The Borel Conjecture

Yuanshan Li (Tom)

April 10, 2024

This was for a presentation at Professor Natasha Dobrinen's class Topics in Mathematical Logic: Forcing at Notre Dame.

Definition. $A \subseteq \mathbb{R}$ has strong measure 0 if for all sequences $\epsilon_i : i \in \omega, \epsilon_i > 0$ there exists intervals I_i with $len(I_i) < \epsilon_i$ such that $A \subseteq \bigcup I_i$.

Remark. Clearly if A has strong measure 0 then A has measure 0. However, e.g. the Cantor set has measure 0 but does not have strong measure 0.

Definition. The Borel conjecture states that every strong measure 0 set is countable.

Theorem 0.1. The Borel conjecture is independent of **ZFC**.

1 Failure of the Borel Conjecture

Recall: **MA** states that for any ccc forcing \mathbb{P} and family of dense subsets $\mathcal{D} = \{D : D \subseteq \mathbb{P} \text{ dense in } \mathbb{P}\}$ with $|\mathcal{D}| < 2^{\omega}$, there exists a filter *G* meeting all $D \in \mathcal{D}$. Also recall that **CH** implies **MA**.

It is known that **CH** implies that there is an uncountable strong measure zero set, i.e. the Borel Conjecture is false. In fact, more generally:

Theorem 1.1. If **MA** holds then there is a strong measure 0 set of size c.

Definition. We say that $X \subseteq [0,1]$ has the Rothberger property if for all intervals $I_{xn} : n \in \omega$ all containing x with $x \in X$, there exists a sequence $x_n \in X$ s.t. $X \subseteq \bigcup I_{x_n n}$.

Observe that if X has the Rothberger property then X has strong measure 0: fix ϵ_n , just take $len(I_{xn}) < \epsilon_n$ for all x, n.

Lemma 1.2 (Martin–Solovay). If **MA** holds then the union of $< \mathfrak{c}$ -many meagre sets is meagre. Equivalently, any $< \mathfrak{c}$ intersection of dense open sets is dense.

Lemma 1.3. If **MA** holds then every $X \subseteq [0, 1]$ with size $< \mathfrak{c}$ has the Rothberger property, hence has strong measure 0.

Proof. For all $x \in X$ we have a sequence of intervals I_{xn} . WLOG we shrink them to have rational endpoints. So for each n, we can enumerate $\{I_{xn} : x \in X\}$ (after shrinking this is countable) as $\{I_n^0, I_n^1, \ldots\}$. For each $x \in X$, define $A_x = \{f \in \omega^\omega : x \notin \bigcup_{n < \omega} I_n^{f(n)}\}$. Then A_x is nowhere dense: suppose A_x is dense in some open set given by finite stem s, then for any $g \succ s$ there is finite $t \prec g$ s.t. if $f \succ t$ then $x \notin \bigcup I_n^{f(n)}$.

But above s, we can define g(n) to be some m such that $x \in I_n^m$, which exists since $x \in I_{xn}$ and I_{xn} appears somewhere in the nth enumeration. Then for any finite $t \succeq s$ with $t \prec g$, g is a counterexample.

Now since $|X| < \mathfrak{c}$, by Lemma 1.2, $\bigcup_{x \in X} A_x$ is meagre, so there is $f \in \omega^{\omega} - \bigcup_{x \in X} A_x$. So $X \subseteq \bigcup I_n^{f(n)}$ and we are done.

Remark. The above lemma already implies that the Borel conjecture fails in a lot of models, e.g. if $\mathbf{MA} + \mathbf{c} = \aleph_2$ holds. But it not yet shows Theorem 1.1.

Definition. We say that $X \subseteq [0,1]$ is concentrated around a set $C \subseteq [0,1]$ if $|X - \bigcup_{c \in C} I_c| < \mathfrak{c}$ for all intervals I_c which contains c.

Lemma 1.4. If MA holds and X is concentrated around a countable set C, then X has strong measure 0.

Proof. Fix ϵ_i . Enumerate $C = \{c_n\}$. Pick J_n containing c_n with length $< \epsilon_{2n}$. $X - \bigcup J_n$ has size $< \mathfrak{c}$, so by Lemma 1.3 has strong measure 0. So there are intervals K_n with $len(K_n) < \epsilon_{2n+1}$ which cover it. Then J_n and K_n together cover X.

Definition. A generalized Luzin set is a subset of \mathbb{R} which is concentrated around every dense subset of [0, 1].

Lemma 1.5. If **MA** holds then there is a generalized Luzin set of size \mathfrak{c} .

Proof. Enumerate the dense open subsets of [0,1] as $D_{\alpha} : \alpha < \mathfrak{c}$. We construct $\{x_{\alpha} : \alpha < \mathfrak{c}\}$ inductively.

At stage α , choose x_{α} from $\bigcap_{\beta < \alpha} D_{\beta}$ distinct from the previous choices $\{x_{\beta} : \beta < \alpha\}$. This is possible since by Lemma 1.2, $\{x_{\beta} : \beta < \alpha\}$ is meagre and $\bigcap_{\beta < \alpha} D_{\beta}$ is dense, so the complement of $\{x_{\beta} : \beta < \alpha\}$, which is comeagre, must meet $\bigcap_{\beta < \alpha} D_{\beta}$.

Now we verify that $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ is a generalized Luzin set. Let C be dense, fix intervals I_c for $c \in C$, then $\bigcup_{c \in C} I_c$ is dense open, which appears as D_{α} for some $\beta < \mathfrak{c}$. By construction, if $\alpha > \beta$ then $x_{\alpha} \in D_{\beta}$, so $X - \bigcup I_c \subseteq \{x_{\alpha} : \alpha \leq \beta\}$ which has size $< \mathfrak{c}$. (This follows since under **MA**, \mathfrak{c} is regular.)

Proof for Theorem 1.1. Follows from Lemma 1.4 and 1.5.

