Modular Forms

Ting Gong

May 18, 2020

1 Dimension of Modular Forms

Definition 1.1. A modular form of weight k for $SL(2, \mathbb{Z})$ is a holomorphic function f on \mathcal{H} satisfying $f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$ where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$, and is holomorphic at the cusp ∞ .

Since $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{Z}), f(z+1) = f(z)$. Then we have a Fourier expansion $f(z) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n z}$. Below we denote $q = e^{2\pi i n z}$.

Definition 1.2. A modular form that vanishes at ∞ is called a *cusp form*.

We denote the space of modular forms of weight k for $\Gamma(1) = \mathrm{SL}(2,\mathbb{Z})$ as $M_k(\Gamma(1))$ and the space of cusp forms as $S_k(\Gamma(1))$.

Definition 1.3. An automorphic function for Γ is a meromorphic function f on \mathcal{H} and at ∞ such that $f\left(\frac{az+b}{cz+d}\right) = f(z)$

Then f is a meromorphic function on the compact Riemann surface $\Gamma(1)/\mathcal{H}^*$. If f doesn't have a pole, then by Louiville theorem and maximal modulus principle, f is constant.

Notice if $f_1, f_2 \in M_k(\Gamma(1))$, then

$$\frac{f_1}{f_2} \left(\frac{az+b}{cz+d} \right) = \frac{(cz+d)^k f_1(z)}{(cz+d)^k f_2(z)} = \frac{f_1}{f_2}$$

Therefore, f_1/f_2 is automophic.

Proposition 1.4. Let X be a compact Riemann surface, $P_1, \ldots, P_n \in X$, let r_1, \ldots, r_n be positive integers. Let V be the vector space of meromorphic functions on X, which are holomorphic besides possibly at P_m , and which are holomorphic or else have poles of order at most r_m at P_m . Then the space V has dimension at most $r_1 + \ldots + r_m + 1$.

Proof. Let $r = r_1 + \ldots + r_m$, pick a coordinate function $t = t_j$ in a neighborhood of P_j with respect to which P_j is the origin. If $\phi \in V$, it has Laurent expansion, $\phi(t) = a_{j,-r_j}t^{-r_j} + a_{j,-r_j+1}t^{-r_j+1} + \ldots$ We associate ϕ with $v \in \mathbb{C}^r$ whose entries are the Taylor coefficients. If $\phi_1, \ldots, \phi_N \in V, N > r$, then c_1, \ldots, c_N are not all zero with $\sum c_j v_j = 0$. Thus $\sum c_j \phi_j$ has no poles. Then since above is meromorphic on a compact Riemann surface, it is constant. Thus any vector subspace of V having dimension greater than r contains a constant function. Thus dim $V \leq r + 1$.

Proposition 1.5. The space $M_k(\Gamma(1))$ is finite dimensional.

Proof. Let $f_0 \in M_k(\Gamma(1))$ be nonzero. Let X be the compactification of $\Gamma(1)/\mathcal{H}$. Let P_1, \ldots, P_m be zeroes of f_0 , let r_1, \ldots, r_m be the orders of zeroes of f_0 at these points. If $f \in M_k(\Gamma(1))$, then by our remark before, f/f_0 is automorphic. Moreover, $f \mapsto f_0$ is an isomorphism of $M_k(\Gamma(1))$ and V in the last proposition. Thus $M_k(\Gamma(1))$ is finite dimensional.

2 Jacobi's Triple Product Formula

Definition 2.1. Let k be even, $k \ge 4$, the *Eisenstein series* is defined as

$$E_k(z) = \frac{1}{2} \sum_{m,n \in \mathbb{Z}, (m,n) \neq (0,0)} (mz+n)^{-k}$$

We notice that the Eisenstein series is absolutely convergent since

$$E_k(z) \le \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (mz+n)^{-k} dm dn = 4 \int_0^{\infty} \int_0^{\infty} (mz+n)^{-k} dm dn < \infty$$

since $k \ge 4$, and after integration, the $k - 2 \ge 2$.

