Modular Forms

Ting Gong

May 18, 2020

1 Dimension of Modular Forms

Definition 1.1. A modular form of weight k for $\operatorname{SL}(2, \mathbb{Z})$ is a holomorphic function f on \mathcal{H} satisfying $f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$, and is holomorphic at the cusp ∞.

Since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), f(z+1)=f(z)$. Then we have a Fourier expansion $f(z)=$ $\sum_{n=-\infty}^{\infty} a_{n} e^{2 \pi i n z}$. Below we denote $q=e^{2 \pi i n z}$.

Definition 1.2. A modular form that vanishes at ∞ is called a cusp form.
We denote the space of modular forms of weight k for $\Gamma(1)=\operatorname{SL}(2, \mathbb{Z})$ as $M_{k}(\Gamma(1))$ and the space of cusp forms as $S_{k}(\Gamma(1))$.

Definition 1.3. An automorphic function for Γ is a meromorphic function f on \mathcal{H} and at ∞ such that $f\left(\frac{a z+b}{c z+d}\right)=f(z)$

Then f is a meromorphic function on the compact Riemann surface $\Gamma(1) / \mathcal{H}^{*}$. If f doesn't have a pole, then by Louiville theorem and maximal modulus principle, f is constant.

Notice if $f_{1}, f_{2} \in M_{k}(\Gamma(1))$, then

$$
\frac{f_{1}}{f_{2}}\left(\frac{a z+b}{c z+d}\right)=\frac{(c z+d)^{k} f_{1}(z)}{(c z+d)^{k} f_{2}(z)}=\frac{f_{1}}{f_{2}}
$$

Therefore, f_{1} / f_{2} is automophic.
Proposition 1.4. Let X be a compact Riemann surface, $P_{1}, \ldots, P_{n} \in X$, let r_{1}, \ldots, r_{n} be positive integers. Let V be the vector space of meromorphic functions on X, which are holomorphic besides possibly at P_{m}, and which are holomorphic or else have poles of order at most r_{m} at P_{m}. Then the space V has dimension at most $r_{1}+\ldots+r_{m}+1$.

Proof. Let $r=r_{1}+\ldots+r_{m}$, pick a coordinate function $t=t_{j}$ in a neighborhood of P_{j} with respect to which P_{j} is the origin. If $\phi \in V$, it has Laurent expansion, $\phi(t)=a_{j,-r_{j}} t^{-r_{j}}+$ $a_{j,-r_{j}+1} t^{-r_{j}+1}+\ldots$ We associate ϕ with $v \in \mathbb{C}^{r}$ whose entries are the Taylor coefficients. If $\phi_{1}, \ldots, \phi_{N} \in V, N>r$, then c_{1}, \ldots, c_{N} are not all zero with $\sum c_{j} v_{j}=0$. Thus $\sum c_{j} \phi_{j}$ has no poles. Then since above is meromorphic on a compact Riemann surface, it is constant. Thus any vector subspace of V having dimension greater than r contains a constant function. Thus $\operatorname{dim} V \leq r+1$.

Proposition 1.5. The space $M_{k}(\Gamma(1))$ is finite dimensional.
Proof. Let $f_{0} \in M_{k}(\Gamma(1))$ be nonzero. Let X be the compactification of $\Gamma(1) / \mathcal{H}$. Let P_{1}, \ldots, P_{m} be zeroes of f_{0}, let r_{1}, \ldots, r_{m} be the orders of zeroes of f_{0} at these points. If $f \in M_{k}(\Gamma(1))$, then by our remark before, f / f_{0} is automorphic. Moreover, $f \mapsto f_{0}$ is an isomorphism of $M_{k}(\Gamma(1))$ and V in the last proposition. Thus $M_{k}(\Gamma(1))$ is finite dimensional.