2 Consistency of the Borel Conjecture

Theorem 2.1 (Laver). Let $M \models \mathbf{ZFC} + \mathbf{CH}$, then there is a forcing extension M[G] where the Borel conjecture holds and $\mathfrak{c} = \aleph_2$.

Definition. The Laver forcing \mathbb{J} is the following forcing: the conditions are trees $T \subseteq \omega^{<\omega}$, ordered by $S \leq T$ iff $S \subseteq T$. Each condition $T \in \mathbb{J}$ has a stem s_T , i.e. for any $s \in T$ either $s_T \preceq s$ or $s \preceq s_T$. Moreover, if $s_T \preceq s$ and $s \in T$ then $|\{n : s \frown n \in T\}| = \omega$. I.e. T is countably branching at every node including or extending the stem s_T .

Definition. \mathbb{D}_{ω_2} is the countable support iteration of \mathbb{J} of length ω_2 , which is given by the following:

- ⟨D_α : α ≤ ω₂⟩ and ⟨Q
 _α : α < ω₂⟩ s.t. Q
 _α is a D_α-name, 1_α ⊨ Q
 _α to be J in M[G_α];
- $\mathbb{D}_1 = \{p : p \text{ is a function } 1 \to \mathbb{J}\} \simeq \mathbb{J};$
- $\mathbb{D}_{\alpha+1} = \mathbb{D}_{\alpha} * \dot{Q}_{\alpha} = \{p : p|_{\alpha} = p \in \mathbb{D}_{\alpha}, p(\alpha) = \dot{q}, \text{ which is a } \mathbb{D}_{\alpha}\text{-name}, p \Vdash \dot{q} \in \dot{Q}_{\alpha}\};$
- At limit stages β with $cf(\beta) = \omega$ we take the inverse limit, i.e. $\mathbb{D}_{\beta} = \{p : p \text{ is a sequence of length } \beta, p|_{\alpha} \in \mathbb{D}_{\alpha} \text{ for } \alpha < \beta\}$, at β with $cf(\beta) \ge \omega_1$ we take the direct limit, i.e. the subset of the inverse limit such that $p(\alpha) = \dot{\mathbb{I}}_{\dot{Q}_{\alpha}}$ for all sufficiently large α . Equivalently, for any limit β and $\alpha < \beta$, $p|_{\alpha} \in \mathbb{D}_{\alpha}$ and $supp(p) = \{\alpha < \beta : p(\alpha) \neq \dot{\mathbb{I}}_{\dot{Q}_{\alpha}}\}$ is countable.

Remark. Adding a Cohen real falsifies the Borel Conjecture, and a finite support iterations add Cohen reals at stages with cofinality ω , so a countable support iteration is needed.

Definition. $\mathbb{D}^{\alpha\beta}$ is the forcing defined in $M[G_{\alpha}]$, which contains the functions p with $dom(p) = [\alpha, \beta)$ s.t. $\mathbb{1}_{\alpha} p \in \mathbb{D}_{\alpha}$, ordered by $p \leq q$ iff $\exists r \in G_{\alpha}$ such that $r^{\gamma}p \leq_{\beta} r^{\gamma}q$. \mathbb{D}^{α} is the tail forcing $\mathbb{D}^{\alpha\omega_2}$.

We let G be \mathbb{D}_{ω_2} -generic over M. It suffices to show that in M[G] there is no strong measure 0 set of reals of size \aleph_1 , since any \aleph_1 -subset of an uncountable strong measure 0 set has strong measure 0 as well. The theorem will follow from the following claims:

- 1. If X is a set of reals of size \aleph_1 in M[G], then $X \in M[G_\alpha]$ for some $\alpha < \omega_2$;
- 2. If X is a set of reals in M and has strong measure 0 in M[G], then it is countable;

3.
$$M[G_{\alpha}] \models (\mathbb{D}_{\omega_2})^{M[G_{\alpha}]} \simeq \mathbb{D}^{\alpha}$$

Proof outline for Theorem 2.1. Let $M[G] \models X$ has size \aleph_1 and has strong measure 0. By Claim 1 $X \in M[G_\alpha]$ for some $\alpha < \omega_2$. We know $M[G] = M[G_\alpha][G^\alpha]$ where G^α is \mathbb{D}^α -generic over $M[G_\alpha]$. By Claim 3, G^α and the isomorphism induces some $H \in M[G]$ which is $(\mathbb{D}_{\omega_2})^{M[G_\alpha]}$ -generic over $M[G_\alpha]$, and moreover $M[G_\alpha][H] = M[G]$. So $M[G_\alpha][H] \models X$ has strong measure 0. By Claim 2 (with $M[G_\alpha]$ as the ground model and H as the generic), X is countable. \Box

We need to define some orders \leq^n on \mathbb{J} and the iteration poset \mathbb{D}_{ω_2} . For this we fix an enumeration of $\omega^{<\omega} = \{x_0, x_1, \dots\}$ such that $x_i \prec x_j \Rightarrow i < j$ and $s \frown m, s \frown n, m < n \Rightarrow i < j$. For each T, this induces an enumeration $T\langle 0 \rangle, T\langle 1 \rangle, \dots$ of its elements, with $T\langle 0 \rangle = s_T$.

Definition. For $S, T \in J$, $S \leq^n T$ means $S \leq T$ and $S\langle i \rangle = T\langle i \rangle$ for all $i \leq n$. In particular, $S \leq^0 T$ means $S \leq T$ and S and T has the same stem.

For $t \in T$, let $T_t = \{s \in T : s \leq t \text{ or } s \geq t\}$. $\{T\langle 0 \rangle, \ldots, T\langle n \rangle\}$ induces n + 1many subtrees of T in the following way: $S_i \ (i \leq n)$ is the subtree $\bigcup T_t : t \in T$ and t is an immediate successor of $T\langle i \rangle$, which is not on the list $\{T\langle 0 \rangle, \ldots, T\langle n \rangle\}$. Note that since $T\langle 0 \rangle$ is the stem and the other points are above it, T branches at all these points, and so there must be countably many immediate successors not on the list. It follows that $S_i \in \mathbb{J}$ with $S_i\langle 0 \rangle = T\langle i \rangle$ as its stem.

