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Definition. A ⊆ R has strong measure 0 if for all sequences εi : i ∈ ω, εi > 0
there exists intervals Ii with len(Ii) < εi such that A ⊆

⋃
Ii.

Remark. Clearly if A has strong measure 0 then A has measure 0. However,
e.g. the Cantor set has measure 0 but does not have strong measure 0.

Definition. The Borel conjecture states that every strong measure 0 set is
countable.

Theorem 0.1. The Borel conjecture is independent of ZFC.

1 Failure of the Borel Conjecture

Recall: MA states that for any ccc forcing P and family of dense subsets D =
{D : D ⊆ P dense in P} with |D| < 2ω, there exists a filter G meeting all
D ∈ D. Also recall that CH implies MA.

It is known that CH implies that there is an uncountable strong measure
zero set, i.e. the Borel Conjecture is false. In fact, more generally:

Theorem 1.1. If MA holds then there is a strong measure 0 set of size c.

Definition. We say that X ⊆ [0, 1] has the Rothberger property if for all inter-
vals Ixn : n ∈ ω all containing x with x ∈ X, there exists a sequence xn ∈ X
s.t. X ⊆

⋃
Ixnn.

Observe that if X has the Rothberger property then X has strong measure
0: fix εn, just take len(Ixn) < εn for all x, n.

Lemma 1.2 (Martin–Solovay). If MA holds then the union of < c-many mea-
gre sets is meagre. Equivalently, any < c intersection of dense open sets is
dense.

Lemma 1.3. If MA holds then every X ⊆ [0, 1] with size < c has the Rothberger
property, hence has strong measure 0.
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Proof. For all x ∈ X we have a sequence of intervals Ixn. WLOG we shrink
them to have rational endpoints. So for each n, we can enumerate {Ixn : x ∈ X}
(after shrinking this is countable) as {I0n, I1n, . . . }. For each x ∈ X, define

Ax = {f ∈ ωω : x 6∈
⋃
n<ω I

f(n)
n }. Then Ax is nowhere dense: suppose Ax is

dense in some open set given by finite stem s, then for any g � s there is finite

t ≺ g s.t. if f � t then x 6∈
⋃
I
f(n)
n .

But above s, we can define g(n) to be some m such that x ∈ Imn , which
exists since x ∈ Ixn and Ixn appears somewhere in the nth enumeration. Then
for any finite t � s with t ≺ g, g is a counterexample.

Now since |X| < c, by Lemma 1.2,
⋃
x∈X Ax is meagre, so there is f ∈

ωω −
⋃
x∈X Ax. So X ⊆

⋃
I
f(n)
n and we are done.

Remark. The above lemma already implies that the Borel conjecture fails in a
lot of models, e.g. if MA + c = ℵ2 holds. But it not yet shows Theorem 1.1.

Definition. We say that X ⊆ [0, 1] is concentrated around a set C ⊆ [0, 1] if
|X −

⋃
c∈C Ic| < c for all intervals Ic which contains c.

Lemma 1.4. If MA holds and X is concentrated around a countable set C,
then X has strong measure 0.

Proof. Fix εi. Enumerate C = {cn}. Pick Jn containing cn with length < ε2n.
X −

⋃
Jn has size < c, so by Lemma 1.3 has strong measure 0. So there are

intervals Kn with len(Kn) < ε2n+1 which cover it. Then Jn and Kn together
cover X.

Definition. A generalized Luzin set is a subset of R which is concentrated
around every dense subset of [0, 1].

Lemma 1.5. If MA holds then there is a generalized Luzin set of size c.

Proof. Enumerate the dense open subsets of [0, 1] as Dα : α < c. We construct
{xα : α < c} inductively.

At stage α, choose xα from
⋂
β<αDβ distinct from the previous choices

{xβ : β < α}. This is possible since by Lemma 1.2, {xβ : β < α} is meagre and⋂
β<αDβ is dense, so the complement of {xβ : β < α}, which is comeagre, must

meet
⋂
β<αDβ .

Now we verify that X = {xα : α < c} is a generalized Luzin set. Let
C be dense, fix intervals Ic for c ∈ C, then

⋃
c∈C Ic is dense open, which

appears as Dα for some β < c. By construction, if α > β then xα ∈ Dβ , so
X −

⋃
Ic ⊆ {xα : α ≤ β} which has size < c. (This follows since under MA, c

is regular.)