2 Jacobi's Triple Product Formula

Definition 2.1. Let k be even, $k \geq 4$, the Eisenstein series is defined as

$$
E_{k}(z)=\frac{1}{2} \sum_{m, n \in \mathbb{Z},(m, n) \neq(0,0)}(m z+n)^{-k}
$$

We notice that the Eisenstein series is absolutely convergent since

$$
E_{k}(z) \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(m z+n)^{-k} d m d n=4 \int_{0}^{\infty} \int_{0}^{\infty}(m z+n)^{-k} d m d n<\infty
$$

since $k \geq 4$, and after integration, the $k-2 \geq 2$.
Definition 2.2. Let $r \in \mathbb{C}$, the divisor sum is defined as

$$
\sigma_{r}(n)=\sum_{d \mid n} d^{r}
$$

Proposition 2.3. The Eisenstein series is a modular form.
Proof. We first show the first condition.

$$
\begin{aligned}
E_{k}\left(\frac{a z+b}{c z+d}\right) & =\frac{1}{2} \sum_{m, n \in \mathbb{Z},(m, n) \neq(0,0)}\left(m\left(\frac{a z+b}{c z+d}\right)+n\right)^{-k} \\
& =(c z+d)^{k} \frac{1}{2} \sum_{m, n \in \mathbb{Z},(m, n) \neq(0,0)}(m(a z+b)+n(c z+d))^{-k} \\
& =(c z+d)^{k} \frac{1}{2} \sum_{m, n \in \mathbb{Z},(m, n) \neq(0,0)}((a m+c n) z+(m b+n d))^{-k}
\end{aligned}
$$

Since c, d are coprime, $(m, n) \mapsto(m a+n c, m b+n d)$ permutes $\mathbb{Z} \times \mathbb{Z}$. Thus we see $E_{k}(z)$ satisfies the first condition of a modular form. It suffices to show that it is holomorphic at ∞. To do this, we compute its Fourier expansion. When $m=0, E_{k}(z)=\zeta(k)$. When $m \neq 0$, since k is even, ± 1 contributes equally. Thus, we only consider $m>0$.

$$
\hat{f}(n)=\int_{-\infty}^{\infty}(m z+n)^{-k} e^{2 \pi i n z}
$$

Then by the residue theorem,

$$
\hat{f}(n)=2 \pi i \operatorname{res}\left(e^{2 \pi i n z}(m z-n)^{-k}\right)=\frac{2 \pi i}{(k-1)!} n^{k-1} e^{2 \pi i m n z}
$$

Then by Poisson Summation Formula,

$$
E_{k}(z)=\zeta(k)+\frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} e^{2 \pi i m n z}=\zeta(k)+\frac{(2 \pi)^{k}(-1)^{\frac{n}{2}}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $q=e^{2 \pi i z}$. Therefore, we see that it is holomorphic at ∞.
For a given k, either $S_{k}(\Gamma(1))=M_{k}(\Gamma(1))$ or $\operatorname{dim} S_{k}(\Gamma(1))+1=\operatorname{dim} M_{k}(\Gamma(1))$, since if these is a modular form of weight k, either the constant is zero, or we can substract by a multiple. For $k \geq 4$, we see that there is an Eisenstein series with nonzero constant term. Therefore, $\operatorname{dim} M_{k}(\Gamma(1))=\operatorname{dim} S_{k}(\Gamma(1))+1$.

We observe that the modular forms form a graded ring. It is easy to show that if $f \in M_{k}(\Gamma(1))$ and $g \in M_{l}(\Gamma(1))$, then $f g \in M_{k+l}(\Gamma(1))$.

Example 2.4. We construct example below: let

$$
G_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}, \text { and } G_{6}(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}
$$

Clearly, G_{4} has weight 4 and G_{6} has weight 6 . Then we define

$$
\Delta(z)=\frac{1}{1728}\left(G_{4}^{3}-G_{6}^{2}\right)=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots
$$

which becomes a cusp form of weight 12 .
Theorem 2.5 (Jacobi's Triple Formula).

$$
\sum_{n=-\infty}^{\infty} q^{n^{2}} x^{n}=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1+q^{2 n-1} x\right)\left(1+q^{2 n-1} x^{-1}\right)
$$

Proof. Let

$$
\nu(z, w)=\sum_{n=-\infty}^{\infty} q^{n^{2}} x^{n}, q=e^{2 \pi i z}, x=e^{2 \pi i w}
$$

$$
\nu(z, w+2 z)=\sum_{n=-\infty}^{\infty} q^{n^{2}}\left(x q^{2}\right)^{n}=\sum_{n=-\infty}^{\infty} q^{n^{2}+2 n} x^{n}=(q x)^{-1} \sum_{n=-\infty}^{\infty} q^{(n+1)^{2}} x^{n+1}=(q x)^{-1} \nu(z, w)
$$