Definition. $\{S_0, \ldots, S_n\}$ is called the set of components of T at stage n.

Note that the set of components forms a maximal antichain below T in \mathbb{J} .

Lemma 2.2. Let $m < \omega$ and $\cdots \leq^{m+2} T_{m+2} \leq^{m+1} T_{m+1} \leq^m T_m$. Let $T_{\omega} = \bigcup_{i \geq m} \{T_i \langle 0 \rangle, \ldots, T_i \langle i \rangle\} \cup \{s : s \leq T_m \langle 0 \rangle\}$, then T_{ω} is the unique $T \in \mathbb{J}$ such that $T \leq^i T_i$ for all $i \geq m$.

Proof. In fact, $T_{\omega} = \{s : s \leq T_m \langle 0 \rangle\} \cup \{T_m \langle 0 \rangle, \ldots, T_m \langle m \rangle, T_{m+1} \langle m+1 \rangle, \ldots\}$. Let $T_k \langle k \rangle \in T$, then $T_k \langle k \rangle$ falls in T_i for i > k because in particular $T_i \leq^k T_k$. It falls in T_i for i < k because in particular $T_k \leq T_i$. So $T_{\omega} \subseteq T_i$ for all i.

Observe that the latter part of the expression of T_{ω} lists $T_{\omega}\langle n \rangle$. Observe that the first i + 1 components of T_i are $T_m \langle 0 \rangle, \ldots, T_m \langle m \rangle, \ldots, T_{i-1} \langle i - 1 \rangle, T_i \langle i \rangle$. so clearly $T_{\omega} \leq^i T_i$. Any such T is unique because if $T \leq^i T_i$ then T must have $T_m \langle 0 \rangle$ as stem, $\{T_m \langle 0 \rangle, \ldots, T_m \langle m \rangle\}$ as the first m + 1 terms, and satisfy $T \langle k \rangle = T_k \langle k \rangle$ afterwards.

Lemma 2.3 (Laver Condition). Let $T \in \mathbb{J}$, $\varphi_n : n \leq k$ are sentences of the forcing language, $T \Vdash \bigvee_{n \leq k} \varphi_n$. Then for all *i* there is T' with $T' \leq^i T$ and $I \subseteq [0, k]$ of size $\leq i + 1$ such that $T' \Vdash \bigvee_{n \in I} \varphi_n$. (In particular, when i = 0, this says there is $T' \leq T$ with the same stem as T forcing one of the φ_n .) (Also in particular, we can decide any φ without extending the stem.)

Proof. Proof by induction on i, starting from i = 0. Let

$$(*)_s$$
: there are no $T' \in \mathbb{J}, n$ s.t. $T' \leq^0 T_s, T' \Vdash \varphi_n$

Suppose the claim is false. We construct a tree S starting from the stem $T\langle 0 \rangle$. $I = \{n : (*)_{T\langle 0 \rangle \frown n}\} \text{ is infinite: otherwise } I^C = \{n : \neg(*)_{T\langle 0 \rangle \frown n}\} \text{ is cofinite, so}$ $J = I^C \cap \{n : T\langle 0 \rangle \frown n \in T\} \text{ is infinite, so the tree } T' = \bigcup \{T_{T\langle 0 \rangle \frown n} : n \in J\}$ is in \mathbb{J} and $T' \leq^0 T$. Now we take $s = T\langle 0 \rangle \cap n \in T'$, since $(*)_s$ fails there are $T'' \leq T' \leq T$ and k s.t. $T'' \Vdash \varphi_k$, contradiction. We extend S to all the nodes in I. For each node we repeat the argument and complete the construction of S. Since $S \leq^0 T$, no extension of S can force any φ_k , so $S \Vdash \neg \bigvee \varphi_n$, contradiction.

For the inductive step, given T, we partition T into components at stage i, S_0, \ldots, S_i . We apply the base case to each S_k and get $S'_k \leq^0 S_k$ s.t. $S'_k \Vdash \varphi_{n_k}$. Then $T' = \bigcup S'_k \leq^i T$ and $T' \Vdash \bigvee_{0 \leq k \leq i} \varphi_{n_k}$, which is a disjunction of i+1formulas.

Lemma 2.4. Let $T \in \mathbb{J}$, $T \Vdash \dot{a} \in M$, then for all i there is a countable $A \in M$ and a $T' \in \mathbb{J}$ with $T' \leq^{i} T$ such that $T' \Vdash \dot{a} \in A$ (checks omitted).

Proof. The proof is analogous as above, by induction on i. For the base case, suppose the statement is false. Let

$(*)_s$: there are no $T' \in \mathbb{J}$, A countable s.t. $T' \leq^0 T_s, T' \Vdash \dot{a} \in A$

Start from T(0), by the same argument as above $I = \{n : (*)_{T(0)} \cap_n\}$ is infinite, we construct $S \leq^0 T$ analogously, then for all countable $A \in M, S \not\models$ $\dot{a} \in A$. But since $S \leq T, S \Vdash \dot{a} \in M$. So there is $S' \leq S$ s.t. $S' \Vdash \dot{a} = \check{x}$ for some $x \in M$. Then $S' \leq^0 T_{S'(0)}$ and yet $S' \Vdash \dot{a} \in A$ for some countable A, contradicting $(*)_{S'(0)}$.

For the inductive step we apply the base case to components and take the finite union of the corresponding As, which is still countable.

Lemma 2.5. Let $T \in \mathbb{J}$, $T \Vdash A$ is a countable subset of M, then for each nthere is a countable $A \in M$ and a $T' \in \mathbb{J}$ with $T' \leq^n T$ such that $T' \Vdash \dot{A} \subseteq A$ (checks omitted).

