The Number of Models of Unstable Theories without Choice

Abstract

This poster describes and proves some results proved in the paper [2] entitled "Model Theory without Choice: Categoricity" by S. Shelah.

Stable Theories

- Fix a theory T. A formula $\varphi(\overline{x}, \overline{y})$ has the order property if for any $M \models T$ there is $\overline{a}_i, \overline{b}_j \in M, i, j < \omega$ s.t. $M \models \varphi(\overline{a}_i, \overline{b}_j)$ iff i < j.
- *T* is *stable* if no formula has the order property.

A ZFC **Theorem**

(Shelah [1]) If T is unstable and $\kappa > |T|$ is a cardinal, then $I(\kappa, T) = 2^{\kappa}$, the maximal possible number.

Ehrenfeucht-Mostowski Models

Fix a some unstable theory T and a linear order I. In our context, an EM model $M(I) \models T$ is the Skolem hull of order-indiscernible elements $a_s : s \in I$ indexed by I, where the order $a_s < a_t$ is given by the formula witnessing unstablity and is such that $a_s < a_t$ iff $s <_I t$. By the Ramsey theorem and the compactness theorem, M(I) exists for any infinite linear order I. I is called the *skeleton* of M(I).

Partition of Stationary Sets

Solovay famously showed that any S stationary in a regular cardinal κ can be partitioned into κ -many stationary sets, assuming AC. A variation of this is: any S stationary in κ with uncountable cofinality can be partitioned into countably many stationary sets. Both statements are independent of AC.

Idea of Proof

We define some orders. For $A \subseteq \kappa$ and $\alpha < \kappa$, define I^A_{α} to be ω_1^* if $k \in A$, and I^A_{α} is ω^* if $\alpha \notin A$. Define $I^A = \sum_{\alpha < \kappa} I^A_{\alpha}$.

Lemma. Let $\kappa > \aleph_1$ be regular, $A, B \subseteq \kappa$. If $S = A \Delta B$ is stationary then $M(I^A)$ and $M(I^B)$ are not isomorphic.

Proof. Let $F : M(I^A) \to M(I^B)$ be an isomorphism. We show that $A\Delta B$ is nonstationary, i.e. it avoids some club set. Let $a(s) : s \in I^A$ and $b(t) : t \in I^B$ be the skeletons. For every $\alpha \in \kappa$, pick $s_{\alpha} \in I_{\alpha}^{A}$. Then $F(a(s_{\alpha})) \in M(I^{B})$ has the form $\tau_{\alpha}(b(\overline{c}_{\alpha}), b(\overline{d}_{\alpha}))$, where $\overline{c}_{\alpha} \in I^B_{<\alpha}$, $\overline{d}_{\alpha} \in I^B_{>\alpha}$. We observe that there is a club C of α where $I^A_{<\alpha}$ and $I^B_{<\alpha}$ both have size $|\alpha|$. Also, there is a club D of α where for all $\beta < \alpha \ \overline{d}_{\beta} \in I^B_{<\alpha}$, so $S \cap C \cap D$ is stationary, we update S to this set.

Note that since T is countable and κ is regular, we can shrink S such that for $\alpha \in S, \tau_{\alpha}$ is the same term τ , and $\overline{c}_{\alpha}, \overline{d}_{\alpha}$ have the same arity for different $\alpha \in S$. Furthermore, since $\overline{c}_{\alpha} \in I^B_{<\alpha}$, which has size $< |\alpha|$, the map $\alpha \mapsto c^1_{\alpha}$ is regressive. By Fodor's lemma we can shrink S such that c_{α}^{1} is constant on S. Apply this $|\overline{c}|$ -many times, now \overline{c}_{α} is constant on S. At this point, for $\alpha \in S$, $F(a(s_{\alpha})) =$ $\tau(b(\overline{c}), b(\overline{d}_{\alpha}))$ for $\alpha \in S$. We fix $\delta \in S$ to be a limit point of S.