And we let

$$
\begin{gathered}
P(z, w)=\prod_{n=1}^{\infty}\left(1+q^{2 n-1} x\right)\left(1+q^{2 n-1} x^{-1}\right) \\
P(z, w+2 z)=\prod_{n=1}^{\infty}\left(1+q^{2 n+1} x\right)\left(1+q^{2 n-3} x^{-1}\right)=(q x)^{-1} P(z, w)
\end{gathered}
$$

Therefore, let $\Lambda \subset \mathbb{C}$ be the lattice $\{2 m z+n \mid m, n \in \mathbb{Z}\}$ and $f(w)=\frac{\nu(z, w)}{P(z, w)}$, then $f(z)$ is an elliptic function over Λ. Assume $P(z, w)=0$, for fixed z. Then some factor of P is zero. Namely, $q^{2 n-1} x=0$ or $q^{2 n-1} x^{-1}=0$, for some n. Then $2 \pi i z(2 n-1) \pm 2 \pi i w=k \pi i$, where k is odd. Therefore, $w= \pm z+\lambda+\frac{1}{2}$, where $\lambda \in \Lambda$. Thus these w are zeroes of $P(z, w)$.

We show that these w are also zeroes of $\nu(z, w)$. Since $n^{2}(2 \pi i z)+n(2 \pi i w) \bmod 2=$ $\pi i\left(2 z n^{2}+ \pm 2 n z+2 n \lambda+n\right) \bmod 2=n \pi i \bmod 2$. Thus it is a series permuting between -1 and 1. And the sum gives 0 . Therefore, we see that $f(w)$ doesn't have a pole. Hence, $f(w)$ is a constant, say $\phi(q)$. Thus $\nu(z, w)=\phi(q) P(z, w)$.

Next, it suffices to show $\phi(q)=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)$. Consider

$$
\nu\left(4 z, \frac{1}{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{4 n^{2}}=\sum_{n=-\infty}^{\infty} e^{\frac{n \pi i}{2}} q^{n^{2}}=\nu\left(z, \frac{1}{4}\right)
$$

Thus, we divide the two equations and we have $\phi(q)=\frac{P\left(4 z, \frac{1}{2}\right)}{P\left(z, \frac{1}{4}\right)} \phi\left(q^{4}\right)$, now we compute

$$
\frac{P\left(4 z, \frac{1}{2}\right)}{P\left(z, \frac{1}{4}\right)}=\prod_{n=1}^{\infty}\left(1-q^{4 n-2}\right)\left(1-q^{8 n-4}\right)
$$

Then as $q \rightarrow 0 \phi(q) \rightarrow 1$. Therefore, $\phi(q)=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)$.

3 Dimension of Cusp Forms

We use Jacobi's triple product formula, replacing q with $q^{\frac{3}{2}}$ and x with $-q^{\frac{-1}{2}}$. Then

$$
\left.\sum_{n=-\infty}(-1)^{n} q^{\frac{(6 n+1)^{2}}{24}}=q^{\frac{1}{24}} \sum_{n=-\infty}(-1)^{n} q^{\frac{3 n^{2}+n}{2}}=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{3 n}\right) 1-q^{3 n-1}\right)\left(1-q^{3 n-2}\right)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Definition 3.1. The Dedekind eta function is defined as

$$
\eta(z)=q^{\frac{1}{24}} \prod\left(1-q^{n}\right)=\sum_{-\infty}^{\infty} \chi(n) q^{\frac{n^{2}}{24}}
$$

Where $\chi(n)=1$ if $n \equiv \pm 1 \bmod 12,-1$ if $n \equiv \pm 5 \bmod 12$ and 0 otherwise.

Proposition 3.2. If $\gamma \in \Gamma(1)$ then there exists a 24th root of unity $\epsilon(\gamma)$ such that $\eta\left(\frac{a z+b}{c z+d}\right)=$ $\epsilon(\gamma)(c z+d)^{\frac{1}{2}} \eta(z)$.

Proof. Since $\Gamma(1)$ is spanned by $S=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $T=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, it suffices to check these two. $T\left(q^{\frac{1}{24}}\right)=e^{\frac{2 \pi i}{24}} q^{\frac{1}{24}}$. Then we are done. Since $\eta(z)=\theta_{\chi}\left(\frac{-i z}{12}\right)$, we have $\tau(\chi)=2 \sqrt{3}$ and $N=12$. Thus $\sqrt{-i z} \eta(z)=\eta\left(-\frac{1}{2}\right)$. Thus, we are done.