Proof for Theorem 1.1. Follows from Lemma 1.4 and 1.5.
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2 Consistency of the Borel Conjecture

Theorem 2.1 (Laver). Let M |= ZFC + CH, then there is a forcing extension
M [G] where the Borel conjecture holds and c = ℵ2.

Definition. The Laver forcing J is the following forcing: the conditions are
trees T ⊆ ω<ω, ordered by S ≤ T iff S ⊆ T . Each condition T ∈ J has a stem
sT , i.e. for any s ∈ T either sT � s or s � sT . Moreover, if sT � s and s ∈ T
then |{n : s_n ∈ T}| = ω. I.e. T is countably branching at every node including
or extending the stem sT .

Definition. Dω2
is the countable support iteration of J of length ω2, which is

given by the following:

• 〈Dα : α ≤ ω2〉 and 〈Q̇α : α < ω2〉 s.t. Q̇α is a Dα-name, 1α 
 Q̇α to be J
in M [Gα];

• D1 = {p : p is a function 1→ J} ' J;

• Dα+1 = Dα ∗ Q̇α = {p : p|α = p ∈ Dα, p(α) = q̇, which is a Dα-name, p 

q̇ ∈ Q̇α};

• At limit stages β with cf(β) = ω we take the inverse limit, i.e. Dβ = {p :
p is a sequence of length β, p|α ∈ Dα for α < β}, at β with cf(β) ≥ ω1

we take the direct limit, i.e. the subset of the inverse limit such that
p(α) = 1̇Q̇α

for all sufficiently large α. Equivalently, for any limit β and

α < β, p|α ∈ Dα and supp(p) = {α < β : p(α) 6= 1̇Q̇α
} is countable.

Remark. Adding a Cohen real falsifies the Borel Conjecture, and a finite sup-
port iterations add Cohen reals at stages with cofinality ω, so a countable support
iteration is needed.

Definition. Dαβ is the forcing defined in M [Gα], which contains the functions
p with dom(p) = [α, β) s.t. 1

_
α p ∈ Dα, ordered by p ≤ q iff ∃r ∈ Gα such that

r_p ≤β r_q. Dα is the tail forcing Dαω2 .

We let G be Dω2
-generic over M . It suffices to show that in M [G] there is no

strong measure 0 set of reals of size ℵ1, since any ℵ1-subset of an uncountable
strong measure 0 set has strong measure 0 as well. The theorem will follow from
the following claims:

1. If X is a set of reals of size ℵ1 in M [G], then X ∈M [Gα] for some
α < ω2;

2. If X is a set of reals in M and has strong measure 0 in M [G], then
it is countable;

3. M [Gα] |= (Dω2
)M [Gα] ' Dα.
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Proof outline for Theorem 2.1. Let M [G] |= X has size ℵ1 and has strong mea-
sure 0. By Claim 1 X ∈M [Gα] for some α < ω2. We know M [G] = M [Gα][Gα]
where Gα is Dα-generic over M [Gα]. By Claim 3, Gα and the isomorphism in-
duces some H ∈ M [G] which is (Dω2

)M [Gα]-generic over M [Gα], and moreover
M [Gα][H] = M [G]. So M [Gα][H] |= X has strong measure 0. By Claim 2
(with M [Gα] as the ground model and H as the generic), X is countable.

We need to define some orders ≤n on J and the iteration poset Dω2 . For
this we fix an enumeration of ω<ω = {x0, x1, . . . } such that xi ≺ xj ⇒ i < j
and s_m, s_n,m < n ⇒ i < j. For each T , this induces an enumeration
T 〈0〉, T 〈1〉, . . . of its elements, with T 〈0〉 = sT .

Definition. For S, T ∈ J, S ≤n T means S ≤ T and S〈i〉 = T 〈i〉 for all i ≤ n.
In particular, S ≤0 T means S ≤ T and S and T has the same stem.

For t ∈ T , let Tt = {s ∈ T : s � t or s � t}. {T 〈0〉, . . . , T 〈n〉} induces n+ 1-
many subtrees of T in the following way: Si (i ≤ n) is the subtree

⋃
Tt : t ∈ T

and t is an immediate successor of T 〈i〉, which is not on the list {T 〈0〉, . . . , T 〈n〉}.
Note that since T 〈0〉 is the stem and the other points are above it, T branches
at all these points, and so there must be countably many immediate successors
not on the list. It follows that Si ∈ J with Si〈0〉 = T 〈i〉 as its stem.

Definition. {S0, . . . , Sn} is called the set of components of T at stage n.