Fix $a \in I^A_{\delta}$, then $F(a) = \sigma(\overline{x}, \overline{y})$ where $\overline{x} \in I^B_{<\delta}$, $\overline{y} \in I^B_{>\delta}$. Choose $x \in I^B_{<\delta}$ above \overline{c} and \overline{x} , and $y \in I^B_{\delta}$ below \overline{y} . By indiscernibility, if $\overline{i}, \overline{j}$ are between x and y, $t(\overline{c},\overline{i}) < F(a)$ iff $t(\overline{c},\overline{j}) < F(a)$. Since δ is a limit point of S, there is $\alpha < \delta, \alpha \in S$ such that $x < \overline{d}_{\alpha} < y$. Now $t(\overline{c}, \overline{d}_{\alpha}) = F(a_{\alpha}) < F(a)$ (a_{α} is chosen from I_{α}^{A}), so in fact if $x < \overline{j} < y$ then $t(\overline{c}, \overline{j}) < F(a)$.

Finally we can prove the lemma. Since $\delta \in A\Delta B$, WLOG we can take $I_{\delta}^{A} = \omega^{*}$ and $I_{\delta}^{B} = \omega_{1}^{*}$. If $\alpha < \delta$, then $\overline{d}_{\alpha} \in I_{<\delta}^{B}$ and $\overline{d}_{\delta} \notin I_{<\delta}^{B}$, so $\overline{d}_{\alpha} < \overline{d}_{\delta}$. Because $a_{\alpha} = t(\overline{c}, \overline{d}_{\alpha}) < a_{\delta} = t(\overline{c}, \overline{d}_{\delta})$, by indiscernibility $a_{\alpha} < t(\overline{c}, \overline{j})$ for all $\overline{j} \in I^B_{\delta}$. On the other hand, we fix a descending sequence $z_0 > z_1 > \ldots$ cofinal in I_{δ}^A and use the previous conclusion to get $x_i \in I^B_{<\delta}, y_i \in I^B_{\delta}$ for each j_i . Since I^B_{δ} is ω_1^* , there is \overline{j} below all y_i and above all x_i . Since z_0 is cofinal, $t(\overline{c},\overline{j}) < F(I_{\delta}^A)$. This means that $t(\overline{c},\overline{j}) \in M(I^B)$ is between the images of $I^A_{<\delta}$ and I^A_{δ} , but there is no such thing in $M(I^A)$, contradiction.

The theorem for regular $\kappa > \aleph_1$ follows from the lemma and Solovay's partition theorem.

On the other hand, suppose $\theta > \aleph_{\xi}$. Fix $p = \{\varphi(\overline{x}, \overline{a}_i) \land \neg \varphi(\overline{x}, \overline{b}_i) : i < \theta\}$, for $j < \theta$ let $p_j = \{\varphi(\overline{x}, \overline{a}_i) \land \neg \varphi(\overline{x}, \overline{b}_i) : i < j\}$, let p_j be realized by \overline{c}_j .

Yuanshan Li¹

¹University of Notre Dame

Idea of Proof

Analogue in **ZF**

(Shelah [2]) If T is well-orderable and unstable, $|T| = \aleph_{\beta} < \aleph_{\alpha} = \kappa$, then $I(\kappa, T) \ge |\alpha - \beta|.$

Idea of Proof

For $\gamma \leq \aleph_{\alpha}$, we define $J_{\gamma} = \gamma + (\gamma)^*$. For $\xi \in [\beta, \alpha]$, we let $J^{\xi} = \sum_{\gamma \leq \aleph_{\xi}} J_{\gamma} + J_{\infty}$, where $J_{\infty} = (\aleph_{\alpha} + 1) \times \mathbb{Q}$, ordered lexicographically. Let $M^{\xi} = M(J^{\xi})$. We show that these models are mutually not isomorphic.

Let θ be a regular cardinal in some inner model L[T, Y] which contains $M = M^{\xi}$. \otimes_{θ} is the following statement: if p is a set of formulas with parameters from M of cardinality θ that has the form $\varphi(\overline{x},\overline{a}) \wedge \neg \varphi(\overline{x},\overline{b})$ (φ is the formula witnessing unstability) and any subset of p of cardinality $< \theta$ is realized in M then some subset of p of cardinality θ is realized in M.