Proof. Let $\dot{A} = \{\dot{a}_0, \dot{a}_1, \ldots\}$. Proof by induction on *n*. For base case n = 0, start with $T_0 = T$. By Lemma 2.4, there is $T_1 \leq^0 T_0$ and countable $A_0 \in M$ such that $T_1 \Vdash a_0 \in A_0$. Use the lemma to find $\dots T_3 \leq^2 T_2 \leq^1 T_1$ and A_1, A_2, \dots Use Lemma 2.2 to find $T_{\omega} \leq^n T_n$. Then $T_{\omega} \Vdash \dot{A} \subseteq \bigcup A_i$, which is countable.

For inductive case, use base case on stage n components.

We generalize the orders \leq^n to be defined on the iteration poset \mathbb{D}_{ω_2} and prove generalizations of the above lemmas.

Definition. Let $\beta \leq \omega_2$, $F \subseteq \beta$ be finite, $p, q \in \mathbb{D}_{\beta}$. $p \leq_F^n q$ means $p \leq q$ and for all $\alpha \in F$, $p|_{\alpha} \Vdash p(\alpha) \leq^n q(\alpha)$.

Lemma 2.6. Let $p_n : n < \omega$, $p_n \in \mathbb{D}_{\beta}$, $F_n : n < \omega$ be an increasing chain of finite sets s.t. $\bigcup F_n = \bigcup supp(p_n)$, and $p_{n+1} \leq_{F_n}^n p_n$. Then there is a unique $p_{\omega} \in \mathbb{D}_{\beta}$ s.t. $p_{\omega} \leq_{F_n}^n p_n$ for all n.

Proof. For $\alpha < \beta$, $p_{\omega}(\alpha)$ is a \mathbb{D}_{α} -name forced to be the tree generated by $\{p_n(\alpha)\langle i\rangle: n < \omega\}$ where $\alpha \in F_n$ and $i \leq n$. $(p_n(\alpha) \text{ are } \mathbb{D}_{\alpha}$ -names for trees in $\mathbb{J}^{M[G_{\alpha}]}$.) If $\alpha \notin \bigcup F_n$ then $p_{\omega}(\alpha)$ is forced to be $\mathbb{1}_{\alpha}$. p_{ω} has countable support.

We prove by induction on γ for $1 \leq \gamma \leq \beta$ that $p_{\omega}|_{\gamma} \in \mathbb{D}_{\gamma}$ and for each n, $p_{\omega}|_{\gamma} \leq_{F_n \cap \gamma}^n p_n|_{\gamma}$.

 $\gamma = 1$: follows from Lemma 2.2.

 $\gamma = \delta + 1$: By induction hypothesis, we have $p_{\omega}|_{\delta}$, a condition in \mathbb{D}_{δ} , which satisfies the requirement. If $\delta \notin \bigcup F_n$, then $p_{\omega}|_{\delta+1} = p_{\omega}|_{\delta} \cap \mathbb{1}_{\delta} \in \mathbb{D}_{\delta+1}$. $p_{\omega}|_{\delta+1} \leq_{F_n \cap \delta}^n p_n|_{\delta+1}$ clearly follows. If $\delta \in \bigcup F_n$, then $p_{\omega}|_{\delta}$ forces $p_{\omega}(\delta)$ to be the tree generated by $\{p_n(\delta)\langle i\rangle : n < \omega, i \leq n\}$. Let N be the least such that $\delta \in F_N$, then $p_{\omega}(\delta)$ is enumerated by $\{p_N(\delta)\langle 0\rangle, \ldots, p_N(\delta)\langle N\rangle, p_{N+1}(\delta)\langle N+1\rangle, \ldots\}$. The conclusion follows from the analysis in Lemma 2.2.

 γ is limit: suppose $p_{\omega}|_{\gamma} \not\leq_{F_n \cap \gamma}^n p_n|_{\gamma}$, then there exists $n, \delta \in F_n \cap \gamma$ s.t. $p_{\omega}|_{\delta} \not\models p_{\omega}(\delta) \leq^n p_n(\delta)$, contradicting the definition of p_{ω} .

Lemma 2.7. Let $1 \leq \beta \leq \omega_2$, $p \in \mathbb{D}_{\beta}$, $F = \{\alpha_1 < \cdots < \alpha_i\} \subseteq \beta$, $n < \omega$. Then:

- i) If $p \Vdash \bigvee_{j \leq k} \varphi_j$ then there is $I \subseteq [0,k]$ with $|I| \leq (n+1)^i$ and $p' \leq_F^n p$ s.t. $p' \Vdash \bigvee_{j \in I} \varphi_j$.
- *ii)* If $p \Vdash \dot{a} \in M$ then there is a countable $A \in M$ and $p' \leq_F^n p \ s.t. \ p' \Vdash \dot{a} \in A$.
- iii) If $p \Vdash \dot{A}$ is a countable subset of M then there is a countable $A \in M$ and $p' \leq_F^n p$ s.t. $p' \Vdash \dot{A} \subseteq A$.
- iv) If $\beta < \delta \leq \omega_2$ and $p \Vdash \dot{f} \in \mathbb{D}^{\beta\delta}$ then there is an $f \in \mathbb{D}^{\beta\delta}$ and $p' \leq_F^n p$ s.t. $p' \Vdash \dot{f} = f$.

Proof. By induction on β .

