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1 Dimension of Modular Forms

Definition 1.1. A modular form of weight k for SL(2,Z) is a holomorphic function f on H

satisfying f

(
az + b

cz + d

)
= (cz + d)kf(z) where

(
a b
c d

)
∈ SL(2,Z), and is holomorphic at the

cusp ∞.

Since

(
1 1
0 1

)
∈ SL(2,Z), f(z + 1) = f(z). Then we have a Fourier expansion f(z) =

∞∑
n=−∞

ane
2πinz. Below we denote q = e2πinz.

Definition 1.2. A modular form that vanishes at ∞ is called a cusp form.

We denote the space of modular forms of weight k for Γ(1) = SL(2,Z) as Mk(Γ(1)) and
the space of cusp forms as Sk(Γ(1)).

Definition 1.3. An automorphic function for Γ is a meromorphic function f on H and at

∞ such that f

(
az + b

cz + d

)
= f(z)

Then f is a meromorphic function on the compact Riemann surface Γ(1)/H∗. If f doesn’t
have a pole, then by Louiville theorem and maximal modulus principle, f is constant.

Notice if f1, f2 ∈Mk(Γ(1)), then

f1

f2

(
az + b

cz + d

)
=

(cz + d)kf1(z)

(cz + d)kf2(z)
=
f1

f2

Therefore, f1/f2 is automophic.

Proposition 1.4. Let X be a compact Riemann surface, P1, . . . , Pn ∈ X, let r1, . . . , rn
be positive integers. Let V be the vector space of meromorphic functions on X, which are
holomorphic besides possibly at Pm, and which are holomorphic or else have poles of order
at most rm at Pm. Then the space V has dimension at most r1 + . . .+ rm + 1.
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Proof. Let r = r1 + . . .+ rm, pick a coordinate function t = tj in a neighborhood of Pj with
respect to which Pj is the origin. If φ ∈ V , it has Laurent expansion, φ(t) = aj,−rj t

−rj +
aj,−rj+1t

−rj+1 + . . .. We associate φ with v ∈ Cr whose entries are the Taylor coefficients. If
φ1, . . . , φN ∈ V , N > r, then c1, . . . , cN are not all zero with

∑
cjvj = 0. Thus

∑
cjφj has

no poles. Then since above is meromorphic on a compact Riemann surface, it is constant.
Thus any vector subspace of V having dimension greater than r contains a constant function.
Thus dimV ≤ r + 1.

Proposition 1.5. The space Mk(Γ(1)) is finite dimensional.

Proof. Let f0 ∈ Mk(Γ(1)) be nonzero. Let X be the compactification of Γ(1)/H. Let
P1, . . . , Pm be zeroes of f0, let r1, . . . , rm be the orders of zeroes of f0 at these points. If
f ∈ Mk(Γ(1)), then by our remark before, f/f0 is automorphic. Moreover, f 7→ f0 is an
isomorphism of Mk(Γ(1)) and V in the last proposition. Thus Mk(Γ(1)) is finite dimensional.

2 Jacobi’s Triple Product Formula

Definition 2.1. Let k be even, k ≥ 4, the Eisenstein series is defined as

Ek(z) =
1

2

∑
m,n∈Z,(m,n) 6=(0,0)

(mz + n)−k

We notice that the Eisenstein series is absolutely convergent since

Ek(z) ≤
∫ ∞
−∞

∫ ∞
−∞

(mz + n)−kdmdn = 4

∫ ∞
0

∫ ∞
0

(mz + n)−kdmdn <∞

since k ≥ 4, and after integration, the k − 2 ≥ 2.

Definition 2.2. Let r ∈ C, the divisor sum is defined as

σr(n) =
∑
d|n

dr

Proposition 2.3. The Eisenstein series is a modular form.

Proof. We first show the first condition.