Definition 2.2. Let $r \in \mathbb{C}$, the *divisor sum* is defined as

$$\sigma_r(n) = \sum_{d|n} d^r$$

Proposition 2.3. The Eisenstein series is a modular form.

Proof. We first show the first condition.

$$E_k\left(\frac{az+b}{cz+d}\right) = \frac{1}{2} \sum_{m,n\in\mathbb{Z},(m,n)\neq(0,0)} (m\left(\frac{az+b}{cz+d}\right)+n)^{-k}$$

= $(cz+d)^k \frac{1}{2} \sum_{m,n\in\mathbb{Z},(m,n)\neq(0,0)} (m(az+b)+n(cz+d))^{-k}$
= $(cz+d)^k \frac{1}{2} \sum_{m,n\in\mathbb{Z},(m,n)\neq(0,0)} ((am+cn)z+(mb+nd))^{-k}$

Since c, d are coprime, $(m, n) \mapsto (ma + nc, mb + nd)$ permutes $\mathbb{Z} \times \mathbb{Z}$. Thus we see $E_k(z)$ satisfies the first condition of a modular form. It suffices to show that it is holomorphic at ∞ . To do this, we compute its Fourier expansion. When m = 0, $E_k(z) = \zeta(k)$. When $m \neq 0$, since k is even, ± 1 contributes equally. Thus, we only consider m > 0.

$$\hat{f}(n) = \int_{-\infty}^{\infty} (mz+n)^{-k} e^{2\pi i nz}$$

Then by the residue theorem,

$$\hat{f}(n) = 2\pi i \operatorname{res}(e^{2\pi i n z} (m z - n)^{-k}) = \frac{2\pi i}{(k-1)!} n^{k-1} e^{2\pi i m n z}$$

Then by Poisson Summation Formula,

$$E_k(z) = \zeta(k) + \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} e^{2\pi i m n z} = \zeta(k) + \frac{(2\pi)^k (-1)^{\frac{n}{2}}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

where $q = e^{2\pi i z}$. Therefore, we see that it is holomorphic at ∞ .

For a given k, either $S_k(\Gamma(1)) = M_k(\Gamma(1))$ or dim $S_k(\Gamma(1)) + 1 = \dim M_k(\Gamma(1))$, since if these is a modular form of weight k, either the constant is zero, or we can substract by a multiple. For $k \ge 4$, we see that there is an Eisenstein series with nonzero constant term. Therefore, dim $M_k(\Gamma(1)) = \dim S_k(\Gamma(1)) + 1$.

We observe that the modular forms form a graded ring. It is easy to show that if $f \in M_k(\Gamma(1))$ and $g \in M_l(\Gamma(1))$, then $fg \in M_{k+l}(\Gamma(1))$.

Example 2.4. We construct example below: let

$$G_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n)q^n$$
, and $G_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n)q^n$

Clearly, G_4 has weight 4 and G_6 has weight 6. Then we define

$$\Delta(z) = \frac{1}{1728} (G_4^3 - G_6^2) = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

which becomes a cusp form of weight 12.

Theorem 2.5 (Jacobi's Triple Formula).

$$\sum_{n=-\infty}^{\infty} q^{n^2} x^n = \prod_{n=1}^{\infty} (1-q^{2n})(1+q^{2n-1}x)(1+q^{2n-1}x^{-1})$$

Proof. Let

$$\nu(z,w) = \sum_{n=-\infty}^{\infty} q^{n^2} x^n, q = e^{2\pi i z}, x = e^{2\pi i w}$$

$$\nu(z, w+2z) = \sum_{n=-\infty}^{\infty} q^{n^2} (xq^2)^n = \sum_{n=-\infty}^{\infty} q^{n^2+2n} x^n = (qx)^{-1} \sum_{n=-\infty}^{\infty} q^{(n+1)^2} x^{n+1} = (qx)^{-1} \nu(z, w)$$

