The Borel Conjecture

Yuanshan Li (Tom)

April 10, 2024

This was for a presentation at Professor Natasha Dobrinen's class Topics in Mathematical Logic: Forcing at Notre Dame.

Definition. $A \subseteq \mathbb{R}$ has strong measure 0 if for all sequences $\epsilon_{i}: i \in \omega, \epsilon_{i}>0$ there exists intervals I_{i} with len $\left(I_{i}\right)<\epsilon_{i}$ such that $A \subseteq \bigcup I_{i}$.

Remark. Clearly if A has strong measure 0 then A has measure 0. However, e.g. the Cantor set has measure 0 but does not have strong measure 0.

Definition. The Borel conjecture states that every strong measure 0 set is countable.

Theorem 0.1. The Borel conjecture is independent of ZFC.

1 Failure of the Borel Conjecture

Recall: MA states that for any ccc forcing \mathbb{P} and family of dense subsets $\mathcal{D}=$ $\{D: D \subseteq \mathbb{P}$ dense in $\mathbb{P}\}$ with $|\mathcal{D}|<2^{\omega}$, there exists a filter G meeting all $D \in \mathcal{D}$. Also recall that $\mathbf{C H}$ implies MA.

It is known that $\mathbf{C H}$ implies that there is an uncountable strong measure zero set, i.e. the Borel Conjecture is false. In fact, more generally:

Theorem 1.1. If MA holds then there is a strong measure 0 set of size \mathbf{c}.
Definition. We say that $X \subseteq[0,1]$ has the Rothberger property if for all intervals $I_{x n}: n \in \omega$ all containing x with $x \in X$, there exists a sequence $x_{n} \in X$ s.t. $X \subseteq \bigcup I_{x_{n} n}$.

Observe that if X has the Rothberger property then X has strong measure 0 : fix ϵ_{n}, just take len $\left(I_{x n}\right)<\epsilon_{n}$ for all x, n.

Lemma 1.2 (Martin-Solovay). If MA holds then the union of $<\mathfrak{c}$-many meagre sets is meagre. Equivalently, any $<\mathfrak{c}$ intersection of dense open sets is dense.

Lemma 1.3. If MA holds then every $X \subseteq[0,1]$ with size $<\mathfrak{c}$ has the Rothberger property, hence has strong measure 0.

Proof. For all $x \in X$ we have a sequence of intervals $I_{x n}$. WLOG we shrink them to have rational endpoints. So for each n, we can enumerate $\left\{I_{x n}: x \in X\right\}$ (after shrinking this is countable) as $\left\{I_{n}^{0}, I_{n}^{1}, \ldots\right\}$. For each $x \in X$, define $A_{x}=\left\{f \in \omega^{\omega}: x \notin \bigcup_{n<\omega} I_{n}^{f(n)}\right\}$. Then A_{x} is nowhere dense: suppose A_{x} is dense in some open set given by finite stem s, then for any $g \succ s$ there is finite $t \prec g$ s.t. if $f \succ t$ then $x \notin \bigcup I_{n}^{f(n)}$.

But above s, we can define $g(n)$ to be some m such that $x \in I_{n}^{m}$, which exists since $x \in I_{x n}$ and $I_{x n}$ appears somewhere in the nth enumeration. Then for any finite $t \succeq s$ with $t \prec g, g$ is a counterexample.

Now since $|X|<\mathfrak{c}$, by Lemma 1.2, $\bigcup_{x \in X} A_{x}$ is meagre, so there is $f \in$ $\omega^{\omega}-\bigcup_{x \in X} A_{x}$. So $X \subseteq \bigcup I_{n}^{f(n)}$ and we are done.

Remark. The above lemma already implies that the Borel conjecture fails in a lot of models, e.g. if $\mathbf{M A}+\mathfrak{c}=\aleph_{2}$ holds. But it not yet shows Theorem 1.1.

Definition. We say that $X \subseteq[0,1]$ is concentrated around a set $C \subseteq[0,1]$ if $\left|X-\bigcup_{c \in C} I_{c}\right|<\mathfrak{c}$ for all intervals I_{c} which contains c.

Lemma 1.4. If MA holds and X is concentrated around a countable set C, then X has strong measure 0.

Proof. Fix ϵ_{i}. Enumerate $C=\left\{c_{n}\right\}$. Pick J_{n} containing c_{n} with length $<\epsilon_{2 n}$. $X-\bigcup J_{n}$ has size $<\mathfrak{c}$, so by Lemma 1.3 has strong measure 0 . So there are intervals K_{n} with len $\left(K_{n}\right)<\epsilon_{2 n+1}$ which cover it. Then J_{n} and K_{n} together cover X.

Definition. A generalized Luzin set is a subset of \mathbb{R} which is concentrated around every dense subset of $[0,1]$.

Lemma 1.5. If MA holds then there is a generalized Luzin set of size \mathfrak{c}.
Proof. Enumerate the dense open subsets of $[0,1]$ as $D_{\alpha}: \alpha<\mathfrak{c}$. We construct $\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$ inductively.

At stage α, choose x_{α} from $\bigcap_{\beta<\alpha} D_{\beta}$ distinct from the previous choices $\left\{x_{\beta}: \beta<\alpha\right\}$. This is possible since by Lemma $1.2,\left\{x_{\beta}: \beta<\alpha\right\}$ is meagre and $\bigcap_{\beta<\alpha} D_{\beta}$ is dense, so the complement of $\left\{x_{\beta}: \beta<\alpha\right\}$, which is comeagre, must meet $\bigcap_{\beta<\alpha} D_{\beta}$.

Now we verify that $X=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$ is a generalized Luzin set. Let C be dense, fix intervals I_{c} for $c \in C$, then $\bigcup_{c \in C} I_{c}$ is dense open, which appears as D_{α} for some $\beta<\mathfrak{c}$. By construction, if $\alpha>\beta$ then $x_{\alpha} \in D_{\beta}$, so $X-\bigcup I_{c} \subseteq\left\{x_{\alpha}: \alpha \leq \beta\right\}$ which has size $<\mathfrak{c}$. (This follows since under MA, \mathfrak{c} is regular.)

Proof for Theorem 1.1. Follows from Lemma 1.4 and 1.5.

2 Consistency of the Borel Conjecture

Theorem 2.1 (Laver). Let $M \models \mathbf{Z F C}+\mathbf{C H}$, then there is a forcing extension $M[G]$ where the Borel conjecture holds and $\mathfrak{c}=\aleph_{2}$.