Lemma. M^{ξ} satisfies \otimes_{θ} iff $\theta > \aleph_{\xi}$.

Proof. On the one hand, suppose $\theta \leq \aleph_{\xi}$. Then J_{θ} is in the skeleton of M, so let p be the type which says \overline{x} is φ -between θ and θ^* . Since θ is regular, clearly any $q \subseteq p$ with size $< \theta$ is realized. However, any $q \subseteq p$ with size θ must have parameters that are cofinal in θ and θ^* , by indiscernibility this can't be realized.

constantly ϵ_l^* as *i* increases in *S*.

We choose t_1, \ldots, t_n s.t. if ϵ_l^i is constantly ϵ_l^* then $t_l = (\epsilon_l^*, q_l^*)$, otherwise $t_l =$ $(\epsilon_l^*, \min(\{0, q_1^*, \dots, q_n^*\}) - (n - l)).$

Now we have that if $i < j \in S$, then the position of $(\overline{e}^i, \overline{e}^j)$ and $(\overline{e}^i, \overline{t})$ in the linear order J^{ξ} are the same. Let $\overline{c} = \sigma(\overline{t})$, by indiscernibility, the type $\{\varphi(\overline{x}, \overline{a}_i) \land$ $\neg \varphi(\overline{x}, \overline{b}_i) : i \in S$ is realized, so \otimes_{θ} is true.

Finally we prove the theorem. We fix M^{ξ_1} , M^{ξ_2} , $\xi_1 < \xi_2$, and assume $f: M^{\xi_1} \to f$ M^{ξ_2} is an isomorphism. Let $Y \subseteq$ Ord code $f, M^{\xi_1}, M^{\xi_2}, T$. Work in L[T, Y], where we have AC. Let θ be the successor cardinal in L[T,Y] of $\aleph_{\xi_1}^V$, so $\aleph_{\xi_1}^V < \mathbb{R}$ $\theta \leq \aleph_{\xi_1+1}^V \leq \aleph_{\xi_2}^V$. Note that in L[T,Y], θ is regular. By the Lemma, M^{ξ_1} satisfies \otimes_{θ} but M^{ξ_2} does not, contradiction.

- be known.
- [1] Saharon Shelah.
- [2] Saharon Shelah.

Idea of Proof

 $\overline{a}_i, \overline{b}_i, \overline{c}_i$ can be expressed as Skolem terms. Since θ is regular, for i in some S unbounded in θ , \overline{a}_i is given by the same term evaluated with different input. Similar for \overline{b}_i and \overline{c}_i . Moreover, similar in the previous proof, S can be shrinked such that for i in S, the inputs can be separated into two parts, the first part being a constant $\overline{d} \in \sum_{\gamma < \aleph_{\epsilon}} J_{\gamma}$ and the second part being $\overline{e}^i \in J_{\infty}$.

For each l < n where n is the arity of \overline{e}_{l}^{i} , we write it as $(\epsilon_{l}^{i}, q_{l}^{i})$, where $\epsilon_{l}^{i} \in \aleph_{\alpha} + 1$, $q_I^i \in \mathbb{Q}$. Since \mathbb{Q} is countable, we can make q_I^i constantly q_I^* for $i \in S$. Since $\aleph_{\alpha} + 1$ is well-founded, we can make ϵ_l^i either strictly increases with limit ϵ_l^* or

Questions

• The exact number of nonisomorphic models in \mathcal{ZF} alone does not appear to

• There are independent questions under the broad theme of "model theory" without choice" in Shelah's paper. Ask me about them if you are interested!

References

The number of non-isomorphic models of an unstable first-order theory. Israel Journal of Mathematics, 9(4):473–487, 1971.

Model theory without choice? categoricity. The Journal of Symbolic Logic, 74(2):361–401, 2009.