Note that the set of components forms a maximal antichain below T in J.

Lemma 2.2. Let m < ω and · · · ≤m+2 Tm+2 ≤m+1 Tm+1 ≤m Tm. Let Tω =⋃
i≥m{Ti〈0〉, . . . , Ti〈i〉}∪{s : s � Tm〈0〉}, then Tω is the unique T ∈ J such that

T ≤i Ti for all i ≥ m.

Proof. In fact, Tω = {s : s � Tm〈0〉} ∪ {Tm〈0〉, . . . , Tm〈m〉, Tm+1〈m + 1〉, . . . }.
Let Tk〈k〉 ∈ T , then Tk〈k〉 falls in Ti for i > k because in particular Ti ≤k Tk.
It falls in Ti for i < k because in particular Tk ≤ Ti. So Tω ⊆ Ti for all i.

Observe that the latter part of the expression of Tω lists Tω〈n〉. Observe that
the first i+ 1 components of Ti are Tm〈0〉, . . . , Tm〈m〉, . . . , Ti−1〈i− 1〉, Ti〈i〉. so
clearly Tω ≤i Ti. Any such T is unique because if T ≤i Ti then T must
have Tm〈0〉 as stem, {Tm〈0〉, . . . , Tm〈m〉} as the first m + 1 terms, and satisfy
T 〈k〉 = Tk〈k〉 afterwards.

Lemma 2.3 (Laver Condition). Let T ∈ J, ϕn : n ≤ k are sentences of the
forcing language, T 


∨
n≤k ϕn. Then for all i there is T ′ with T ′ ≤i T and

I ⊆ [0, k] of size ≤ i + 1 such that T ′ 

∨
n∈I ϕn. (In particular, when i = 0,

this says there is T ′ ≤ T with the same stem as T forcing one of the ϕn.) (Also
in particular, we can decide any ϕ without extending the stem.)

Proof. Proof by induction on i, starting from i = 0. Let

(∗)s : there are no T ′ ∈ J, n s.t. T ′ ≤0 Ts, T
′ 
 ϕn
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Suppose the claim is false. We construct a tree S starting from the stem T 〈0〉.
I = {n : (∗)T 〈0〉_n} is infinite: otherwise IC = {n : ¬(∗)T 〈0〉_n} is cofinite, so
J = IC ∩ {n : T 〈0〉_n ∈ T} is infinite, so the tree T ′ =

⋃
{TT 〈0〉_ n : n ∈ J}

is in J and T ′ ≤0 T . Now we take s = T 〈0〉_ n ∈ T ′, since (∗)s fails there are
T ′′ ≤ T ′ ≤ T and k s.t. T ′′ 
 ϕk, contradiction. We extend S to all the nodes
in I. For each node we repeat the argument and complete the construction of S.
Since S ≤0 T , no extension of S can force any ϕk, so S 
 ¬

∨
ϕn, contradiction.

For the inductive step, given T , we partition T into components at stage i,
S0, . . . , Si. We apply the base case to each Sk and get S′k ≤0 Sk s.t. S′k 
 ϕnk .
Then T ′ =

⋃
S′k ≤i T and T ′ 


∨
0≤k≤i ϕnk , which is a disjunction of i + 1

formulas.

Lemma 2.4. Let T ∈ J, T 
 ȧ ∈M , then for all i there is a countable A ∈M
and a T ′ ∈ J with T ′ ≤i T such that T ′ 
 ȧ ∈ A (checks omitted).

Proof. The proof is analogous as above, by induction on i. For the base case,
suppose the statement is false. Let

(∗)s : there are no T ′ ∈ J, A countable s.t. T ′ ≤0 Ts, T
′ 
 ȧ ∈ A

Start from T 〈0〉, by the same argument as above I = {n : (∗)T 〈0〉_n} is
infinite, we construct S ≤0 T analogously, then for all countable A ∈ M , S 6

ȧ ∈ A. But since S ≤ T , S 
 ȧ ∈ M . So there is S′ ≤ S s.t. S′ 
 ȧ = x̌ for
some x ∈ M . Then S′ ≤0 TS′〈0〉 and yet S′ 
 ȧ ∈ A for some countable A,
contradicting (∗)S′〈0〉.

For the inductive step we apply the base case to components and take the
finite union of the corresponding As, which is still countable.

Lemma 2.5. Let T ∈ J, T 
 Ȧ is a countable subset of M , then for each n
there is a countable A ∈ M and a T ′ ∈ J with T ′ ≤n T such that T ′ 
 Ȧ ⊆ A
(checks omitted).