Definition. The Laver forcing \mathbb{J} is the following forcing: the conditions are trees $T \subseteq \omega^{<\omega}$, ordered by $S \leq T$ iff $S \subseteq T$. Each condition $T \in \mathbb{J}$ has a stem s_{T}, i.e. for any $s \in T$ either $s_{T} \preceq s$ or $s \preceq s_{T}$. Moreover, if $s_{T} \preceq s$ and $s \in T$ then $|\{n: s \frown n \in T\}|=\omega$. I.e. T is countably branching at every node including or extending the stem s_{T}.

Definition. $\mathbb{D}_{\omega_{2}}$ is the countable support iteration of \mathbb{J} of length ω_{2}, which is given by the following:

- $\left\langle\mathbb{D}_{\alpha}: \alpha \leq \omega_{2}\right\rangle$ and $\left\langle\dot{Q}_{\alpha}: \alpha<\omega_{2}\right\rangle$ s.t. \dot{Q}_{α} is a \mathbb{D}_{α}-name, $\mathbb{1}_{\alpha} \Vdash \dot{Q}_{\alpha}$ to be \mathbb{J} in $M\left[G_{\alpha}\right]$;
- $\mathbb{D}_{1}=\{p: p$ is a function $1 \rightarrow \mathbb{J}\} \simeq \mathbb{J}$;
- $\mathbb{D}_{\alpha+1}=\mathbb{D}_{\alpha} * \dot{Q}_{\alpha}=\left\{p:\left.p\right|_{\alpha}=p \in \mathbb{D}_{\alpha}, p(\alpha)=\dot{q}\right.$, which is a \mathbb{D}_{α}-name, $p \Vdash$ $\left.\dot{q} \in Q_{\alpha}\right\}$;
- At limit stages β with $c f(\beta)=\omega$ we take the inverse limit, i.e. $\mathbb{D}_{\beta}=\{p$: p is a sequence of length $\beta,\left.p\right|_{\alpha} \in \mathbb{D}_{\alpha}$ for $\left.\alpha<\beta\right\}$, at β with $\operatorname{cf}(\beta) \geq \omega_{1}$ we take the direct limit, i.e. the subset of the inverse limit such that $p(\alpha)=\dot{\mathbb{1}}_{\dot{Q}_{\alpha}}$ for all sufficiently large α. Equivalently, for any limit β and $\alpha<\beta,\left.p\right|_{\alpha} \in \mathbb{D}_{\alpha}$ and $\operatorname{supp}(p)=\left\{\alpha<\beta: p(\alpha) \neq \dot{\mathbb{1}}_{\dot{Q}_{\alpha}}\right\}$ is countable.

Remark. Adding a Cohen real falsifies the Borel Conjecture, and a finite support iterations add Cohen reals at stages with cofinality ω, so a countable support iteration is needed.

Definition. $\mathbb{D}^{\alpha \beta}$ is the forcing defined in $M\left[G_{\alpha}\right]$, which contains the functions p with $\operatorname{dom}(p)=[\alpha, \beta)$ s.t. $\mathbb{1}_{\alpha}^{\prec} p \in \mathbb{D}_{\alpha}$, ordered by $p \leq q$ iff $\exists r \in G_{\alpha}$ such that $r \frown p \leq_{\beta} r^{\frown} q$. \mathbb{D}^{α} is the tail forcing $\mathbb{D}^{\alpha \omega_{2}}$.

We let G be $\mathbb{D}_{\omega_{2}}$-generic over M. It suffices to show that in $M[G]$ there is no strong measure 0 set of reals of size \aleph_{1}, since any \aleph_{1}-subset of an uncountable strong measure 0 set has strong measure 0 as well. The theorem will follow from the following claims:

1. If X is a set of reals of size \aleph_{1} in $M[G]$, then $X \in M\left[G_{\alpha}\right]$ for some $\alpha<\omega_{2} ;$
2. If X is a set of reals in M and has strong measure 0 in $M[G]$, then it is countable;
3. $M\left[G_{\alpha}\right] \vDash\left(\mathbb{D}_{\omega_{2}}\right)^{M\left[G_{\alpha}\right]} \simeq \mathbb{D}^{\alpha}$.

Proof outline for Theorem 2.1. Let $M[G] \models X$ has size \aleph_{1} and has strong measure 0 . By Claim $1 X \in M\left[G_{\alpha}\right]$ for some $\alpha<\omega_{2}$. We know $M[G]=M\left[G_{\alpha}\right]\left[G^{\alpha}\right]$ where G^{α} is \mathbb{D}^{α}-generic over $M\left[G_{\alpha}\right]$. By Claim $3, G^{\alpha}$ and the isomorphism induces some $H \in M[G]$ which is $\left(\mathbb{D}_{\omega_{2}}\right)^{M\left[G_{\alpha}\right]}$-generic over $M\left[G_{\alpha}\right]$, and moreover $M\left[G_{\alpha}\right][H]=M[G]$. So $M\left[G_{\alpha}\right][H] \models X$ has strong measure 0. By Claim 2 (with $M\left[G_{\alpha}\right]$ as the ground model and H as the generic), X is countable.

We need to define some orders \leq^{n} on \mathbb{J} and the iteration poset $\mathbb{D}_{\omega_{2}}$. For this we fix an enumeration of $\omega^{<\omega}=\left\{x_{0}, x_{1}, \ldots\right\}$ such that $x_{i} \prec x_{j} \Rightarrow i<j$ and $s \frown m, s \frown n, m<n \Rightarrow i<j$. For each T, this induces an enumeration $T\langle 0\rangle, T\langle 1\rangle, \ldots$ of its elements, with $T\langle 0\rangle=s_{T}$.

Definition. For $S, T \in \mathbb{J}, S \leq^{n} T$ means $S \leq T$ and $S\langle i\rangle=T\langle i\rangle$ for all $i \leq n$. In particular, $S \leq^{0} T$ means $S \leq T$ and S and T has the same stem.

For $t \in T$, let $T_{t}=\{s \in T: s \preceq t$ or $s \succeq t\} .\{T\langle 0\rangle, \ldots, T\langle n\rangle\}$ induces $n+1$ many subtrees of T in the following way: $S_{i}(i \leq n)$ is the subtree $\bigcup T_{t}: t \in T$ and t is an immediate successor of $T\langle i\rangle$, which is not on the list $\{T\langle 0\rangle, \ldots, T\langle n\rangle\}$. Note that since $T\langle 0\rangle$ is the stem and the other points are above it, T branches at all these points, and so there must be countably many immediate successors not on the list. It follows that $S_{i} \in \mathbb{J}$ with $S_{i}\langle 0\rangle=T\langle i\rangle$ as its stem.