Therefore, it is reasonable to get rid of the root of unity by rising to 24 th power. Let $\Delta(z)=\eta(z)^{2} 4=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}$, then $\Delta(z)$ is a cusp form of weight 12 . Since it is defined by a convergent infinite product, $\Delta(z) \neq 0$.

Proposition 3.3. The space $S_{k}(\Gamma(1))$ is one dimensional, spanned by Δ, where $\Delta=$ $\frac{1}{1728}\left(G_{4}^{3}-G_{6}^{2}\right)$.

Proof. Let $f \in S_{k}(\Gamma(1))$. Then f / Δ is an automorphic function, having no poles in \mathcal{H}. It is also holomorphic at the cusp since f vanishes. Therefore, f / Δ has no pole, thus a constant. Thus $S_{k}(\Gamma(1))$ is generated by Δ. Thus $\frac{1}{1728}\left(G_{4}^{3}-G_{6}^{2}\right)=c \Delta$. Thus by comparing the Fourier coefficients, $c=1$.

Proposition 3.4. Suppose k is an even positive integer. $k=12 j+r$, where $0 \leq r \leq$ 10. Then $\operatorname{dim} M_{12 j+r}(\Gamma(1))=j+1$ if $r=0,4,6,8,10$. Otherwise it is j. And the ring $\bigoplus_{k=0}^{\infty} M_{k}(\Gamma(1))$ is generated by G_{4} and G_{6}.

Proof. We do induction over j. Let $j=0$, we check when $k=4,6,8,10, M_{k}(\Gamma(1))$ is one dimensional. Let $h=6(12-k)$. If $f \in M_{k}(\Gamma(1))$ is not in the one dimensional space spanned by E_{k}, we can substract the constant Fourier coefficient and assume f is in $S_{k}(\Gamma(1))$. Consider $E_{h}(f / \Delta)^{6}$. Then we know that E_{h} has weight h and $(f / \Delta)^{6}$ has weight $6(k-12)=-h$. Thus this is an automorphic form with no poles. Thus this is constant. Hence $E_{h}=c \Delta^{6} / f^{6}$. Thus E_{h} has no zeroes on \mathcal{H}. Now let $h=12 H$, where $H=1,2,3,4$. Then Δ^{H} / E_{h} is an automorphic function with no poles but a zero of order H at ∞, but it contradicts the definition of a cusp form. This it must be one dimensional spanned by E_{k}.

Then we show $M_{2}(\Gamma(1))$ has dimensional 0 . If $f \in M_{k}(\Gamma(1))$, then $f E_{4} \in M_{6}(\Gamma(1))$. So $f E_{4}=c E_{6}$. for some c. Let $\rho=e^{2 \pi i / 3}$, if $3 \nmid k, f \in M_{k}(\Gamma(1))$, then let $\gamma=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$, $\gamma(\rho)=\rho$. Then $f(\gamma(\rho))=f(\rho)=(-z)^{k} f(\rho)$. Thus $f(\rho)=0$. Thus $E_{4}(\rho)=0$. Thus $E_{6}(\rho)=0$, thus $\Delta(\rho)=0$, contradiction. Thus $M_{2}(\Gamma(1))=0 . M_{0}(\Gamma(1))$ is one dimensional is clear, consisting of constants.

Let $j \geq 1$, multiplying Δ is an isomorphism between $M_{k-12}(\Gamma(1))$ and $S_{k}(\Gamma(1))$. Injection is clear. Let $f \in S_{k}(\Gamma(1))$, then f / Δ have no poles. Thus is in $M_{k-12}(\Gamma(1))$. Thus we use induction step and our former discussion about the dimensions between $M_{k}(\Gamma(1))$ and $S_{k}(\Gamma(1))$ to show this.

Then since σ_{2} and σ_{3} are clearly algebraically independent, we know G_{4} and G_{6} are algebraically independent as $G_{k}(z)=\zeta^{-1}(k) E_{k}(z)$.