And we let

$$P(z,w) = \prod_{n=1}^{\infty} (1+q^{2n-1}x)(1+q^{2n-1}x^{-1})$$
$$P(z,w+2z) = \prod_{n=1}^{\infty} (1+q^{2n+1}x)(1+q^{2n-3}x^{-1}) = (qx)^{-1}P(z,w)$$

Therefore, let $\Lambda \subset \mathbb{C}$ be the lattice $\{2mz + n | m, n \in \mathbb{Z}\}$ and $f(w) = \frac{\nu(z,w)}{P(z,w)}$, then f(z) is an elliptic function over Λ . Assume P(z,w) = 0, for fixed z. Then some factor of P is zero. Namely, $q^{2n-1}x = 0$ or $q^{2n-1}x^{-1} = 0$, for some n. Then $2\pi i z(2n-1) \pm 2\pi i w = k\pi i$, where k is odd. Therefore, $w = \pm z + \lambda + \frac{1}{2}$, where $\lambda \in \Lambda$. Thus these w are zeroes of P(z,w).

We show that these w are also zeroes of $\nu(z, w)$. Since $n^2(2\pi i z) + n(2\pi i w) \mod 2 = \pi i (2zn^2 + \pm 2nz + 2n\lambda + n) \mod 2 = n\pi i \mod 2$. Thus it is a series permuting between -1 and 1. And the sum gives 0. Therefore, we see that f(w) doesn't have a pole. Hence, f(w) is a constant, say $\phi(q)$. Thus $\nu(z, w) = \phi(q)P(z, w)$.

Next, it suffices to show $\phi(q) = \prod_{n=1}^{\infty} (1-q^{2n})$. Consider

$$\nu(4z, \frac{1}{2}) = \sum_{n = -\infty}^{\infty} (-1)^n q^{4n^2} = \sum_{n = -\infty}^{\infty} e^{\frac{n\pi i}{2}} q^{n^2} = \nu(z, \frac{1}{4})$$

Thus, we divide the two equations and we have $\phi(q) = \frac{P(4z, \frac{1}{2})}{P(z, \frac{1}{4})}\phi(q^4)$, now we compute

$$\frac{P(4z,\frac{1}{2})}{P(z,\frac{1}{4})} = \prod_{n=1}^{\infty} (1-q^{4n-2})(1-q^{8n-4})$$

Then as $q \to 0 \ \phi(q) \to 1$. Therefore, $\phi(q) = \prod_{n=1}^{\infty} (1 - q^{2n})$.

3 Dimension of Cusp Forms

We use Jacobi's triple product formula, replacing q with $q^{\frac{3}{2}}$ and x with $-q^{\frac{-1}{2}}$. Then

$$\sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{(6n+1)^2}{24}} = q^{\frac{1}{24}} \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{3n^2+n}{2}} = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^{3n})(1-q^{3n-1})(1-q^{3n-2}) = \prod_{n=1}^{\infty} (1-q^n)(1-q^{3n-2}) = \prod_{n=1}^{\infty} (1-q^n)(1-q^n)(1-q^{3n-2}) = \prod_{n=1}^{\infty} (1-q^n)(1-q^n)(1-q^{3n-2}) = \prod_{n=1}^{\infty} (1-q^n)(1-q$$

Definition 3.1. The *Dedekind eta function* is defined as

$$\eta(z) = q^{\frac{1}{24}} \prod (1 - q^n) = \sum_{-\infty}^{\infty} \chi(n) q^{\frac{n^2}{24}}$$

Where $\chi(n) = 1$ if $n \equiv \pm 1 \mod 12$, -1 if $n \equiv \pm 5 \mod 12$ and 0 otherwise.