Definition. $\left\{S_{0}, \ldots, S_{n}\right\}$ is called the set of components of T at stage n.
Note that the set of components forms a maximal antichain below T in \mathbb{J}.
Lemma 2.2. Let $m<\omega$ and $\cdots \leq^{m+2} T_{m+2} \leq^{m+1} T_{m+1} \leq^{m} T_{m}$. Let $T_{\omega}=$ $\bigcup_{i \geq m}\left\{T_{i}\langle 0\rangle, \ldots, T_{i}\langle i\rangle\right\} \cup\left\{s: s \preceq T_{m}\langle 0\rangle\right\}$, then T_{ω} is the unique $T \in \mathbb{J}$ such that $T \leq^{i} T_{i}$ for all $i \geq m$.

Proof. In fact, $T_{\omega}=\left\{s: s \preceq T_{m}\langle 0\rangle\right\} \cup\left\{T_{m}\langle 0\rangle, \ldots, T_{m}\langle m\rangle, T_{m+1}\langle m+1\rangle, \ldots\right\}$. Let $T_{k}\langle k\rangle \in T$, then $T_{k}\langle k\rangle$ falls in T_{i} for $i>k$ because in particular $T_{i} \leq^{k} T_{k}$. It falls in T_{i} for $i<k$ because in particular $T_{k} \leq T_{i}$. So $T_{\omega} \subseteq T_{i}$ for all i.

Observe that the latter part of the expression of T_{ω} lists $T_{\omega}\langle n\rangle$. Observe that the first $i+1$ components of T_{i} are $T_{m}\langle 0\rangle, \ldots, T_{m}\langle m\rangle, \ldots, T_{i-1}\langle i-1\rangle, T_{i}\langle i\rangle$. so clearly $T_{\omega} \leq^{i} T_{i}$. Any such T is unique because if $T \leq^{i} T_{i}$ then T must have $T_{m}\langle 0\rangle$ as stem, $\left\{T_{m}\langle 0\rangle, \ldots, T_{m}\langle m\rangle\right\}$ as the first $m+1$ terms, and satisfy $T\langle k\rangle=T_{k}\langle k\rangle$ afterwards.

Lemma 2.3 (Laver Condition). Let $T \in \mathbb{J}, \varphi_{n}: n \leq k$ are sentences of the forcing language, $T \Vdash \bigvee_{n \leq k} \varphi_{n}$. Then for all i there is T^{\prime} with $T^{\prime} \leq^{i} T$ and $I \subseteq[0, k]$ of size $\leq i+1$ such that $T^{\prime} \Vdash \bigvee_{n \in I} \varphi_{n}$. (In particular, when $i=0$, this says there is $T^{\prime} \leq T$ with the same stem as T forcing one of the φ_{n}.) (Also in particular, we can decide any φ without extending the stem.)

Proof. Proof by induction on i, starting from $i=0$. Let

$$
(*)_{s}: \text { there are no } T^{\prime} \in \mathbb{J}, n \text { s.t. } T^{\prime} \leq^{0} T_{s}, T^{\prime} \Vdash \varphi_{n}
$$

Suppose the claim is false. We construct a tree S starting from the stem $T\langle 0\rangle$. $I=\left\{n:(*)_{T\langle 0\rangle-n}\right\}$ is infinite: otherwise $I^{C}=\left\{n: \neg(*)_{T\langle 0\rangle-n}\right\}$ is cofinite, so $J=I^{C} \cap\{n: T\langle 0\rangle \frown n \in T\}$ is infinite, so the tree $T^{\prime}=\bigcup\left\{T_{T\langle 0\rangle-}{ }_{n}: n \in J\right\}$ is in \mathbb{J} and $T^{\prime} \leq^{0} T$. Now we take $s=T\langle 0\rangle{ }^{\frown} n \in T^{\prime}$, since $(*)_{s}$ fails there are $T^{\prime \prime} \leq T^{\prime} \leq T$ and k s.t. $T^{\prime \prime} \Vdash \varphi_{k}$, contradiction. We extend S to all the nodes in I. For each node we repeat the argument and complete the construction of S. Since $S \leq^{0} T$, no extension of S can force any φ_{k}, so $S \Vdash \neg \bigvee \varphi_{n}$, contradiction.

For the inductive step, given T, we partition T into components at stage i, S_{0}, \ldots, S_{i}. We apply the base case to each S_{k} and get $S_{k}^{\prime} \leq^{0} S_{k}$ s.t. $S_{k}^{\prime} \Vdash \varphi_{n_{k}}$. Then $T^{\prime}=\bigcup S_{k}^{\prime} \leq^{i} T$ and $T^{\prime} \Vdash \bigvee_{0 \leq k \leq i} \varphi_{n_{k}}$, which is a disjunction of $i+1$ formulas.

Lemma 2.4. Let $T \in \mathbb{J}, T \Vdash \dot{a} \in M$, then for all i there is a countable $A \in M$ and a $T^{\prime} \in \mathbb{J}$ with $T^{\prime} \leq^{i} T$ such that $T^{\prime} \Vdash \dot{a} \in A$ (checks omitted).

Proof. The proof is analogous as above, by induction on i. For the base case, suppose the statement is false. Let

$$
(*)_{s}: \text { there are no } T^{\prime} \in \mathbb{J}, A \text { countable s.t. } T^{\prime} \leq^{0} T_{s}, T^{\prime} \Vdash \dot{a} \in A
$$

Start from $T\langle 0\rangle$, by the same argument as above $I=\left\{n:(*)_{T\langle 0\rangle-n}\right\}$ is infinite, we construct $S \leq^{0} T$ analogously, then for all countable $A \in M, S \Vdash$ $\dot{a} \in A$. But since $S \leq T, S \Vdash \dot{a} \in M$. So there is $S^{\prime} \leq S$ s.t. $S^{\prime} \Vdash \dot{a}=\check{x}$ for some $x \in M$. Then $S^{\prime} \leq^{0} T_{S^{\prime}\langle 0\rangle}$ and yet $S^{\prime} \Vdash \dot{a} \in A$ for some countable A, contradicting $(*)_{S^{\prime}\langle 0\rangle}$.

For the inductive step we apply the base case to components and take the finite union of the corresponding $A \mathrm{~s}$, which is still countable.

Lemma 2.5. Let $T \in \mathbb{J}, T \Vdash \dot{A}$ is a countable subset of M, then for each n there is a countable $A \in M$ and a $T^{\prime} \in \mathbb{J}$ with $T^{\prime} \leq^{n} T$ such that $T^{\prime} \Vdash \dot{A} \subseteq A$ (checks omitted).

Proof. Let $\dot{A}=\left\{\dot{a}_{0}, \dot{a}_{1}, \ldots\right\}$. Proof by induction on n. For base case $n=0$, start with $T_{0}=T$. By Lemma 2.4 there is $T_{1} \leq^{0} T_{0}$ and countable $A_{0} \in M$ such that $T_{1} \Vdash \dot{a}_{0} \in A_{0}$. Use the lemma to find $\ldots T_{3} \leq^{2} T_{2} \leq^{1} T_{1}$ and A_{1}, A_{2}, \ldots Use Lemma 2.2 to find $T_{\omega} \leq^{n} T_{n}$. Then $T_{\omega} \Vdash \dot{A} \subseteq \bigcup A_{i}$, which is countable.