Ek

(
az + b

cz + d

)
=

1

2

∑
m,n∈Z,(m,n)6=(0,0)

(m

(
az + b

cz + d

)
+ n)−k

= (cz + d)k
1

2

∑
m,n∈Z,(m,n)6=(0,0)

(m(az + b) + n(cz + d))−k

= (cz + d)k
1

2

∑
m,n∈Z,(m,n)6=(0,0)

((am+ cn)z + (mb+ nd))−k
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Since c, d are coprime, (m,n) 7→ (ma + nc,mb + nd) permutes Z × Z. Thus we see Ek(z)
satisfies the first condition of a modular form. It suffices to show that it is holomorphic at
∞. To do this, we compute its Fourier expansion. When m = 0, Ek(z) = ζ(k). When
m 6= 0, since k is even, ±1 contributes equally. Thus, we only consider m > 0.

f̂(n) =

∫ ∞
−∞

(mz + n)−ke2πinz

Then by the residue theorem,

f̂(n) = 2πires(e2πinz(mz − n)−k) =
2πi

(k − 1)!
nk−1e2πimnz

Then by Poisson Summation Formula,

Ek(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πimnz = ζ(k) +
(2π)k(−1)

n
2

(k − 1)!

∞∑
n=1

σk−1(n)qn

where q = e2πiz. Therefore, we see that it is holomorphic at ∞.

For a given k, either Sk(Γ(1)) = Mk(Γ(1)) or dimSk(Γ(1)) + 1 = dimMk(Γ(1)), since if
these is a modular form of weight k, either the constant is zero, or we can substract by a
multiple. For k ≥ 4, we see that there is an Eisenstein series with nonzero constant term.
Therefore, dimMk(Γ(1)) = dimSk(Γ(1)) + 1.

We observe that the modular forms form a graded ring. It is easy to show that if
f ∈Mk(Γ(1)) and g ∈Ml(Γ(1)), then fg ∈Mk+l(Γ(1)).

Example 2.4. We construct example below: let

G4(z) = 1 + 240
∞∑
n=1

σ3(n)qn, and G6(z) = 1− 504
∞∑
n=1

σ5(n)qn

Clearly, G4 has weight 4 and G6 has weight 6. Then we define

∆(z) =
1

1728
(G3

4 −G2
6) = q − 24q2 + 252q3 − 1472q4 + . . .

which becomes a cusp form of weight 12.

Theorem 2.5 (Jacobi’s Triple Formula).

∞∑
n=−∞

qn
2

xn =
∞∏
n=1

(1− q2n)(1 + q2n−1x)(1 + q2n−1x−1)

Proof. Let

ν(z, w) =
∞∑

n=−∞

qn
2

xn, q = e2πiz, x = e2πiw
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ν(z, w + 2z) =
∞∑

n=−∞

qn
2

(xq2)n =
∞∑

n=−∞

qn
2+2nxn = (qx)−1

∞∑
n=−∞

q(n+1)2xn+1 = (qx)−1ν(z, w)

And we let

P (z, w) =
∞∏
n=1

(1 + q2n−1x)(1 + q2n−1x−1)

P (z, w + 2z) =
∞∏
n=1

(1 + q2n+1x)(1 + q2n−3x−1) = (qx)−1P (z, w)

Therefore, let Λ ⊂ C be the lattice {2mz + n|m,n ∈ Z} and f(w) = ν(z,w)
P (z,w)

, then f(z) is

an elliptic function over Λ. Assume P (z, w) = 0, for fixed z. Then some factor of P is zero.
Namely, q2n−1x = 0 or q2n−1x−1 = 0, for some n. Then 2πiz(2n− 1)± 2πiw = kπi, where k
is odd. Therefore, w = ±z + λ+ 1

2
, where λ ∈ Λ. Thus these w are zeroes of P (z, w).

We show that these w are also zeroes of ν(z, w). Since n2(2πiz) + n(2πiw) mod 2 =
πi(2zn2 +±2nz+ 2nλ+n) mod 2 = nπi mod 2. Thus it is a series permuting between −1
and 1. And the sum gives 0. Therefore, we see that f(w) doesn’t have a pole. Hence, f(w)
is a constant, say φ(q). Thus ν(z, w) = φ(q)P (z, w).