Base case. $\beta = 1$. i) is Lemma 2.3. ii) is Lemma 2.4. iii) let $\dot{A} = \{\dot{a}_1, \dot{a}_2, \ldots\}$. Start with $p_n = p$ and \dot{a}_1 , use the base case of ii), get $p_{n+1} \leq^n p$ and $p_{n+1} \Vdash \dot{a}_1 \in A_1$, which is countable. Use ii) again over $n + 1/\dot{a}_2$, get $p_{n+2} \leq^{n+1} p_{n+1}$ and $p_{n+2} \Vdash \dot{a}_2 \in A_2$, which is countable. And so on. By Lemma 2.2 we get $p_{\omega} \leq^i p_i$ which forces $\dot{A} \subseteq A = \bigcup_{i \geq 1} A_i$, which is countable. iv) by definition, $p \Vdash \dot{f} \in \mathbb{D}^{1\delta}$ means $p \Vdash \mathbb{1}_{\mathbb{J}} \frown \dot{f} \in \mathbb{D}_{\delta}$. In particular, $p \Vdash supp(\dot{f})$ is countable. By iii) there is $p' \leq^n p$ and countable A s.t. $p' \Vdash supp(\dot{f}) \subseteq A$. Let $f(\gamma)$ be a \mathbb{D}_{γ} -name such that $\Vdash f(\gamma) = \dot{f}(\gamma)$ for $\gamma \in A$, otherwise $f(\gamma)$ names $\mathbb{1}$. Then f has countable support so $f \in \mathbb{D}^{\beta\delta}$.

Successor case. $\beta = \sigma + 1$. i) WLOG $\alpha_i = \sigma$. We have $p \Vdash \bigvee_{j \leq k} \varphi_j$. Let $\dot{S}_t : t \leq n$ name the *t*th stage *n* components of $p(\sigma)$. We have $p|_{\sigma} \cap \dot{S}_t \Vdash \bigvee_{j \leq k} \varphi_j$. So $p|_{\sigma} \Vdash (\dot{S}_t \Vdash \bigvee_{j \leq k} \varphi_j)$. Since Lemma 2.3 holds in $M[G_{\sigma}]$,

$$\mathbb{1}_{\sigma} \Vdash (\dot{S}_t \Vdash \bigvee_{j \le k} \varphi_j \to \exists \dot{S}'_t \le^0 \dot{S}_t, \dot{S}'_t \Vdash \varphi_j \text{ for some } j)$$

So for each $t \leq n$, there is some \dot{S}'_t s.t. $p|_{\sigma} \Vdash \dot{S}'_t \leq^0 \dot{S}_t$ and $p|_{\sigma} \Vdash (\bigvee_{j \leq k} \dot{S}'_t \Vdash \varphi_j)$. Now $p|_{\sigma} \in \mathbb{D}_{\sigma}$, so we can apply IH over $G = F \cap \sigma = \{\alpha_1 \leq \cdots \leq \alpha_{i-1}\}$ and

get $q_0 \leq_G^n p|_{\sigma}$ and I_0 with $|I_0| \leq (n+1)^{i-1}$ s.t. $q_0 \Vdash (\bigvee_{j \in I_0} \dot{S}'_0 \Vdash \varphi_j)$. We iterate and find $q_n \leq_G^n \cdots \leq_G^n q_0$ where $q_k \Vdash (\bigvee_{j \in I_k} \dot{S}'_k \Vdash \varphi_j)$. Let \dot{S}' name the union of \dot{S}'_k and $I = \bigcup I_k$, we have $|I| \leq (n+1)^i$, then we have $q_n \Vdash (\dot{S}' \Vdash \bigvee_{j \in I} \varphi_j)$, so $q_n \cap \dot{S}' \Vdash \bigvee_{j \in I} \varphi_j$, moreover $q_n \Vdash \dot{S}' \leq^n p(\sigma)$, as desired. ii) We have $p \Vdash \dot{a} \in M$, so $p|_{\sigma} \Vdash (p(\sigma) \Vdash \dot{a} \in M)$. By Lemma 2.4 applied

ii) We have $p \Vdash \dot{a} \in M$, so $p|_{\sigma} \Vdash (p(\sigma) \Vdash \dot{a} \in M)$. By Lemma 2.4 applied in $M[G_{\sigma}]$ there is some \dot{T} and \dot{A} s.t. \dot{A} is a \mathbb{D}_{σ} -name for a countable set in $M[G_{\sigma}], p|_{\sigma} \Vdash \dot{T} \leq^{n} p(\sigma)$, and $p|_{\sigma} \Vdash (\dot{T} \Vdash \dot{a} \in \dot{A})$. Since $p|_{\sigma} \Vdash \dot{A}$ is countable in $M[G_{\sigma}]$, we can apply iii) at stage σ . We get $p' \leq^{n}_{G} p|_{\sigma}$ and a countable $A \in M$ s.t. $p' \Vdash \dot{A} \subseteq A$. We have $p' \cap \dot{T} \Vdash \dot{A} \subseteq A$, while $p' \Vdash \dot{T} \leq^{n} p(\sigma)$, as desired.

iii) We have $\dot{A} = \{\dot{a}_1, \dot{a}_2, ...\}$ which is a $\mathbb{D}_{\sigma+1}$ -name and $p \Vdash \dot{A}$ is a countable subset of M. We are free to apply ii) at stage $\sigma+1$, starting with $F_0 = F$. So we get $p_1 \leq_{F_0}^n p$ and A_1 s.t. $p_1 \Vdash \dot{a}_1 \in A_1$. We need to get an increasing sequence of finite sets $\cdots \supseteq F_1 \supseteq F_0$ so that $\bigcup F_i = \bigcup supp(p_i)$ (since we have countable support this is possible), $p_{k+1} \leq_{F_k}^n p_k$, and $p_k \Vdash \dot{a}_k \in A_k$. Now we are in a position to apply Lemma 2.6, so we get $p_\omega \leq_{F_k}^{k+n} p_k$ which forces $\dot{A} \subseteq \bigcup A_k$. In particular $p_\omega \leq_F^n p$, as desired.

iv) Same as base case, using iii) as inductive hypothesis.