Proof. Let Ȧ = {ȧ0, ȧ1, . . . }. Proof by induction on n. For base case n = 0,
start with T0 = T . By Lemma 2.4, there is T1 ≤0 T0 and countable A0 ∈M such
that T1 
 ȧ0 ∈ A0. Use the lemma to find . . . T3 ≤2 T2 ≤1 T1 and A1, A2, . . . .
Use Lemma 2.2 to find Tω ≤n Tn. Then Tω 
 Ȧ ⊆

⋃
Ai, which is countable.

For inductive case, use base case on stage n components.

We generalize the orders ≤n to be defined on the iteration poset Dω2
and

prove generalizations of the above lemmas.

Definition. Let β ≤ ω2, F ⊆ β be finite, p, q ∈ Dβ. p ≤nF q means p ≤ q and
for all α ∈ F , p|α 
 p(α) ≤n q(α).

Lemma 2.6. Let pn : n < ω, pn ∈ Dβ, Fn : n < ω be an increasing chain of
finite sets s.t.

⋃
Fn =

⋃
supp(pn), and pn+1 ≤nFn pn. Then there is a unique

pω ∈ Dβ s.t. pω ≤nFn pn for all n.
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Proof. For α < β, pω(α) is a Dα-name forced to be the tree generated by
{pn(α)〈i〉 : n < ω} where α ∈ Fn and i ≤ n. (pn(α) are Dα-names for trees in

JM [Gα].) If α 6∈
⋃
Fn then pω(α) is forced to be 1α. pω has countable support.

We prove by induction on γ for 1 ≤ γ ≤ β that pω|γ ∈ Dγ and for each n,
pω|γ ≤nFn∩γ pn|γ .

γ = 1: follows from Lemma 2.2.
γ = δ + 1: By induction hypothesis, we have pω|δ, a condition in Dδ,

which satisfies the requirement. If δ 6∈
⋃
Fn, then pω|δ+1 = pω|δ _ 1δ ∈ Dδ+1.

pω|δ+1 ≤nFn∩δ pn|δ+1 clearly follows. If δ ∈
⋃
Fn, then pω|δ forces pω(δ) to be the

tree generated by {pn(δ)〈i〉 : n < ω, i ≤ n}. Let N be the least such that δ ∈ FN ,
then pω(δ) is enumerated by {pN (δ)〈0〉, . . . , pN (δ)〈N〉, pN+1(δ)〈N + 1〉, . . . }.
The conclusion follows from the analysis in Lemma 2.2.

γ is limit: suppose pω|γ 6≤nFn∩γ pn|γ , then there exists n, δ ∈ Fn ∩ γ s.t.
pω|δ 6
 pω(δ) ≤n pn(δ), contradicting the definition of pω.

Lemma 2.7. Let 1 ≤ β ≤ ω2, p ∈ Dβ, F = {α1 < · · · < αi} ⊆ β, n < ω. Then:

i) If p 

∨
j≤k ϕj then there is I ⊆ [0, k] with |I| ≤ (n+ 1)i and p′ ≤nF p s.t.

p′ 

∨
j∈I ϕj.

ii) If p 
 ȧ ∈M then there is a countable A ∈M and p′ ≤nF p s.t. p′ 
 ȧ ∈ A.

iii) If p 
 Ȧ is a countable subset of M then there is a countable A ∈M and
p′ ≤nF p s.t. p′ 
 Ȧ ⊆ A.

iv) If β < δ ≤ ω2 and p 
 ḟ ∈ Dβδ then there is an f ∈ Dβδ and p′ ≤nF p s.t.

p′ 
 ḟ = f .

Proof. By induction on β.
Base case. β = 1. i) is Lemma 2.3. ii) is Lemma 2.4. iii) let Ȧ = {ȧ1, ȧ2, . . . }.

Start with pn = p and ȧ1, use the base case of ii), get pn+1 ≤n p and pn+1 

ȧ1 ∈ A1, which is countable. Use ii) again over n + 1/ȧ2, get pn+2 ≤n+1 pn+1

and pn+2 
 ȧ2 ∈ A2, which is countable. And so on. By Lemma 2.2 we get
pω ≤i pi which forces Ȧ ⊆ A =

⋃
i≥1Ai, which is countable. iv) by definition,

p 
 ḟ ∈ D1δ means p 
 1J
_ ḟ ∈ Dδ. In particular, p 
 supp(ḟ) is countable.