For inductive case, use base case on stage n components.
We generalize the orders \leq^{n} to be defined on the iteration poset $\mathbb{D}_{\omega_{2}}$ and prove generalizations of the above lemmas.

Definition. Let $\beta \leq \omega_{2}, F \subseteq \beta$ be finite, $p, q \in \mathbb{D}_{\beta} \cdot p \leq_{F}^{n} q$ means $p \leq q$ and for all $\alpha \in F,\left.p\right|_{\alpha} \Vdash p(\alpha) \leq^{n} q(\alpha)$.

Lemma 2.6. Let $p_{n}: n<\omega, p_{n} \in \mathbb{D}_{\beta}, F_{n}: n<\omega$ be an increasing chain of finite sets s.t. $\bigcup F_{n}=\bigcup \operatorname{supp}\left(p_{n}\right)$, and $p_{n+1} \leq_{F_{n}}^{n} p_{n}$. Then there is a unique $p_{\omega} \in \mathbb{D}_{\beta}$ s.t. $p_{\omega} \leq_{F_{n}}^{n} p_{n}$ for all n.

Proof. For $\alpha<\beta, p_{\omega}(\alpha)$ is a \mathbb{D}_{α}-name forced to be the tree generated by $\left\{p_{n}(\alpha)\langle i\rangle: n<\omega\right\}$ where $\alpha \in F_{n}$ and $i \leq n .\left(p_{n}(\alpha)\right.$ are \mathbb{D}_{α}-names for trees in $\mathbb{J}^{M\left[G_{\alpha}\right]}$.) If $\alpha \notin \bigcup F_{n}$ then $p_{\omega}(\alpha)$ is forced to be $\mathbb{1}_{\alpha} \cdot p_{\omega}$ has countable support.

We prove by induction on γ for $1 \leq \gamma \leq \beta$ that $\left.p_{\omega}\right|_{\gamma} \in \mathbb{D}_{\gamma}$ and for each n, $\left.p_{\omega}\right|_{\gamma} \leq\left._{F_{n} \cap \gamma}^{n} p_{n}\right|_{\gamma}$.
$\gamma=1$: follows from Lemma 2.2.
$\gamma=\delta+1$: By induction hypothesis, we have $\left.p_{\omega}\right|_{\delta}$, a condition in \mathbb{D}_{δ}, which satisfies the requirement. If $\delta \notin \bigcup F_{n}$, then $\left.p_{\omega}\right|_{\delta+1}=\left.p_{\omega}\right|_{\delta} \frown \mathbb{1}_{\delta} \in \mathbb{D}_{\delta+1}$. $\left.p_{\omega}\right|_{\delta+1} \leq\left._{F_{n} \cap \delta}^{n} p_{n}\right|_{\delta+1}$ clearly follows. If $\delta \in \bigcup F_{n}$, then $\left.p_{\omega}\right|_{\delta}$ forces $p_{\omega}(\delta)$ to be the tree generated by $\left\{p_{n}(\delta)\langle i\rangle: n<\omega, i \leq n\right\}$. Let N be the least such that $\delta \in F_{N}$, then $p_{\omega}(\delta)$ is enumerated by $\left\{p_{N}(\delta)\langle 0\rangle, \ldots, p_{N}(\delta)\langle N\rangle, p_{N+1}(\delta)\langle N+1\rangle, \ldots\right\}$. The conclusion follows from the analysis in Lemma 2.2 .
γ is limit: suppose $\left.\left.p_{\omega}\right|_{\gamma} \not \mathbb{Z}_{F_{n} \cap \gamma}^{n} p_{n}\right|_{\gamma}$, then there exists $n, \delta \in F_{n} \cap \gamma$ s.t. $\left.p_{\omega}\right|_{\delta} \Vdash p_{\omega}(\delta) \leq^{n} p_{n}(\delta)$, contradicting the definition of p_{ω}.

Lemma 2.7. Let $1 \leq \beta \leq \omega_{2}, p \in \mathbb{D}_{\beta}, F=\left\{\alpha_{1}<\cdots<\alpha_{i}\right\} \subseteq \beta$, $n<\omega$. Then:
i) If $p \Vdash \bigvee_{j \leq k} \varphi_{j}$ then there is $I \subseteq[0, k]$ with $|I| \leq(n+1)^{i}$ and $p^{\prime} \leq_{F}^{n} p$ s.t. $p^{\prime} \Vdash \bigvee_{j \in I} \varphi_{j}$.
ii) If $p \Vdash \dot{a} \in M$ then there is a countable $A \in M$ and $p^{\prime} \leq_{F}^{n} p$ s.t. $p^{\prime} \Vdash \dot{a} \in A$.
iii) If $p \Vdash \dot{A}$ is a countable subset of M then there is a countable $A \in M$ and $p^{\prime} \leq_{F}^{n} p$ s.t. $p^{\prime} \Vdash \dot{A} \subseteq A$.
iv) If $\beta<\delta \leq \omega_{2}$ and $p \Vdash \dot{f} \in \mathbb{D}^{\beta \delta}$ then there is an $f \in \mathbb{D}^{\beta \delta}$ and $p^{\prime} \leq_{F}^{n} p$ s.t. $p^{\prime} \Vdash \dot{f}=f$.

Proof. By induction on β.
Base case. $\beta=1$. i) is Lemma 2.3, ii) is Lemma 2.4, iii) let $\dot{A}=\left\{\dot{a}_{1}, \dot{a}_{2}, \ldots\right\}$. Start with $p_{n}=p$ and \dot{a}_{1}, use the base case of ii), get $p_{n+1} \leq^{n} p$ and $p_{n+1} \Vdash$ $\dot{a}_{1} \in A_{1}$, which is countable. Use ii) again over $n+1 / \dot{a}_{2}$, get $p_{n+2} \leq^{n+1} p_{n+1}$ and $p_{n+2} \Vdash \dot{a}_{2} \in A_{2}$, which is countable. And so on. By Lemma 2.2 we get $p_{\omega} \leq^{i} p_{i}$ which forces $\dot{A} \subseteq A=\bigcup_{i>1} A_{i}$, which is countable. iv) by definition, $p \Vdash \dot{f} \in \mathbb{D}^{1 \delta}$ means $p \Vdash \mathbb{1}_{\mathbb{J}} \frown \dot{f} \in \mathbb{D}_{\delta}$. In particular, $p \Vdash \operatorname{supp}(\dot{f})$ is countable. By iii) there is $p^{\prime} \leq^{n} p$ and countable A s.t. $p^{\prime} \Vdash \operatorname{supp}(\dot{f}) \subseteq A$. Let $f(\gamma)$ be a \mathbb{D}_{γ}-name such that $\Vdash f(\gamma)=\dot{f}(\gamma)$ for $\gamma \in A$, otherwise $f(\gamma)$ names $\mathbb{1}$. Then f has countable support so $f \in \mathbb{D}^{\beta \delta}$.