Next, it suffices to show φ(q) =
∏∞

n=1(1− q2n). Consider

ν(4z,
1

2
) =

∞∑
n=−∞

(−1)nq4n2

=
∞∑

n=−∞

e
nπi
2 qn

2

= ν(z,
1

4
)

Thus, we divide the two equations and we have φ(q) =
P (4z, 1

2
)

P (z, 1
4

)
φ(q4), now we compute

P (4z, 1
2
)

P (z, 1
4
)

=
∞∏
n=1

(1− q4n−2)(1− q8n−4)

Then as q → 0 φ(q)→ 1. Therefore, φ(q) =
∏∞

n=1(1− q2n).

3 Dimension of Cusp Forms

We use Jacobi’s triple product formula, replacing q with q
3
2 and x with −q−1

2 . Then

∑
n=−∞

(−1)nq
(6n+1)2

24 = q
1
24

∑
n=−∞

(−1)nq
3n2+n

2 = q
1
24

∞∏
n=1

(1−q3n)1− q3n−1)(1− q3n−2) =
∞∏
n=1

(1− qn)

Definition 3.1. The Dedekind eta function is defined as

η(z) = q
1
24

∏
(1− qn) =

∞∑
−∞

χ(n)q
n2

24

Where χ(n) = 1 if n ≡ ±1 mod 12, −1 if n ≡ ±5 mod 12 and 0 otherwise.
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Proposition 3.2. If γ ∈ Γ(1) then there exists a 24th root of unity ε(γ) such that η

(
az + b

cz + d

)
=

ε(γ)(cz + d)
1
2η(z).

Proof. Since Γ(1) is spanned by S =

(
1 1
0 1

)
and T =

(
0 −1
1 0

)
, it suffices to check these

two. T (q
1
24 ) = e

2πi
24 q

1
24 . Then we are done. Since η(z) = θχ(−iz

12
), we have τ(χ) = 2

√
3 and

N = 12. Thus
√
−izη(z) = η(−1

2
). Thus, we are done.

Therefore, it is reasonable to get rid of the root of unity by rising to 24th power. Let
∆(z) = η(z)24 = q

∏∞
n=1(1− qn)24, then ∆(z) is a cusp form of weight 12. Since it is defined

by a convergent infinite product, ∆(z) 6= 0.

Proposition 3.3. The space Sk(Γ(1)) is one dimensional, spanned by ∆, where ∆ =
1

1728
(G3

4 −G2
6).

Proof. Let f ∈ Sk(Γ(1)). Then f/∆ is an automorphic function, having no poles in H. It is
also holomorphic at the cusp since f vanishes. Therefore, f/∆ has no pole, thus a constant.
Thus Sk(Γ(1)) is generated by ∆. Thus 1

1728
(G3

4−G2
6) = c∆. Thus by comparing the Fourier

coefficients, c = 1.

Proposition 3.4. Suppose k is an even positive integer. k = 12j + r, where 0 ≤ r ≤
10. Then dimM12j+r(Γ(1)) = j + 1 if r = 0, 4, 6, 8, 10. Otherwise it is j. And the ring⊕∞

k=0 Mk(Γ(1)) is generated by G4 and G6.

Proof. We do induction over j. Let j = 0, we check when k = 4, 6, 8, 10, Mk(Γ(1)) is one
dimensional. Let h = 6(12−k). If f ∈Mk(Γ(1)) is not in the one dimensional space spanned
by Ek, we can substract the constant Fourier coefficient and assume f is in Sk(Γ(1)). Consider
Eh(f/∆)6. Then we know that Eh has weight h and (f/∆)6 has weight 6(k − 12) = −h.
Thus this is an automorphic form with no poles. Thus this is constant. Hence Eh = c∆6/f 6.
Thus Eh has no zeroes on H. Now let h = 12H, where H = 1, 2, 3, 4. Then ∆H/Eh is
an automorphic function with no poles but a zero of order H at ∞, but it contradicts the
definition of a cusp form. This it must be one dimensional spanned by Ek.

Then we show M2(Γ(1)) has dimensional 0. If f ∈ Mk(Γ(1)), then fE4 ∈ M6(Γ(1)). So

fE4 = cE6. for some c. Let ρ = e2πi/3, if 3 - k, f ∈ Mk(Γ(1)), then let γ =

(
1 1
−1 0

)
,

γ(ρ) = ρ. Then f(γ(ρ)) = f(ρ) = (−z)kf(ρ). Thus f(ρ) = 0. Thus E4(ρ) = 0. Thus
E6(ρ) = 0, thus ∆(ρ) = 0, contradiction. Thus M2(Γ(1)) = 0. M0(Γ(1)) is one dimensional
is clear, consisting of constants.