By iii) there is p′ ≤n p and countable A s.t. p′ 
 supp(ḟ) ⊆ A. Let f(γ) be a
Dγ-name such that 
 f(γ) = ḟ(γ) for γ ∈ A, otherwise f(γ) names 1. Then f
has countable support so f ∈ Dβδ.

Successor case. β = σ+1. i) WLOG αi = σ. We have p 

∨
j≤k ϕj . Let Ṡt :

t ≤ n name the tth stage n components of p(σ). We have p|σ _ Ṡt 

∨
j≤k ϕj .

So p|σ 
 (Ṡt 

∨
j≤k ϕj). Since Lemma 2.3 holds in M [Gσ],

1σ 
 (Ṡt 

∨
j≤k

ϕj → ∃Ṡ′t ≤0 Ṡt, Ṡ
′
t 
 ϕj for some j)

So for each t ≤ n, there is some Ṡ′t s.t. p|σ 
 Ṡ′t ≤0 Ṡt and p|σ 
 (
∨
j≤k Ṡ

′
t 


ϕj). Now p|σ ∈ Dσ, so we can apply IH over G = F∩σ = {α1 ≤ · · · ≤ αi−1} and

6



get q0 ≤nG p|σ and I0 with |I0| ≤ (n+1)i−1 s.t. q0 
 (
∨
j∈I0 Ṡ

′
0 
 ϕj). We iterate

and find qn ≤nG · · · ≤nG q0 where qk 
 (
∨
j∈Ik Ṡ

′
k 
 ϕj). Let Ṡ′ name the union

of Ṡ′k and I =
⋃
Ik, we have |I| ≤ (n+ 1)i, then we have qn 
 (Ṡ′ 


∨
j∈I ϕj),

so qn
_ Ṡ′ 


∨
j∈I ϕj , moreover qn 
 Ṡ′ ≤n p(σ), as desired.

ii) We have p 
 ȧ ∈ M , so p|σ 
 (p(σ) 
 ȧ ∈ M). By Lemma 2.4 applied
in M [Gσ] there is some Ṫ and Ȧ s.t. Ȧ is a Dσ-name for a countable set in
M [Gσ], p|σ 
 Ṫ ≤n p(σ), and p|σ 
 (Ṫ 
 ȧ ∈ Ȧ). Since p|σ 
 Ȧ is countable in
M [Gσ], we can apply iii) at stage σ. We get p′ ≤nG p|σ and a countable A ∈M
s.t. p′ 
 Ȧ ⊆ A. We have p′_ Ṫ 
 Ȧ ⊆ A, while p′ 
 Ṫ ≤n p(σ), as desired.

iii) We have Ȧ = {ȧ1, ȧ2, . . . } which is a Dσ+1-name and p 
 Ȧ is a countable
subset of M . We are free to apply ii) at stage σ+1, starting with F0 = F . So we
get p1 ≤nF0

p and A1 s.t. p1 
 ȧ1 ∈ A1. We need to get an increasing sequence
of finite sets · · · ⊇ F1 ⊇ F0 so that

⋃
Fi =

⋃
supp(pi) (since we have countable

support this is possible), pk+1 ≤nFk pk, and pk 
 ȧk ∈ Ak. Now we are in a

position to apply Lemma 2.6, so we get pω ≤k+nFk
pk which forces Ȧ ⊆

⋃
Ak. In

particular pω ≤nF p, as desired.
iv) Same as base case, using iii) as inductive hypothesis.
Limit case.
i) β is a limit. We have p ∈ Dβ forcing

∨
ϕj . We go to Dαi+1 where αi is

the greatest member of F , we have p|αi+1 
 (p|[αi+1,β) 

∨
ϕj). Working in

M [Gαi+1] with p|αi+1 ∈ Gαi+1, we know there is f ≤ p|[αi+1,β) s.t. f 
 ϕj
for some j, named by some Dαi+1-name ḟ . By the Forcing Theorem, p|αi+1 

ḟ ≤ p|[αi+1,β),

∨
j≤k ḟ 
 ϕj . By the successor case of iv), there is q ≤nF p|αi+1

and f ∈ Dαi+1,β s.t. q 
 ḟ = f . By IH on i), we have q′ ≤nF q and I s.t.
q′ 


∨
j∈I f 
 ϕj (in particular q′ 
 f 


∨
j∈I ϕj). Let p′ = q′_ f .

ii) Similar as above, we have p|αi+1 
 (p|[αi+1,β) 
 ȧ ∈ M), use iii) and iv)
at stage αi + 1.