Successor case. $\beta=\sigma+1$. i) WLOG $\alpha_{i}=\sigma$. We have $p \Vdash \bigvee_{j \leq k} \varphi_{j}$. Let \dot{S}_{t} : $t \leq n$ name the t th stage n components of $p(\sigma)$. We have $\left.p\right|_{\sigma} \frown \dot{S}_{t} \Vdash \bigvee_{j \leq k} \varphi_{j}$. So $\left.p\right|_{\sigma} \Vdash\left(\dot{S}_{t} \Vdash \bigvee_{j \leq k} \varphi_{j}\right)$. Since Lemma 2.3 holds in $M\left[G_{\sigma}\right]$,

$$
\mathbb{1}_{\sigma} \Vdash\left(\dot{S}_{t} \Vdash \bigvee_{j \leq k} \varphi_{j} \rightarrow \exists \dot{S}_{t}^{\prime} \leq^{0} \dot{S}_{t}, \dot{S}_{t}^{\prime} \Vdash \varphi_{j} \text { for some } j\right)
$$

So for each $t \leq n$, there is some \dot{S}_{t}^{\prime} s.t. $\left.p\right|_{\sigma} \Vdash \dot{S}_{t}^{\prime} \leq^{0} \dot{S}_{t}$ and $\left.p\right|_{\sigma} \Vdash\left(\bigvee_{j \leq k} \dot{S}_{t}^{\prime} \Vdash\right.$ $\left.\varphi_{j}\right)$. Now $\left.p\right|_{\sigma} \in \mathbb{D}_{\sigma}$, so we can apply IH over $G=F \cap \sigma=\left\{\alpha_{1} \leq \cdots \leq \alpha_{i-1}\right\}$ and
get $q_{0} \leq\left._{G}^{n} p\right|_{\sigma}$ and I_{0} with $\left|I_{0}\right| \leq(n+1)^{i-1}$ s.t. $q_{0} \Vdash\left(\bigvee_{j \in I_{0}} \dot{S}_{0}^{\prime} \Vdash \varphi_{j}\right)$. We iterate and find $q_{n} \leq_{G}^{n} \cdots \leq_{G}^{n} q_{0}$ where $q_{k} \Vdash\left(\bigvee_{j \in I_{k}} \dot{S}_{k}^{\prime} \Vdash \varphi_{j}\right)$. Let \dot{S}^{\prime} name the union of \dot{S}_{k}^{\prime} and $I=\bigcup I_{k}$, we have $|I| \leq(n+1)^{i}$, then we have $q_{n} \Vdash\left(\dot{S}^{\prime} \Vdash \bigvee_{j \in I} \varphi_{j}\right)$, so $q_{n} \frown \dot{S}^{\prime} \Vdash \bigvee_{j \in I} \varphi_{j}$, moreover $q_{n} \Vdash \dot{S}^{\prime} \leq^{n} p(\sigma)$, as desired.
ii) We have $p \Vdash \dot{a} \in M$, so $\left.p\right|_{\sigma} \Vdash(p(\sigma) \Vdash \dot{a} \in M)$. By Lemma 2.4 applied in $M\left[G_{\sigma}\right]$ there is some \dot{T} and \dot{A} s.t. \dot{A} is a \mathbb{D}_{σ}-name for a countable set in $M\left[G_{\sigma}\right],\left.p\right|_{\sigma} \Vdash \dot{T} \leq^{n} p(\sigma)$, and $\left.p\right|_{\sigma} \Vdash(\dot{T} \Vdash \dot{a} \in \dot{A})$. Since $\left.p\right|_{\sigma} \Vdash \dot{A}$ is countable in $M\left[G_{\sigma}\right]$, we can apply iii) at stage σ. We get $p^{\prime} \leq\left._{G}^{n} p\right|_{\sigma}$ and a countable $A \in M$ s.t. $p^{\prime} \Vdash \dot{A} \subseteq A$. We have $p^{\prime}-\dot{T} \Vdash \dot{A} \subseteq A$, while $p^{\prime} \Vdash \dot{T} \leq^{n} p(\sigma)$, as desired.
iii) We have $\dot{A}=\left\{\dot{a}_{1}, \dot{a}_{2}, \ldots\right\}$ which is a $\mathbb{D}_{\sigma+1}$-name and $p \Vdash \dot{A}$ is a countable subset of M. We are free to apply ii) at stage $\sigma+1$, starting with $F_{0}=F$. So we get $p_{1} \leq_{F_{0}}^{n} p$ and A_{1} s.t. $p_{1} \Vdash \dot{a}_{1} \in A_{1}$. We need to get an increasing sequence of finite sets $\cdots \supseteq F_{1} \supseteq F_{0}$ so that $\bigcup F_{i}=\bigcup \operatorname{supp}\left(p_{i}\right)$ (since we have countable support this is possible), $p_{k+1} \leq_{F_{k}}^{n} p_{k}$, and $p_{k} \Vdash \dot{a}_{k} \in A_{k}$. Now we are in a position to apply Lemma 2.6, so we get $p_{\omega} \leq_{F_{k}}^{k+n} p_{k}$ which forces $\dot{A} \subseteq \bigcup A_{k}$. In particular $p_{\omega} \leq_{F}^{n} p$, as desired.
iv) Same as base case, using iii) as inductive hypothesis.

