M, N)$.
Claim: $\operatorname{Hom}_{R}(M, N)$ is a R-module. If $f, g \in \operatorname{Hom}_{R}(M, N)$, define $f+g: M \rightarrow N$ by $(f+g)(x)=f(x)+g(x)$ for $x \in M$ if $r \in R$, set $(r \circ f)(x)=r(f(x))$ for $x \in M$, $f \in \operatorname{Hom}_{R}(M, N)$. Once can check this makes $\operatorname{Hom}_{R}(M, N)$ into a R-module. One step is $(r \circ f)(a x)=a(r \circ f)(x)$.

Example 3.4.4. Let M be a free R-module with basis x_{1}, \ldots, x_{n}. Then if $x \in M, r=$ $\sum r_{i} x_{i}$ for $!r_{1}, \ldots, r_{n}$. Define for $j=1, \ldots, n, q_{j}: M \rightarrow R$ by $q_{j}\left(\sum r_{j} x_{i}\right)=r_{j}$.

We call $\operatorname{Hom}_{R}(M, R)=M^{\checkmark}$ the dual R-module to M. Conclude M free of rank n implies M^{\checkmark} is a free module of rank n.

Theorem 3.4.5. Let R be a PID. let M be a free R module of rank n. Let $M^{\prime} \subset M$ be a submodule. Then

1. M^{\prime} is free of rank $q \leq n$.
2. if $M^{\prime} \neq\{0\}, \exists$ a basis x_{1}, \ldots, x_{n} of M and nonzero $r_{1}, \ldots, r_{q} \in R$ such that $r_{1} x_{1}, \ldots, r_{q} x_{q}$ is a basis of M and $r_{1}\left|r_{2}\right| \ldots \mid r_{q} \in R$.

Remark 3.4.6. If R is not a PID, this is false. Ex: $R=F[x, y], M^{\prime}=(x, y)$. Then M is free of rank 1 , but M^{\prime} is not free. since any subset S with >1 element is not r linearly independent, and $M^{\prime}=R v$ as M is not a principal ideal.

3.5 Dec. 11, 2019

Corollary 3.5.1. Let N be a finitely generated R-module, with R a PID. Then $\exists n, q \in \mathbb{Z}_{>0}$, with $n \geq q$, and $a_{1}, \ldots, a_{q} \in R$ such that $a_{1}\left|a_{2}\right| \ldots \mid a_{q}$ such that $N \cong R /\left(a_{1}\right) \oplus \ldots \oplus$ $R /\left(a_{j}\right) \oplus R^{n-q}$.

Corollary 3.5.2. If G is a finite abelian group. Then $\exists n_{1}\left|n_{2}\right| \ldots \mid n_{q}$ in \mathbb{Z} such that $G \cong \mathbb{Z}_{n_{1}} \oplus \ldots \oplus \mathbb{Z}_{n_{q}}$

Remark 3.5.3. Solution to problem to Problem set 1. Let G be a finite abelian group, let $m=l c m\left(|a|_{a \in G}\right)$, then $\exists b \in G$ such that $|b|=m$.