Proofs for iii) and iv) in the limit case are the same as the successor case.

Lemma 2.8. For α ≤ ω2, Dα preserves ω1.

Proof. Suppose in M [Gα] there is countable A cofinal in (ω1)M , then some
p ∈ G forces that Ȧ is countable subset of M . By Lemma 2.7 iii), {p′ : p′ 

∃ǍȦ ⊆ Ǎ, Ǎ is countable} is dense below p, so A is in fact covered by some
countable ground model set, which can’t be cofinal in (ω1)M , contradiction.

Lemma 2.9. Assume M satisfies CH. For α ≤ ω2, Dα has the ℵ2-c.c.

Proof. This is shown by showing that the iteration of length α < ω2 has a dense
subset of cardinality ℵ1. See Jech Third Millennium Edition p. 568.

Corollary 2.10. Assume M satisfies CH. For α ≤ ω2, Dα preserves all cofi-
nalities hence cardinals.

Claim 1. If X is a set of reals of size ℵ1 in M [G], then X ∈M [Gα] for some
α < ω2.
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Proof. Let r be any real in M [G], there is a nice name for r whose members
all have the form (n, p) where p ∈ An for some antichain An. By ℵ2-c.c. and
countable support, {An : n < ω} are decided at some stage α with cofinality
ω1. So r appears in M [Gα] as the Gα interpretation of the nice name.

Now let X be a sequence of reals of size ℵ1 in M [G] forced by p to be so,
below p there are conditions pα ∈ G and reals rα s.t. pα 
 X(α) = ṙα for
α < ω1. Again we can go to some stage with cofinality ω1 where all rα appear
and all the pα appear in the generic up to that stage, by countable support.

The above things can be achieved by more general iteration theorems.
(See Jech Third Millennium Edition p. 568 and Halbeisen Combinatorial
Set Theory p. 362.)

• A countable support iteration of proper forcings is proper;

• Any proper forcing preserves ω1.

• A countable support iteration of proper forcing with size ≤ ℵ1
preserves CH.

• A countable support iteration of proper forcings with size ≤ ℵ1 has
the ℵ2-c.c.

In particular, Claim 1 is true for all such iterations with length ω2.

We need to make some further definitions.

Definition. Disjunction of conditions. Let α < β, q′ ∈ Dα, Q be a maximal
antichain compatible with q′ in Dα. Suppose for each q ∈ Q there is pq ∈ Dβ s.t.
pq|α = q. Then there is p ∈ Dβ which satisfies p|α = q′ and for γ ∈ [α, β), p(γ)
is a name such that q_ 1[α,γ) 
 p(γ) = pq(γ). This follows from the Mixing
Lemma.

Definition. Fix F = {α1 < · · · < αi} ⊆ ω2, let (r1, . . . , ri) with each rj ≤ n,
p ∈ Dω2 . Then pr1,...,ri is the condition that takes the rjth stage n component
of p(αj) at position αj, and equal to p at other positions.

Note that {pr1,...,ri} forms a maximal antichain below p of size ni.

Definition. Amalgamation of conditions. Fix F = {α1 < · · · < αi} ⊆ β,
p ∈ Dβ. Let q ∈ Dβ be s.t. q ≤0

F pr1,...,ri , where each rj ≤ n. Then the
amalgamation of p and q is a condition p′ s.t. p′ ≤nF p and p′r1,...,ri ≤0

F q.
p′ can be constructed by the following: within F , update the rjth component
of p(αj) to q(αj). For α 6∈ F , use mixing: p′(α) is forced to be q(α) by the
condition p′|r1,...,rmα , otherwise remains p(α).

Claim 2. If X is a set of reals in M and has strong measure 0 in M [G], then
it is countable in M [G].
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Lemma 2.11. Let ȧ name a real in M [G], p ∈ Dω2 , F ⊆ ω2 be finite. There is
p′ ≤0

F∪{0} p and a real u ∈M such that for all ε > 0, there are cofinitely many

immediate successors t of p′(0)〈0〉 in p′(0) s.t.

p′(0)t
_ p′|[1,ω2) 
 |ȧ− u| < ε .