Then let R be the subring generated by G_{4} and G_{6}. Since M_{8}, M_{10} are one dimensional, they are clearly generated by E_{4}^{2} and $E_{4} E_{6}$. Thus $M_{k} \subset R$ for $k \leq 10$. Since $\Delta \in R$, let k be
the first even integer such that $M_{k} \not \subset R, k \geq 12$. Since $S_{k}=\Delta M_{k-12} \subset R$, and $E_{4}^{s} E_{6}^{k} \in R$, with $4 k+6 s=k$, then we know R contains M_{k}.

4 Petersson Inner Product and L-function

We define an inner product on $S_{k}(\Gamma(1))$:
Definition 4.1. Let $f, g \in S_{k}(\Gamma(1))$, the Petersson Inner Product is defined as

$$
\langle f, g\rangle=\iint_{\Gamma(1) / \mathcal{H}} f(z) \overline{g(z)} y^{k} \frac{d x d y}{y^{2}}
$$

Clearly, since $\Im(\gamma(z))=\frac{\Im(z)}{|c z+d|^{2}}$, where $\gamma \in \Gamma(1)$, we know the inner product is invariant under our action by γ.

If $n>0, q^{n} \rightarrow 0$ as $z \rightarrow \infty$. Since a cusp form has a Fourier expansion $\sum a_{n} q^{n}$ with $a_{n} \neq 0$ for $n>0$. A cusp form decays quickly as $y \rightarrow \infty$. Thus the above definition is well defined.
Lemma 4.2. If at least one of f, g is a cusp form, the Petersson inner product is well-defined.
Proof. Since we can integrate over a compact set containing each cusp, it suffices to prove the lemma for the cusp at infinity. Since $f(z) \overline{g(z)} \in O\left(e^{-c y}\right)$, with one of them a cusp form, the integral is dominated by $\int e^{-c y} y^{k-2}<\infty$.
Definition 4.3. Let $f(z)=\sum_{n=0}^{\infty} a_{n} q^{n}$ be a modular form. We define $L(s, f)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ be the L-function of f.
Proposition 4.4. If f is cuspidal, its Fourier coefficients satisfy $a_{n} \leq C n^{k / 2}$ for some C independent of n. (This is not necessarily true for f not being a cusp form, but the L-function should be convergent for larger $\Re(s))$
Proof. It is clear that $\left|f(z) y^{k / 2}\right|$ is invariant under our action. Since f is a cusp form, the function decays as z approaches the cusp. Then it is bounded on the fundamental domain. Thus $\exists C_{1}$ such that $\left|f(z) y^{k / 2}\right| \leq C_{1}$. Fix y, we have

$$
\left|a_{n}\right| e^{-2 \pi n y}=\left|\int_{0}^{1} f(x+i y) e^{-2 \pi i n(x+i y)} d x\right| e^{-2 \pi n y} \leq \int_{0}^{1}\left|f(x+i y) e^{-2 \pi i n x}\right| d x \leq C_{1} y^{\frac{-k}{2}}
$$

Then pick $y=\frac{1}{n}$ to get $a_{n}<e^{2 \pi} C_{1} n^{k / 2}$, which proves our theorem.
Proposition 4.5. Let $\Lambda(s, f)=(2 \pi)^{-s} \Gamma(s) L(s, f)$, then $\Lambda(s, f)$ extends to an analytic function of s if f is a cusp form. Otherwise it has simple poles at $s=0$ and $s=k$, where $\Lambda(s, f)=(-1)^{k / 2} \Lambda(k-s, f)$.
Proof. If f is a cusp form, $f(i y) \rightarrow 0$ as $y \rightarrow \infty$. When $\gamma=S, f(i y)=(-1)^{k / 2} y^{-k} f(i / y)$. Then $f(i y) \rightarrow 0$ when $y \rightarrow 0$. Thus $\int_{0}^{\infty} f(i y) y^{s} \frac{d y}{y}$ is convergent for all s. Thus we see that this is analytic. If $\Re(s)$ is large, $\int_{0}^{\infty} e^{-2 \pi n y} y^{s} \frac{d y}{y}=(2 \pi)^{-s} \Gamma(s)$, we know that the above function is indeed $\Lambda(s, f)$. Then we use action by S and replace $\frac{1}{y}$ by y, we have the recursive definition. Moreover, since 0 gives a pole for f not cuspital, it is clear that it has another pole at $s=k$.