Limit case.

i) β is a limit. We have $p \in \mathbb{D}_{\beta}$ forcing $\bigvee \varphi_j$. We go to \mathbb{D}_{α_i+1} where α_i is the greatest member of F, we have $p|_{\alpha_i+1} \Vdash (p|_{[\alpha_i+1,\beta]} \Vdash \bigvee \varphi_j)$. Working in $M[G_{\alpha_i+1}]$ with $p|_{\alpha_i+1} \in G_{\alpha_i+1}$, we know there is $f \leq p|_{[\alpha_i+1,\beta]}$ s.t. $f \Vdash \varphi_j$ for some j, named by some \mathbb{D}_{α_i+1} -name \dot{f} . By the Forcing Theorem, $p|_{\alpha_i+1} \Vdash$ $\dot{f} \leq p|_{[\alpha_i+1,\beta]}, \bigvee_{j \leq k} \dot{f} \Vdash \varphi_j$. By the successor case of iv), there is $q \leq_F^n p|_{\alpha_i+1}$ and $f \in \mathbb{D}^{\alpha_i+1,\beta}$ s.t. $q \Vdash \dot{f} = f$. By IH on i), we have $q' \leq_F^n q$ and I s.t. $q' \Vdash \bigvee_{j \in I} f \Vdash \varphi_j$ (in particular $q' \Vdash f \Vdash \bigvee_{j \in I} \varphi_j$). Let $p' = q' \cap f$.

ii) Similar as above, we have $p|_{\alpha_i+1} \Vdash (p|_{[\alpha_i+1,\beta)} \Vdash \dot{a} \in M)$, use iii) and iv) at stage $\alpha_i + 1$.

Proofs for iii) and iv) in the limit case are the same as the successor case. \Box

Lemma 2.8. For $\alpha \leq \omega_2$, \mathbb{D}_{α} preserves ω_1 .

Proof. Suppose in $M[G_{\alpha}]$ there is countable A cofinal in $(\omega_1)^M$, then some $p \in G$ forces that \dot{A} is countable subset of M. By Lemma 2.7 iii), $\{p' : p' \Vdash \exists \dot{A}\dot{A} \subseteq \dot{A}, \dot{A}$ is countable} is dense below p, so A is in fact covered by some countable ground model set, which can't be cofinal in $(\omega_1)^M$, contradiction. \Box

Lemma 2.9. Assume M satisfies CH. For $\alpha \leq \omega_2$, \mathbb{D}_{α} has the \aleph_2 -c.c.

Proof. This is shown by showing that the iteration of length $\alpha < \omega_2$ has a dense subset of cardinality \aleph_1 . See Jech *Third Millennium Edition* p. 568.

Corollary 2.10. Assume M satisfies CH. For $\alpha \leq \omega_2$, \mathbb{D}_{α} preserves all cofinalities hence cardinals.

Claim 1. If X is a set of reals of size \aleph_1 in M[G], then $X \in M[G_\alpha]$ for some $\alpha < \omega_2$.

Proof. Let r be any real in M[G], there is a nice name for r whose members all have the form (n, p) where $p \in A_n$ for some antichain A_n . By \aleph_2 -c.c. and countable support, $\{A_n : n < \omega\}$ are decided at some stage α with cofinality ω_1 . So r appears in $M[G_\alpha]$ as the G_α interpretation of the nice name.

Now let X be a sequence of reals of size \aleph_1 in M[G] forced by p to be so, below p there are conditions $p_{\alpha} \in G$ and reals r_{α} s.t. $p_{\alpha} \Vdash X(\alpha) = \dot{r}_{\alpha}$ for $\alpha < \omega_1$. Again we can go to some stage with cofinality ω_1 where all r_{α} appear and all the p_{α} appear in the generic up to that stage, by countable support. \Box

The above things can be achieved by more general iteration theorems. (See Jech *Third Millennium Edition* p. 568 and Halbeisen *Combinatorial Set Theory* p. 362.)

- A countable support iteration of proper forcings is proper;
- Any proper forcing preserves ω_1 .
- A countable support iteration of proper forcing with size $\leq \aleph_1$ preserves **CH**.
- A countable support iteration of proper forcings with size $\leq \aleph_1$ has the \aleph_2 -c.c.
- In particular, Claim 1 is true for all such iterations with length ω_2 .

We need to make some further definitions.

Definition. Disjunction of conditions. Let $\alpha < \beta$, $q' \in \mathbb{D}_{\alpha}$, Q be a maximal antichain compatible with q' in \mathbb{D}_{α} . Suppose for each $q \in Q$ there is $p_q \in \mathbb{D}_{\beta}$ s.t. $p_q|_{\alpha} = q$. Then there is $p \in \mathbb{D}_{\beta}$ which satisfies $p|_{\alpha} = q'$ and for $\gamma \in [\alpha, \beta)$, $p(\gamma)$ is a name such that $q \cap \mathbb{1}_{[\alpha,\gamma)} \Vdash p(\gamma) = p_q(\gamma)$. This follows from the Mixing Lemma.

Definition. Fix $F = \{\alpha_1 < \cdots < \alpha_i\} \subseteq \omega_2$, let (r_1, \ldots, r_i) with each $r_j \leq n$, $p \in \mathbb{D}_{\omega_2}$. Then p^{r_1, \ldots, r_i} is the condition that takes the r_j th stage n component of $p(\alpha_j)$ at position α_j , and equal to p at other positions.

Note that $\{p^{r_1,\ldots,r_i}\}$ forms a maximal antichain below p of size n^i .

Definition. Amalgamation of conditions. Fix $F = \{\alpha_1 < \cdots < \alpha_i\} \subseteq \beta$, $p \in \mathbb{D}_{\beta}$. Let $q \in \mathbb{D}_{\beta}$ be s.t. $q \leq_F^0 p^{r_1, \dots, r_i}$, where each $r_j \leq n$. Then the amalgamation of p and q is a condition p' s.t. $p' \leq_F^n p$ and $p'^{r_1, \dots, r_i} \leq_F^0 q$. p' can be constructed by the following: within F, update the r_j th component of $p(\alpha_j)$ to $q(\alpha_j)$. For $\alpha \notin F$, use mixing: $p'(\alpha)$ is forced to be $q(\alpha)$ by the condition $p'|_{r_1, \dots, r_m}^{r_1, \dots, r_m}$, otherwise remains $p(\alpha)$.

Claim 2. If X is a set of reals in M and has strong measure 0 in M[G], then it is countable in M[G].