Proof. We enumerate the immediate successors of p(0)〈0〉 as t0, t1, . . . . For each
n we apply Lemma 2.7 i) in M [G1] and get ḟn s.t.

p(0)tn 
 ḟn ≤0
F−{0} p|[1,ω2), ḟn 
 ȧ ∈ In

Where In is among [0, 1
n ), [ 1n ,

2
n ), . . . . By Lemma 2.7 iv) there is qn ≤0 p(0)tn

and fn ∈ D1 s.t. qn 
 ḟn = fn. Let pn = qn
_ fn.

Now there is an infinite A ⊆ ω such that 〈In : n ∈ A〉 converges to a real u.
(By Bolzano–Weierstrass.) Let p′ be the disjunction of {pn : n ∈ A}. We verify
that p′ is as desired. We have p′(0) =

⋃
{qn : n ∈ A} (since {qn : n ∈ A} is

a maximal antichain below this condition, and we’ve extended each qn in this
antichain to pn). Fix ε, go to N ∈ A such that len(IN ) < ε. Then for all n > N ,
n ∈ A, qn (which is a tree above an immediate successor of the root of p′(0))
forces fn 
 ȧ ∈ In, so fn 
 |ȧ−u| < ε. Also qn 
 p′|[1,ω2) to be fn, by definition
of p′, so qn

_ p′|[1,ω2) 
 |ȧ− u| < ε, as desired.

Lemma 2.12. Let ȧ name a real in M [G], p ∈ Dω2
, F ⊆ [1, ω2) be finite. There

is p′ s.t. p′(0) ≤0 p(0), p′|[1,ω2) ≤nF p|[1,ω2), and a finite set of reals U ∈M such
that for all ε > 0, there are cofinitely many immediate successors t of p′(0)〈0〉
in p′(0) s.t.

p′(0)t
_ p′|[1,ω2) 
 ∃u ∈ U |ȧ− u| < ε .

Proof. Let |F | = i, b = (n+ 1)i, we break p(α) : α ∈ F into stage n components
(there are n + 1 many at each α). Let ~r0, . . . , ~rb−1 enumerate the sequences
(r1, . . . , ri) with each rj ≤ n. Start from p0 = p, we construct p′ in b steps. At

step j ≤ b − 1, we apply Lemma 2.11 to p
~rj
j , get qj ≤0

F∪{0} p
~rj
j and a ground

model real uj s.t. for all ε there are cofinitely many immediate successors t of
the root of qj(0) s.t.

qj(0)t
_ qj |[1,ω2) 
 |ȧ− uj | < ε .

Define pj+1 to be the amalgamation of pj and qj . Define p′ to be pb and
U = {u0, . . . , ub−1}. We verify that p′ and U are as desired. Fix ε. There
are infinitely many immediate successors t of the root in p′(0). They are also
immediate successors of the root in qj(0) for all j, so there are cofinitely many
s.t.

qj(0)t
_ qj |[1,ω2) 
 |ȧ− uj | < ε .

It follows that
qj(0)t

_ qj |[1,ω2) 
 ∃u ∈ U |ȧ− u| < ε .
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Since there are finitely many js and p′(0)t
_ p′|[1,ω2) extends qj(0)t

_ qj |[1,ω2),
it follows that

p′(0)t
_ p′|[1,ω2) 
 ∃u ∈ U |ȧ− u| < ε .

For cofinitely many ts, as desired.

Lemma 2.13. Let ȧ0, ȧ1, . . . be names for reals in M [G], p ∈ Dω2
. Then there

is p′ ≤ p with p′(0) ≤0 p(0) and some finite sets of reals Us, one for each node
s ∈ p′(0) extending the root p′(0)〈0〉 with len(s) = len(p′(0)〈0〉) + j, satisfying:
for any ε > 0, there are cofinitely many immediate successors t of s in p′(0) s.t.

p′(0)t
_ p′|[1,ω2) 
 ∃u ∈ Us|ȧj − u| < ε .

Proof. Start from p(0)〈0〉. Apply the previous lemma on p, ȧ0, and some finite
F0, we get p1 and a finite Up(0)〈0〉 with the stated properties. Let t be an immedi-
ate successor of the root in p1(0), apply the previous lemma on p1(0)t

_ p1|[1,ω2),
ȧ1, and some finite F1 ⊇ F0, we get qt and a finite Ut with the stated proper-
ties, in particular we can make sure qt|[1,ω2) ≤1

F1
p1|[1,ω2). Do this for all the

immediate successors of the root. Let p2 be the disjunction of all qt. Then we
still have p2|[1,ω2) ≤1

F1
p1|[1,ω2). We choose F2 ⊇ F1 and repeat the process for

all the nodes 2 levels above the root in p1 to take care of ȧ2, etc. By countable
support, we can get pj , Fj s.t.