Limit case.
i) β is a limit. We have $p \in \mathbb{D}_{\beta}$ forcing $\bigvee \varphi_{j}$. We go to $\mathbb{D}_{\alpha_{i}+1}$ where α_{i} is the greatest member of F, we have $\left.p\right|_{\alpha_{i}+1} \Vdash\left(\left.p\right|_{\left.\alpha_{i}+1, \beta\right)} \Vdash \bigvee \varphi_{j}\right)$. Working in $M\left[G_{\alpha_{i}+1}\right]$ with $\left.p\right|_{\alpha_{i}+1} \in G_{\alpha_{i}+1}$, we know there is $f \leq\left. p\right|_{\left[\alpha_{i}+1, \beta\right)}$ s.t. $f \Vdash \varphi_{j}$ for some j, named by some $\mathbb{D}_{\alpha_{i}+1}$-name \dot{f}. By the Forcing Theorem, $\left.p\right|_{\alpha_{i}+1} \Vdash$ $\dot{f} \leq\left. p\right|_{\left[\alpha_{i}+1, \beta\right)}, \bigvee_{j \leq k} \dot{f} \Vdash \varphi_{j}$. By the successor case of iv), there is $q \leq\left._{F}^{n} p\right|_{\alpha_{i}+1}$ and $f \in \mathbb{D}^{\alpha_{i}+1, \beta}$ s.t. $q \Vdash \dot{f}=f$. By IH on i), we have $q^{\prime} \leq_{F}^{n} q$ and I s.t. $q^{\prime} \Vdash \bigvee_{j \in I} f \Vdash \varphi_{j}$ (in particular $q^{\prime} \Vdash f \Vdash \bigvee_{j \in I} \varphi_{j}$). Let $p^{\prime}=q^{\prime} \frown f$.
ii) Similar as above, we have $\left.p\right|_{\alpha_{i}+1} \Vdash\left(\left.p\right|_{\left.\alpha_{i}+1, \beta\right)} \Vdash \dot{a} \in M\right)$, use iii) and iv) at stage $\alpha_{i}+1$.

Proofs for iii) and iv) in the limit case are the same as the successor case.
Lemma 2.8. For $\alpha \leq \omega_{2}, \mathbb{D}_{\alpha}$ preserves ω_{1}.
Proof. Suppose in $M\left[G_{\alpha}\right]$ there is countable A cofinal in $\left(\omega_{1}\right)^{M}$, then some $p \in G$ forces that \dot{A} is countable subset of M. By Lemma 2.7 iii), $\left\{p^{\prime}: p^{\prime} \Vdash\right.$ $\exists \check{A} \dot{A} \subseteq \check{A}, \check{A}$ is countable is dense below p, so A is in fact covered by some countable ground model set, which can't be cofinal in $\left(\omega_{1}\right)^{M}$, contradiction.

Lemma 2.9. Assume M satisfies $\mathbf{C H}$. For $\alpha \leq \omega_{2}, \mathbb{D}_{\alpha}$ has the \aleph_{2}-c.c.
Proof. This is shown by showing that the iteration of length $\alpha<\omega_{2}$ has a dense subset of cardinality \aleph_{1}. See Jech Third Millennium Edition p. 568.

Corollary 2.10. Assume M satisfies $\mathbf{C H}$. For $\alpha \leq \omega_{2}, \mathbb{D}_{\alpha}$ preserves all cofnalities hence cardinals.

Claim 1. If X is a set of reals of size \aleph_{1} in $M[G]$, then $X \in M\left[G_{\alpha}\right]$ for some $\alpha<\omega_{2}$.

Proof. Let r be any real in $M[G]$, there is a nice name for r whose members all have the form (n, p) where $p \in A_{n}$ for some antichain A_{n}. By \aleph_{2}-c.c. and countable support, $\left\{A_{n}: n<\omega\right\}$ are decided at some stage α with cofinality ω_{1}. So r appears in $M\left[G_{\alpha}\right]$ as the G_{α} interpretation of the nice name.

Now let X be a sequence of reals of size \aleph_{1} in $M[G]$ forced by p to be so, below p there are conditions $p_{\alpha} \in G$ and reals r_{α} s.t. $p_{\alpha} \Vdash X(\alpha)=\dot{r}_{\alpha}$ for $\alpha<\omega_{1}$. Again we can go to some stage with cofinality ω_{1} where all r_{α} appear and all the p_{α} appear in the generic up to that stage, by countable support.

The above things can be achieved by more general iteration theorems. (See Jech Third Millennium Edition p. 568 and Halbeisen Combinatorial Set Theory p. 362.)

- A countable support iteration of proper forcings is proper;
- Any proper forcing preserves ω_{1}.
- A countable support iteration of proper forcing with size $\leq \aleph_{1}$ preserves CH.
- A countable support iteration of proper forcings with size $\leq \aleph_{1}$ has the \aleph_{2}-c.c.

In particular, Claim 1 is true for all such iterations with length ω_{2}.

We need to make some further definitions.
Definition. Disjunction of conditions. Let $\alpha<\beta, q^{\prime} \in \mathbb{D}_{\alpha}, Q$ be a maximal antichain compatible with q^{\prime} in \mathbb{D}_{α}. Suppose for each $q \in Q$ there is $p_{q} \in \mathbb{D}_{\beta}$ s.t. $\left.p_{q}\right|_{\alpha}=q$. Then there is $p \in \mathbb{D}_{\beta}$ which satisfies $\left.p\right|_{\alpha}=q^{\prime}$ and for $\gamma \in[\alpha, \beta)$, $p(\gamma)$ is a name such that $q \frown \mathbb{1}_{[\alpha, \gamma)} \Vdash p(\gamma)=p_{q}(\gamma)$. This follows from the Mixing Lemma.

Definition. Fix $F=\left\{\alpha_{1}<\cdots<\alpha_{i}\right\} \subseteq \omega_{2}$, let $\left(r_{1}, \ldots, r_{i}\right)$ with each $r_{j} \leq n$, $p \in \mathbb{D}_{\omega_{2}}$. Then $p^{r_{1}, \ldots, r_{i}}$ is the condition that takes the r_{j} th stage n component of $p\left(\alpha_{j}\right)$ at position α_{j}, and equal to p at other positions.

Note that $\left\{p^{r_{1}, \ldots, r_{i}}\right\}$ forms a maximal antichain below p of size n^{i}.
Definition. Amalgamation of conditions. Fix $F=\left\{\alpha_{1}<\cdots<\alpha_{i}\right\} \subseteq \beta$, $p \in \mathbb{D}_{\beta}$. Let $q \in \mathbb{D}_{\beta}$ be s.t. $q \leq_{F}^{0} p^{r_{1}, \ldots, r_{i}}$, where each $r_{j} \leq n$. Then the amalgamation of p and q is a condition p^{\prime} s.t. $p^{\prime} \leq_{F}^{n} p$ and $p^{\prime r_{1}, \ldots, r_{i}} \leq_{F}^{0} q$. p^{\prime} can be constructed by the following: within F, update the r_{j} th component of $p\left(\alpha_{j}\right)$ to $q\left(\alpha_{j}\right)$. For $\alpha \notin F$, use mixing: $p^{\prime}(\alpha)$ is forced to be $q(\alpha)$ by the condition $\left.p^{\prime}\right|_{\alpha} ^{r_{1}, \ldots, r_{m}}$, otherwise remains $p(\alpha)$.

Claim 2. If X is a set of reals in M and has strong measure 0 in $M[G]$, then it is countable in $M[G]$.