Lemma 2.11. Let \dot{a} name a real in M[G], $p \in \mathbb{D}_{\omega_2}$, $F \subseteq \omega_2$ be finite. There is $p' \leq_{F \cup \{0\}}^{0} p$ and a real $u \in M$ such that for all $\epsilon > 0$, there are cofinitely many immediate successors t of $p'(0)\langle 0 \rangle$ in p'(0) s.t.

$$p'(0)_t \cap p'|_{[1,\omega_2)} \Vdash |\dot{a} - u| < \epsilon$$

Proof. We enumerate the immediate successors of $p(0)\langle 0 \rangle$ as t_0, t_1, \ldots For each n we apply Lemma 2.7 i) in $M[G_1]$ and get \dot{f}_n s.t.

$$p(0)_{t_n} \Vdash \dot{f}_n \leq^0_{F-\{0\}} p|_{[1,\omega_2)}, \dot{f}_n \Vdash \dot{a} \in I_n$$

Where I_n is among $[0, \frac{1}{n}), [\frac{1}{n}, \frac{2}{n}), \ldots$ By Lemma 2.7 iv) there is $q_n \leq^0 p(0)_{t_n}$ and $f_n \in \mathbb{D}^1$ s.t. $q_n \Vdash \dot{f}_n = f_n$. Let $p_n = q_n \frown f_n$.

Now there is an infinite $A \subseteq \omega$ such that $\langle I_n : n \in A \rangle$ converges to a real u. (By Bolzano–Weierstrass.) Let p' be the disjunction of $\{p_n : n \in A\}$. We verify that p' is as desired. We have $p'(0) = \bigcup \{q_n : n \in A\}$ (since $\{q_n : n \in A\}$ is a maximal antichain below this condition, and we've extended each q_n in this antichain to p_n). Fix ϵ , go to $N \in A$ such that $len(I_N) < \epsilon$. Then for all n > N, $n \in A$, q_n (which is a tree above an immediate successor of the root of p'(0)) forces $f_n \Vdash \dot{a} \in I_n$, so $f_n \Vdash |\dot{a} - u| < \epsilon$. Also $q_n \Vdash p'|_{[1,\omega_2)}$ to be f_n , by definition of p', so $q_n \cap p'|_{[1,\omega_2)} \Vdash |\dot{a} - u| < \epsilon$, as desired.

Lemma 2.12. Let \dot{a} name a real in M[G], $p \in \mathbb{D}_{\omega_2}$, $F \subseteq [1, \omega_2)$ be finite. There is p' s.t. $p'(0) \leq^0 p(0)$, $p'|_{[1,\omega_2)} \leq^n_F p|_{[1,\omega_2)}$, and a finite set of reals $U \in M$ such that for all $\epsilon > 0$, there are cofinitely many immediate successors t of $p'(0)\langle 0 \rangle$ in p'(0) s.t.

$$p'(0)_t \cap p'|_{[1,\omega_2)} \Vdash \exists u \in U | \dot{a} - u | < \epsilon.$$

Proof. Let |F| = i, $b = (n+1)^i$, we break $p(\alpha) : \alpha \in F$ into stage *n* components (there are n + 1 many at each α). Let $\vec{r}_0, \ldots, \vec{r}_{b-1}$ enumerate the sequences (r_1, \ldots, r_i) with each $r_j \leq n$. Start from $p_0 = p$, we construct p' in *b* steps. At step $j \leq b - 1$, we apply Lemma 2.11 to $p_j^{\vec{r}_j}$, get $q_j \leq_{F \cup \{0\}}^0 p_j^{\vec{r}_j}$ and a ground model real u_j s.t. for all ϵ there are cofinitely many immediate successors t of the root of $q_j(0)$ s.t.

$$q_j(0)_t \cap q_j|_{[1,\omega_2)} \Vdash |\dot{a} - u_j| < \epsilon.$$

Define p_{j+1} to be the amalgamation of p_j and q_j . Define p' to be p_b and $U = \{u_0, \ldots, u_{b-1}\}$. We verify that p' and U are as desired. Fix ϵ . There are infinitely many immediate successors t of the root in p'(0). They are also immediate successors of the root in $q_j(0)$ for all j, so there are cofinitely many s.t.

$$q_j(0)_t \cap q_j|_{[1,\omega_2)} \Vdash |\dot{a} - u_j| < \epsilon$$

It follows that

$$q_j(0)_t \frown q_j|_{[1,\omega_2)} \Vdash \exists u \in U | \dot{a} - u | < \epsilon \,.$$

Since there are finitely many js and $p'(0)_t \cap p'|_{[1,\omega_2)}$ extends $q_j(0)_t \cap q_j|_{[1,\omega_2)}$, it follows that

$$p'(0)_t \cap p'|_{[1,\omega_2)} \Vdash \exists u \in U | \dot{a} - u | < \epsilon$$

For cofinitely many ts, as desired.

Lemma 2.13. Let $\dot{a}_0, \dot{a}_1, \ldots$ be names for reals in $M[G], p \in \mathbb{D}_{\omega_2}$. Then there is $p' \leq p$ with $p'(0) \leq^0 p(0)$ and some finite sets of reals U_s , one for each node $s \in p'(0)$ extending the root $p'(0)\langle 0 \rangle$ with $len(s) = len(p'(0)\langle 0 \rangle) + j$, satisfying: for any $\epsilon > 0$, there are cofinitely many immediate successors t of s in p'(0) s.t.

$$p'(0)_t \cap p'|_{[1,\omega_2)} \Vdash \exists u \in U_s |\dot{a}_j - u| < \epsilon$$