Let j ≥ 1, multiplying ∆ is an isomorphism between Mk−12(Γ(1)) and Sk(Γ(1)). Injection
is clear. Let f ∈ Sk(Γ(1)), then f/∆ have no poles. Thus is in Mk−12(Γ(1)). Thus we
use induction step and our former discussion about the dimensions between Mk(Γ(1)) and
Sk(Γ(1)) to show this.

Then since σ2 and σ3 are clearly algebraically independent, we know G4 and G6 are
algebraically independent as Gk(z) = ζ−1(k)Ek(z).

Then let R be the subring generated by G4 and G6. Since M8,M10 are one dimensional,
they are clearly generated by E2

4 and E4E6. Thus Mk ⊂ R for k ≤ 10. Since ∆ ∈ R, let k be
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the first even integer such that Mk 6⊂ R, k ≥ 12. Since Sk = ∆Mk−12 ⊂ R, and Es
4E

k
6 ∈ R,

with 4k + 6s = k, then we know R contains Mk.

4 Petersson Inner Product and L-function

We define an inner product on Sk(Γ(1)):

Definition 4.1. Let f, g ∈ Sk(Γ(1)), the Petersson Inner Product is defined as

〈f, g〉 =
x

Γ(1)/H

f(z)g(z)yk
dxdy

y2

Clearly, since =(γ(z)) = =(z)
|cz+d|2 , where γ ∈ Γ(1), we know the inner product is invariant

under our action by γ.
If n > 0, qn → 0 as z → ∞. Since a cusp form has a Fourier expansion

∑
anq

n with
an 6= 0 for n > 0. A cusp form decays quickly as y → ∞. Thus the above definition is well
defined.

Lemma 4.2. If at least one of f, g is a cusp form, the Petersson inner product is well-defined.

Proof. Since we can integrate over a compact set containing each cusp, it suffices to prove
the lemma for the cusp at infinity. Since f(z)g(z) ∈ O(e−cy), with one of them a cusp form,
the integral is dominated by

∫
e−cyyk−2 <∞.

Definition 4.3. Let f(z) =
∑∞

n=0 anq
n be a modular form. We define L(s, f) =

∑∞
n=1 ann

−s

be the L-function of f .

Proposition 4.4. If f is cuspidal, its Fourier coefficients satisfy an ≤ Cnk/2 for some C
independent of n. (This is not necessarily true for f not being a cusp form, but the L-function
should be convergent for larger <(s))

Proof. It is clear that |f(z)yk/2| is invariant under our action. Since f is a cusp form, the
function decays as z approaches the cusp. Then it is bounded on the fundamental domain.
Thus ∃C1 such that |f(z)yk/2| ≤ C1. Fix y, we have

|an|e−2πny = |
∫ 1

0

f(x+ iy)e−2πin(x+iy)dx|e−2πny ≤
∫ 1

0

|f(x+ iy)e−2πinx|dx ≤ C1y
−k
2

Then pick y = 1
n

to get an < e2πC1n
k/2, which proves our theorem.

Proposition 4.5. Let Λ(s, f) = (2π)−sΓ(s)L(s, f), then Λ(s, f) extends to an analytic func-
tion of s if f is a cusp form. Otherwise it has simple poles at s = 0 and s = k, where
Λ(s, f) = (−1)k/2Λ(k − s, f).

Proof. If f is a cusp form, f(iy) → 0 as y → ∞. When γ = S, f(iy) = (−1)k/2y−kf(i/y).
Then f(iy) → 0 when y → 0. Thus

∫∞
0
f(iy)ys dy

y
is convergent for all s. Thus we see

that this is analytic. If <(s) is large,
∫∞

0
e−2πnyys dy

y
= (2π)−sΓ(s), we know that the above

function is indeed Λ(s, f). Then we use action by S and replace 1
y

by y, we have the recursive
definition. Moreover, since 0 gives a pole for f not cuspital, it is clear that it has another
pole at s = k.
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