Lemma 2.11. Let \dot{a} name a real in $M[G], p \in \mathbb{D}_{\omega_{2}}, F \subseteq \omega_{2}$ be finite. There is $p^{\prime} \leq_{F \cup\{0\}}^{0} p$ and a real $u \in M$ such that for all $\epsilon>0$, there are cofinitely many immediate successors t of $p^{\prime}(0)\langle 0\rangle$ in $p^{\prime}(0)$ s.t.

$$
\left.p^{\prime}(0)_{t} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash|\dot{a}-u|<\epsilon .
$$

Proof. We enumerate the immediate successors of $p(0)\langle 0\rangle$ as t_{0}, t_{1}, \ldots. For each n we apply Lemma 2.7 i) in $M\left[G_{1}\right]$ and get \dot{f}_{n} s.t.

$$
p(0)_{t_{n}} \Vdash \dot{f}_{n} \leq\left._{F-\{0\}}^{0} p\right|_{\left[1, \omega_{2}\right)}, \dot{f}_{n} \Vdash \dot{a} \in I_{n}
$$

Where I_{n} is among $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right), \ldots$ By Lemma 2.7 iv) there is $q_{n} \leq^{0} p(0)_{t_{n}}$ and $f_{n} \in \mathbb{D}^{1}$ s.t. $q_{n} \Vdash \dot{f}_{n}=f_{n}$. Let $p_{n}=q_{n} \frown f_{n}$.

Now there is an infinite $A \subseteq \omega$ such that $\left\langle I_{n}: n \in A\right\rangle$ converges to a real u. (By Bolzano-Weierstrass.) Let p^{\prime} be the disjunction of $\left\{p_{n}: n \in A\right\}$. We verify that p^{\prime} is as desired. We have $p^{\prime}(0)=\bigcup\left\{q_{n}: n \in A\right\}$ (since $\left\{q_{n}: n \in A\right\}$ is a maximal antichain below this condition, and we've extended each q_{n} in this antichain to p_{n}). Fix ϵ, go to $N \in A$ such that $\operatorname{len}\left(I_{N}\right)<\epsilon$. Then for all $n>N$, $n \in A, q_{n}$ (which is a tree above an immediate successor of the root of $p^{\prime}(0)$) forces $f_{n} \Vdash \dot{a} \in I_{n}$, so $f_{n} \Vdash|\dot{a}-u|<\epsilon$. Also $\left.q_{n} \Vdash p^{\prime}\right|_{\left[1, \omega_{2}\right)}$ to be f_{n}, by definition of p^{\prime}, so $\left.q_{n} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash|\dot{a}-u|<\epsilon$, as desired.

Lemma 2.12. Let \dot{a} name a real in $M[G], p \in \mathbb{D}_{\omega_{2}}, F \subseteq\left[1, \omega_{2}\right)$ be finite. There is p^{\prime} s.t. $p^{\prime}(0) \leq^{0} p(0),\left.p^{\prime}\right|_{\left[1, \omega_{2}\right)} \leq\left._{F}^{n} p\right|_{\left[1, \omega_{2}\right)}$, and a finite set of reals $U \in M$ such that for all $\epsilon>0$, there are cofinitely many immediate successors t of $p^{\prime}(0)\langle 0\rangle$ in $p^{\prime}(0)$ s.t.

$$
\left.p^{\prime}(0)_{t} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in U|\dot{a}-u|<\epsilon
$$

Proof. Let $|F|=i, b=(n+1)^{i}$, we break $p(\alpha): \alpha \in F$ into stage n components (there are $n+1$ many at each α). Let $\vec{r}_{0}, \ldots, \vec{r}_{b-1}$ enumerate the sequences $\left(r_{1}, \ldots, r_{i}\right)$ with each $r_{j} \leq n$. Start from $p_{0}=p$, we construct p^{\prime} in b steps. At step $j \leq b-1$, we apply Lemma 2.11 to $p_{j}^{\vec{r}_{j}}$, get $q_{j} \leq_{F \cup\{0\}}^{0} p_{j}^{\vec{r}_{j}}$ and a ground model real u_{j} s.t. for all ϵ there are cofinitely many immediate successors t of the root of $q_{j}(0)$ s.t.

$$
\left.q_{j}(0)_{t} \frown q_{j}\right|_{\left[1, \omega_{2}\right)} \Vdash\left|\dot{a}-u_{j}\right|<\epsilon .
$$

Define p_{j+1} to be the amalgamation of p_{j} and q_{j}. Define p^{\prime} to be p_{b} and $U=\left\{u_{0}, \ldots, u_{b-1}\right\}$. We verify that p^{\prime} and U are as desired. Fix ϵ. There are infinitely many immediate successors t of the root in $p^{\prime}(0)$. They are also immediate successors of the root in $q_{j}(0)$ for all j, so there are cofinitely many s.t.

$$
\left.q_{j}(0)_{t} \frown q_{j}\right|_{\left[1, \omega_{2}\right)} \Vdash\left|\dot{a}-u_{j}\right|<\epsilon .
$$

It follows that

$$
\left.q_{j}(0)_{t} \frown q_{j}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in U|\dot{a}-u|<\epsilon .
$$

Since there are finitely many j s and $\left.p^{\prime}(0)_{t} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)}$ extends $\left.q_{j}(0)_{t} \frown q_{j}\right|_{\left[1, \omega_{2}\right)}$, it follows that

$$
\left.p^{\prime}(0)_{t} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in U|\dot{a}-u|<\epsilon
$$

For cofinitely many $t \mathrm{~s}$, as desired.
Lemma 2.13. Let $\dot{a}_{0}, \dot{a}_{1}, \ldots$ be names for reals in $M[G], p \in \mathbb{D}_{\omega_{2}}$. Then there is $p^{\prime} \leq p$ with $p^{\prime}(0) \leq^{0} p(0)$ and some finite sets of reals U_{s}, one for each node $s \in p^{\prime}(0)$ extending the root $p^{\prime}(0)\langle 0\rangle$ with len $(s)=\operatorname{len}\left(p^{\prime}(0)\langle 0\rangle\right)+j$, satisfying: for any $\epsilon>0$, there are cofinitely many immediate successors t of s in $p^{\prime}(0)$ s.t.

$$
\left.p^{\prime}(0)_{t} \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in U_{s}\left|\dot{a}_{j}-u\right|<\epsilon
$$