⋃
Fj =

⋃
supp(pj) − {0} and pj+1 ≤jFj pj .

Let p′(0) =
⋂
pj(0) (note that nodes j levels above the root are determined by

pj). We can apply Lemma 2.6 in an extension which contains p′(0), and get the
fusion of {pj |[1,ω2)}, this is the tail of p′. (To be more rigorous, we can apply
Lemma 2.7 iv) here.)

Proof idea: Each node s is associated with a finite Us with the above
property. We know that the strong measure 0 set X is forced to be
covered by

⋃
İj and want to show that X is countable by showing that

X ⊆
⋃
s Us. Assume v 6∈

⋃
s Us, we show that v 6∈ X. It suffices to

show that some condition forces v 6∈
⋃
İj , i.e. v is far from all ȧj by a

margin εj , which are the midpoints of the intervals. At level j, cofinitely
many successors force ȧ to be near some u ∈ Us. Since Us is finite, we
can choose ε and u s.t. |v − ȧj | ≥ |v − u| − |ȧj − u| > 2 ε−|ȧj − u| > ε
for cofinitely many successors. We can let εj be inversely proportional
to the value of the generic at j, so that εj < ε whenever the condition
makes it to the generic, by getting rid of the finitely many numerically
small immediate successors. In this way the condition forces the generic
to hit a large value, so εj < ε at all nodes at level j, forcing v out of Ij .

Proof for Claim 2. Let X ∈ M be a set of ground model reals, p ∈ G forces X
has strong measure 0. Let n = len(p(0)〈0〉). Let g : ω → ω be the generic real
added by G1. For j ≥ n, take εj = 1

g(j) . Take intervals Ij : j ≥ n with length

< εj . Let aj be the midpoints of Ij . These are named by İj , ȧj , resp.

10



Apply Lemma 2.13 to ȧj , we get p′ ≤ p and finite sets of ground model reals
Us for each node s ∈ p′(0) above the root, with the stated properties. We claim
that X ⊆

⋃
s Us, so X is countable.

Let v 6∈
⋃
s Us, it suffices to show that v 6∈ X. We show that there is

T ≤0 p′(0) s.t.

T _ p′|[1,ω2) 
 v 6∈
⋃
İj .

Since p′ 
 X has strong measure 0, p′ 
 X ⊆
⋃
İj , so T _ p′|[1,ω2) 
 v 6∈ X.

If v ∈ X this would be a contradiction. So the conclusion follows from here.
To finish the proof, we construct T starting from the root p′(0)〈0〉. Suppose

the construction at level j ≥ n is finished. For each t on the level j, we choose
cofinitely many immediate successors of t in p′(0), as the following. Since v 6∈ Ut
which is finite, there is ε < |v−u|

2 for all u ∈ Ut. By construction, we can discard
finitely many immediate successors of t in p′(0)t (and everything above them),
and have the remaining part of p′(0)t (call it q) satisfying q_ p′|[1,ω2) 
 ∃u ∈
Ut|ȧj − u| < ε. Furthermore, we fix k s.t. 1

k < ε. We discard another finitely
many immediate successors of t in p′(0)t whose value at j is less than k. The
resulting infinitely many immediate successors are chosen to extend t in T . We
do this for all t on the level j and the level j+ 1 of T is finished. We now check
that T is as desired.

Suppose T _ p′|[1,ω2) ∈ G. Take any j ≥ n. In particular, g|j ∈ p′(0)
(it has length j). So we have a finite Ug|j and a corresponding ε. Moreover

g(j) ≥ k (by construction of T ) so that εj = 1
g(j) ≤

1
k < ε. By construction,

T _ p′|[1,ω2) 
 ∃u ∈ Ug|j |ȧj−u| < ε, so this is true in M [G], let u be the witness.

In M [G], we have |v− ȧj | ≥ |v−u| − |ȧj −u| > 2 ε−|ȧj −u| > ε > εj , so v 6∈ İj .
This is true for all j, so M [G] |= v 6∈

⋃
İj , as desired.

Claim 3. M [Gα] |= (Dω2
)M [Gα] ' Dα.

Proof. Informally: by a standard lemma in iterated forcing, there is a name
which in M [Gα] is forced to be the tail forcing. Moreover, M [Gα] thinks this
name is a countable support iteration of J of length ω2.
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