Proposition 3.2. If $\gamma \in \Gamma(1)$ then there exists a 24th root of unity $\epsilon(\gamma)$ such that $\eta\left(\frac{az+b}{cz+d}\right) = \epsilon(\gamma)(cz+d)^{\frac{1}{2}}\eta(z).$

Proof. Since $\Gamma(1)$ is spanned by $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, it suffices to check these two. $T(q^{\frac{1}{24}}) = e^{\frac{2\pi i}{24}}q^{\frac{1}{24}}$. Then we are done. Since $\eta(z) = \theta_{\chi}(\frac{-iz}{12})$, we have $\tau(\chi) = 2\sqrt{3}$ and N = 12. Thus $\sqrt{-iz}\eta(z) = \eta(-\frac{1}{2})$. Thus, we are done. \Box

Therefore, it is reasonable to get rid of the root of unity by rising to 24th power. Let $\Delta(z) = \eta(z)^2 4 = q \prod_{n=1}^{\infty} (1-q^n)^{24}$, then $\Delta(z)$ is a cusp form of weight 12. Since it is defined by a convergent infinite product, $\Delta(z) \neq 0$.

Proposition 3.3. The space $S_k(\Gamma(1))$ is one dimensional, spanned by Δ , where $\Delta = \frac{1}{1728}(G_4^3 - G_6^2)$.

Proof. Let $f \in S_k(\Gamma(1))$. Then f/Δ is an automorphic function, having no poles in \mathcal{H} . It is also holomorphic at the cusp since f vanishes. Therefore, f/Δ has no pole, thus a constant. Thus $S_k(\Gamma(1))$ is generated by Δ . Thus $\frac{1}{1728}(G_4^3 - G_6^2) = c\Delta$. Thus by comparing the Fourier coefficients, c = 1.

Proposition 3.4. Suppose k is an even positive integer. k = 12j + r, where $0 \le r \le 10$. Then dim $M_{12j+r}(\Gamma(1)) = j + 1$ if r = 0, 4, 6, 8, 10. Otherwise it is j. And the ring $\bigoplus_{k=0}^{\infty} M_k(\Gamma(1))$ is generated by G_4 and G_6 .

Proof. We do induction over j. Let j = 0, we check when $k = 4, 6, 8, 10, M_k(\Gamma(1))$ is one dimensional. Let h = 6(12-k). If $f \in M_k(\Gamma(1))$ is not in the one dimensional space spanned by E_k , we can substract the constant Fourier coefficient and assume f is in $S_k(\Gamma(1))$. Consider $E_h(f/\Delta)^6$. Then we know that E_h has weight h and $(f/\Delta)^6$ has weight 6(k-12) = -h. Thus this is an automorphic form with no poles. Thus this is constant. Hence $E_h = c\Delta^6/f^6$. Thus E_h has no zeroes on \mathcal{H} . Now let h = 12H, where H = 1, 2, 3, 4. Then Δ^H/E_h is an automorphic function with no poles but a zero of order H at ∞ , but it contradicts the definition of a cusp form. This it must be one dimensional spanned by E_k .

Then we show $M_2(\Gamma(1))$ has dimensional 0. If $f \in M_k(\Gamma(1))$, then $fE_4 \in M_6(\Gamma(1))$. So $fE_4 = cE_6$. for some c. Let $\rho = e^{2\pi i/3}$, if $3 \nmid k$, $f \in M_k(\Gamma(1))$, then let $\gamma = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\gamma(\rho) = \rho$. Then $f(\gamma(\rho)) = f(\rho) = (-z)^k f(\rho)$. Thus $f(\rho) = 0$. Thus $E_4(\rho) = 0$. Thus $E_6(\rho) = 0$, thus $\Delta(\rho) = 0$, contradiction. Thus $M_2(\Gamma(1)) = 0$. $M_0(\Gamma(1))$ is one dimensional is clear, consisting of constants.

Let $j \geq 1$, multiplying Δ is an isomorphism between $M_{k-12}(\Gamma(1))$ and $S_k(\Gamma(1))$. Injection is clear. Let $f \in S_k(\Gamma(1))$, then f/Δ have no poles. Thus is in $M_{k-12}(\Gamma(1))$. Thus we use induction step and our former discussion about the dimensions between $M_k(\Gamma(1))$ and $S_k(\Gamma(1))$ to show this.

Then since σ_2 and σ_3 are clearly algebraically independent, we know G_4 and G_6 are algebraically independent as $G_k(z) = \zeta^{-1}(k)E_k(z)$.