Proof. Start from $p(0)\langle 0\rangle$. Apply the previous lemma on p, \dot{a}_{0}, and some finite F_{0}, we get p_{1} and a finite $U_{p(0)\langle 0\rangle}$ with the stated properties. Let t be an immediate successor of the root in $p_{1}(0)$, apply the previous lemma on $\left.p_{1}(0)_{t} \frown p_{1}\right|_{\left[1, \omega_{2}\right)}$, \dot{a}_{1}, and some finite $F_{1} \supseteq F_{0}$, we get q^{t} and a finite U_{t} with the stated properties, in particular we can make sure $\left.q^{t}\right|_{\left[1, \omega_{2}\right)} \leq\left.{ }_{F_{1}}^{1} p_{1}\right|_{\left[1, \omega_{2}\right)}$. Do this for all the immediate successors of the root. Let p_{2} be the disjunction of all q^{t}. Then we still have $\left.p_{2}\right|_{\left[1, \omega_{2}\right)} \leq\left.{ }_{F_{1}}^{1} p_{1}\right|_{\left[1, \omega_{2}\right)}$. We choose $F_{2} \supseteq F_{1}$ and repeat the process for all the nodes 2 levels above the root in p_{1} to take care of \dot{a}_{2}, etc. By countable support, we can get p_{j}, F_{j} s.t. $\bigcup F_{j}=\bigcup \operatorname{supp}\left(p_{j}\right)-\{0\}$ and $p_{j+1} \leq_{F_{j}}^{j} p_{j}$. Let $p^{\prime}(0)=\bigcap p_{j}(0)$ (note that nodes j levels above the root are determined by $\left.p_{j}\right)$. We can apply Lemma 2.6 in an extension which contains $p^{\prime}(0)$, and get the fusion of $\left\{\left.p_{j}\right|_{\left[1, \omega_{2}\right)}\right\}$, this is the tail of p^{\prime}. (To be more rigorous, we can apply Lemma 2.7 iv) here.)

Proof idea: Each node s is associated with a finite U_{s} with the above property. We know that the strong measure 0 set X is forced to be covered by $\bigcup \dot{I}_{j}$ and want to show that X is countable by showing that $X \subseteq \bigcup_{s} U_{s}$. Assume $v \notin \bigcup_{s} U_{s}$, we show that $v \notin X$. It suffices to show that some condition forces $v \notin \bigcup \dot{I}_{j}$, i.e. v is far from all \dot{a}_{j} by a margin ϵ_{j}, which are the midpoints of the intervals. At level j, cofinitely many successors force \dot{a} to be near some $u \in U_{s}$. Since U_{s} is finite, we can choose ϵ and u s.t. $\left|v-\dot{a}_{j}\right| \geq|v-u|-\left|\dot{a}_{j}-u\right|>2 \epsilon-\left|\dot{a}_{j}-u\right|>\epsilon$ for cofinitely many successors. We can let ϵ_{j} be inversely proportional to the value of the generic at j, so that $\epsilon_{j}<\epsilon$ whenever the condition makes it to the generic, by getting rid of the finitely many numerically small immediate successors. In this way the condition forces the generic to hit a large value, so $\epsilon_{j}<\epsilon$ at all nodes at level j, forcing v out of I_{j}.

Proof for Claim 2. Let $X \in M$ be a set of ground model reals, $p \in G$ forces X has strong measure 0 . Let $n=\operatorname{len}(p(0)\langle 0\rangle)$. Let $g: \omega \rightarrow \omega$ be the generic real added by G_{1}. For $j \geq n$, take $\epsilon_{j}=\frac{1}{g(j)}$. Take intervals $I_{j}: j \geq n$ with length $<\epsilon_{j}$. Let a_{j} be the midpoints of I_{j}. These are named by \dot{I}_{j}, \dot{a}_{j}, resp.

Apply Lemma 2.13 to \dot{a}_{j}, we get $p^{\prime} \leq p$ and finite sets of ground model reals U_{s} for each node $s \in p^{\prime}(0)$ above the root, with the stated properties. We claim that $X \subseteq \bigcup_{s} U_{s}$, so X is countable.

Let $v \notin \bigcup_{s} U_{s}$, it suffices to show that $v \notin X$. We show that there is $T \leq^{0} p^{\prime}(0)$ s.t.

$$
\left.T \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash v \notin \bigcup \dot{I}_{j} .
$$

Since $p^{\prime} \Vdash X$ has strong measure $0, p^{\prime} \Vdash X \subseteq \bigcup \dot{I}_{j}$, so $\left.T \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash v \notin X$. If $v \in X$ this would be a contradiction. So the conclusion follows from here.

To finish the proof, we construct T starting from the root $p^{\prime}(0)\langle 0\rangle$. Suppose the construction at level $j \geq n$ is finished. For each t on the level j, we choose cofinitely many immediate successors of t in $p^{\prime}(0)$, as the following. Since $v \notin U_{t}$ which is finite, there is $\epsilon<\frac{|v-u|}{2}$ for all $u \in U_{t}$. By construction, we can discard finitely many immediate successors of t in $p^{\prime}(0)_{t}$ (and everything above them), and have the remaining part of $p^{\prime}(0)_{t}($ call it $q)$ satisfying $\left.q^{\frown} p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in$ $U_{t}\left|\dot{a}_{j}-u\right|<\epsilon$. Furthermore, we fix k s.t. $\frac{1}{k}<\epsilon$. We discard another finitely many immediate successors of t in $p^{\prime}(0)_{t}$ whose value at j is less than k. The resulting infinitely many immediate successors are chosen to extend t in T. We do this for all t on the level j and the level $j+1$ of T is finished. We now check that T is as desired.

Suppose $\left.T \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \in G$. Take any $j \geq n$. In particular, $\left.g\right|_{j} \in p^{\prime}(0)$ (it has length j). So we have a finite $U_{\left.g\right|_{j}}$ and a corresponding ϵ. Moreover $g(j) \geq k$ (by construction of T) so that $\epsilon_{j}=\frac{1}{g(j)} \leq \frac{1}{k}<\epsilon$. By construction, $\left.T \frown p^{\prime}\right|_{\left[1, \omega_{2}\right)} \Vdash \exists u \in U_{\left.g\right|_{j}}\left|\dot{a}_{j}-u\right|<\epsilon$, so this is true in $M[G]$, let u be the witness. In $M[G]$, we have $\left|v-\dot{a}_{j}\right| \geq|v-u|-\left|\dot{a}_{j}-u\right|>2 \epsilon-\left|\dot{a}_{j}-u\right|>\epsilon>\epsilon_{j}$, so $v \notin \dot{I}_{j}$. This is true for all j, so $M[G] \models v \notin \bigcup \dot{I}_{j}$, as desired.

Claim 3. $M\left[G_{\alpha}\right] \vDash\left(\mathbb{D}_{\omega_{2}}\right)^{M\left[G_{\alpha}\right]} \simeq \mathbb{D}^{\alpha}$.
Proof. Informally: by a standard lemma in iterated forcing, there is a name which in $M\left[G_{\alpha}\right]$ is forced to be the tail forcing. Moreover, $M\left[G_{\alpha}\right]$ thinks this name is a countable support iteration of \mathbb{J} of length ω_{2}.