Proof. Start from $p(0)\langle 0 \rangle$. Apply the previous lemma on p, \dot{a}_0 , and some finite F_0 , we get p_1 and a finite $U_{p(0)\langle 0 \rangle}$ with the stated properties. Let t be an immediate successor of the root in $p_1(0)$, apply the previous lemma on $p_1(0)_t \cap p_1|_{[1,\omega_2)}$, \dot{a}_1 , and some finite $F_1 \supseteq F_0$, we get q^t and a finite U_t with the stated properties, in particular we can make sure $q^t|_{[1,\omega_2)} \leq_{F_1}^1 p_1|_{[1,\omega_2)}$. Do this for all the immediate successors of the root. Let p_2 be the disjunction of all q^t . Then we still have $p_2|_{[1,\omega_2)} \leq_{F_1}^1 p_1|_{[1,\omega_2)}$. We choose $F_2 \supseteq F_1$ and repeat the process for all the nodes 2 levels above the root in p_1 to take care of \dot{a}_2 , etc. By countable support, we can get p_j , F_j s.t. $\bigcup F_j = \bigcup supp(p_j) - \{0\}$ and $p_{j+1} \leq_{F_j}^j p_j$. Let $p'(0) = \bigcap p_j(0)$ (note that nodes j levels above the root are determined by p_j). We can apply Lemma 2.6 in an extension which contains p'(0), and get the fusion of $\{p_j|_{[1,\omega_2)}\}$, this is the tail of p'. (To be more rigorous, we can apply Lemma 2.7 iv) here.)

Proof idea: Each node s is associated with a finite U_s with the above property. We know that the strong measure 0 set X is forced to be covered by $\bigcup \dot{I}_j$ and want to show that X is countable by showing that $X \subseteq \bigcup_s U_s$. Assume $v \notin \bigcup_s U_s$, we show that $v \notin X$. It suffices to show that some condition forces $v \notin \bigcup \dot{I}_j$, i.e. v is far from all \dot{a}_j by a margin ϵ_j , which are the midpoints of the intervals. At level j, cofinitely many successors force \dot{a} to be near some $u \in U_s$. Since U_s is finite, we can choose ϵ and u s.t. $|v - \dot{a}_j| \ge |v - u| - |\dot{a}_j - u| > 2\epsilon - |\dot{a}_j - u| > \epsilon$ for cofinitely many successors. We can let ϵ_j be inversely proportional to the value of the generic at j, so that $\epsilon_j < \epsilon$ whenever the condition makes it to the generic, by getting rid of the finitely many numerically small immediate successors. In this way the condition forces the generic to hit a large value, so $\epsilon_j < \epsilon$ at all nodes at level j, forcing v out of I_j .

Proof for Claim 2. Let $X \in M$ be a set of ground model reals, $p \in G$ forces X has strong measure 0. Let $n = len(p(0)\langle 0\rangle)$. Let $g: \omega \to \omega$ be the generic real added by G_1 . For $j \ge n$, take $\epsilon_j = \frac{1}{g(j)}$. Take intervals $I_j: j \ge n$ with length $\langle \epsilon_j$. Let a_j be the midpoints of I_j . These are named by \dot{I}_j, \dot{a}_j , resp.

Apply Lemma 2.13 to \dot{a}_j , we get $p' \leq p$ and finite sets of ground model reals U_s for each node $s \in p'(0)$ above the root, with the stated properties. We claim that $X \subseteq \bigcup_s U_s$, so X is countable.

Let $v \notin \bigcup_s U_s$, it suffices to show that $v \notin X$. We show that there is $T \leq^0 p'(0)$ s.t.

$$T \cap p'|_{[1,\omega_2)} \Vdash v \notin \bigcup \dot{I}_j.$$

Since $p' \Vdash X$ has strong measure $0, p' \Vdash X \subseteq \bigcup \dot{I}_j$, so $T \frown p'|_{[1,\omega_2)} \Vdash v \notin X$. If $v \in X$ this would be a contradiction. So the conclusion follows from here.

To finish the proof, we construct T starting from the root $p'(0)\langle 0 \rangle$. Suppose the construction at level $j \geq n$ is finished. For each t on the level j, we choose cofinitely many immediate successors of t in p'(0), as the following. Since $v \notin U_t$ which is finite, there is $\epsilon < \frac{|v-u|}{2}$ for all $u \in U_t$. By construction, we can discard finitely many immediate successors of t in $p'(0)_t$ (and everything above them), and have the remaining part of $p'(0)_t$ (call it q) satisfying $q \cap p'|_{[1,\omega_2)} \Vdash \exists u \in$ $U_t |\dot{a}_j - u| < \epsilon$. Furthermore, we fix k s.t. $\frac{1}{k} < \epsilon$. We discard another finitely many immediate successors of t in $p'(0)_t$ whose value at j is less than k. The resulting infinitely many immediate successors are chosen to extend t in T. We do this for all t on the level j and the level j + 1 of T is finished. We now check that T is as desired.

Suppose $T \cap p'|_{[1,\omega_2)} \in G$. Take any $j \geq n$. In particular, $g|_j \in p'(0)$ (it has length j). So we have a finite $U_{g|_j}$ and a corresponding ϵ . Moreover $g(j) \geq k$ (by construction of T) so that $\epsilon_j = \frac{1}{g(j)} \leq \frac{1}{k} < \epsilon$. By construction, $T \cap p'|_{[1,\omega_2)} \Vdash \exists u \in U_{g|_j} |\dot{a}_j - u| < \epsilon$, so this is true in M[G], let u be the witness. In M[G], we have $|v - \dot{a}_j| \geq |v - u| - |\dot{a}_j - u| > 2\epsilon - |\dot{a}_j - u| > \epsilon > \epsilon_j$, so $v \notin \dot{I}_j$. This is true for all j, so $M[G] \models v \notin \bigcup \dot{I}_j$, as desired.

Claim 3. $M[G_{\alpha}] \models (\mathbb{D}_{\omega_2})^{M[G_{\alpha}]} \simeq \mathbb{D}^{\alpha}.$

Proof. Informally: by a standard lemma in iterated forcing, there is a name which in $M[G_{\alpha}]$ is forced to be the tail forcing. Moreover, $M[G_{\alpha}]$ thinks this name is a countable support iteration of \mathbb{J} of length ω_2 .