Then let R be the subring generated by G_4 and G_6 . Since M_8, M_{10} are one dimensional, they are clearly generated by E_4^2 and E_4E_6 . Thus $M_k \subset R$ for $k \leq 10$. Since $\Delta \in R$, let k be the first even integer such that $M_k \not\subset R$, $k \ge 12$. Since $S_k = \Delta M_{k-12} \subset R$, and $E_4^s E_6^k \in R$, with 4k + 6s = k, then we know R contains M_k .

4 Petersson Inner Product and L-function

We define an inner product on $S_k(\Gamma(1))$:

Definition 4.1. Let $f, g \in S_k(\Gamma(1))$, the Petersson Inner Product is defined as

$$\langle f,g \rangle = \iint_{\Gamma(1)/\mathcal{H}} f(z)\overline{g(z)}y^k \frac{dxdy}{y^2}$$

Clearly, since $\Im(\gamma(z)) = \frac{\Im(z)}{|cz+d|^2}$, where $\gamma \in \Gamma(1)$, we know the inner product is invariant under our action by γ .

If n > 0, $q^n \to 0$ as $z \to \infty$. Since a cusp form has a Fourier expansion $\sum a_n q^n$ with $a_n \neq 0$ for n > 0. A cusp form decays quickly as $y \to \infty$. Thus the above definition is well defined.

Lemma 4.2. If at least one of f, g is a cusp form, the Petersson inner product is well-defined.

Proof. Since we can integrate over a compact set containing each cusp, it suffices to prove the lemma for the cusp at infinity. Since $f(z)\overline{g(z)} \in O(e^{-cy})$, with one of them a cusp form, the integral is dominated by $\int e^{-cy}y^{k-2} < \infty$.

Definition 4.3. Let $f(z) = \sum_{n=0}^{\infty} a_n q^n$ be a modular form. We define $L(s, f) = \sum_{n=1}^{\infty} a_n n^{-s}$ be the *L*-function of f.

Proposition 4.4. If f is cuspidal, its Fourier coefficients satisfy $a_n \leq Cn^{k/2}$ for some C independent of n. (This is not necessarily true for f not being a cusp form, but the L-function should be convergent for larger $\Re(s)$)

Proof. It is clear that $|f(z)y^{k/2}|$ is invariant under our action. Since f is a cusp form, the function decays as z approaches the cusp. Then it is bounded on the fundamental domain. Thus $\exists C_1$ such that $|f(z)y^{k/2}| \leq C_1$. Fix y, we have

$$|a_n|e^{-2\pi ny} = |\int_0^1 f(x+iy)e^{-2\pi i n(x+iy)}dx|e^{-2\pi ny} \le \int_0^1 |f(x+iy)e^{-2\pi i nx}|dx \le C_1 y^{\frac{-k}{2}}$$

Then pick $y = \frac{1}{n}$ to get $a_n < e^{2\pi} C_1 n^{k/2}$, which proves our theorem.

Proposition 4.5. Let $\Lambda(s, f) = (2\pi)^{-s} \Gamma(s) L(s, f)$, then $\Lambda(s, f)$ extends to an analytic function of s if f is a cusp form. Otherwise it has simple poles at s = 0 and s = k, where $\Lambda(s, f) = (-1)^{k/2} \Lambda(k - s, f)$.

Proof. If f is a cusp form, $f(iy) \to 0$ as $y \to \infty$. When $\gamma = S$, $f(iy) = (-1)^{k/2} y^{-k} f(i/y)$. Then $f(iy) \to 0$ when $y \to 0$. Thus $\int_0^\infty f(iy) y^s \frac{dy}{y}$ is convergent for all s. Thus we see that this is analytic. If $\Re(s)$ is large, $\int_0^\infty e^{-2\pi ny} y^s \frac{dy}{y} = (2\pi)^{-s} \Gamma(s)$, we know that the above function is indeed $\Lambda(s, f)$. Then we use action by S and replace $\frac{1}{y}$ by y, we have the recursive definition. Moreover, since 0 gives a pole for f not cuspital, it is clear that it has another pole at s = k.