The Number of Models of Unstable Theories without Choice

Abstract

This poster describes and proves some results proved in the paper [\[2\]](#page-0-0) entitled ["Model Theory without Choice: Categoricity"](https://www.jstor.org/stable/40378071) by S. Shelah.

- Fix a theory *T*. A formula $\varphi(\overline{x}, \overline{y})$ has the *order property* if for any $M \models T$ there is $\overline{a}_i, b_j \in M, i, j < \omega$ s.t. $M \models \varphi(\overline{a}_i, b_j)$ iff $i < j.$
- *T* is *stable* if no formula has the order property.

Stable Theories

(Shelah [\[1\]](#page-0-1)) If *T* is unstable and $\kappa > |T|$ is a cardinal, then $I(\kappa, T) = 2^{\kappa}$, the maximal possible number.

A ZFC Theorem

Ehrenfeucht–Mostowski Models

We define some orders. For $A \subseteq \kappa$ and $\alpha < \kappa$, define I^A_α α^A to be ω_1^* i_1^* if $k \in A$, and I^A_α *a* is $ω^*$ if $α \notin A$. Define $I^A = \sum_{α < κ} I^A_α$ *α* .

Lemma. Let $\kappa > \aleph_1$ be regular, $A, B \subseteq \kappa$. If $S = A \Delta B$ is stationary then $M(I^A)$ and $M(I^B)$ are not isomorphic.

Proof. Let $F : M(I^A) \rightarrow M(I^B)$ be an isomorphism. We show that $A \Delta B$ is nonstationary, i.e. it avoids some club set. Let $a(s): s \in I^A$ and $b(t): t \in I^B$ be the skeletons. For every $\alpha \in \kappa$, pick $s_\alpha \in I^A_\alpha$ F^A_{α} . Then $F(a(s_{\alpha})) \in M(I^B)$ has the form $\tau_\alpha(b(\overline{c}_\alpha),b(\overline{d}_\alpha))$, where $\overline{c}_\alpha\in I^B_{<\alpha},\,\overline{d}_\alpha\in I^B_{\geq 0}$ $\frac{B}{\geq \alpha}$. We observe that there is a club *C* of α where $I^A_{\leq \alpha}$ and $I^B_{\leq \alpha}$ both have size $|\alpha|$. Also, there is a club *D* of α where for all $\beta < \alpha \; \overline{d}_{\beta} \in I^B_{<\alpha},$ so $S \cap C \cap D$ is stationary, we update S to this set.

Fix a some unstable theory *T* and a linear order *I*. In our context, an EM model $M(I) \models T$ is the Skolem hull of order-indiscernible elements $a_s : s \in I$ indexed by *I*, where the order $a_s < a_t$ is given by the formula witnessing unstablity and is such that $a_s < a_t$ iff $s <_I t$. By the Ramsey theorem and the compactness theorem, *M*(*I*) exists for any infinite linear order *I*. *I* is called the *skeleton* of *M*(*I*).

Partition of Stationary Sets

Note that since *T* is countable and *κ* is regular, we can shrink *S* such that for $\alpha \in S$, τ_{α} is the same term τ , and \overline{c}_{α} , \overline{d}_{α} have the same arity for different $\alpha \in S$. Furthermore, since $\overline{c}_{\alpha} \in I_{< \alpha}^B$ $\frac{B}{<\alpha}$, which has size $<|\alpha|$, the map $\alpha\mapsto c_\alpha^1$ $\frac{1}{\alpha}$ is regressive. By Fodor's lemma we can shrink *S* such that *c* 1 $\frac{1}{\alpha}$ is constant on *S*. Apply this | \bar{c} |-many times, now \bar{c}_{α} is constant on *S*. At this point, for $\alpha \in S$, $F(a(s_{\alpha})) =$ $\tau(b(\overline{c}), b(\overline{d}_{\alpha}))$ for $\alpha \in S$. We fix $\delta \in S$ to be a limit point of *S*.

Fix $a \in I^A_\delta$ J_{δ}^{A} , then $F(a) = \sigma(\overline{x},\overline{y})$ where $\overline{x} \in I_{< a}^{B}$ $\overline{B}_{\leq \delta}$, $\overline{y} \in I_{\geq 0}^B$ $\stackrel{B}{\geq} \delta$. Choose $x \in I^B_{< \delta}$ $\frac{B}{<\delta}$ above \overline{c} and \overline{x} , and $y \in I_{\delta}^B$ $\delta \frac{\delta}{\delta}$ below $\overline{y}.$ By indiscernibility, if $\overline{i},\overline{j}$ are between x and $y,$ $t(\overline{c}, \overline{i}) < F(a)$ iff $t(\overline{c}, \overline{j}) < F(a)$. Since δ is a limit point of *S*, there is $\alpha < \delta, \alpha \in S$ such that $x < \overline{d}_{\alpha} < y.$ Now $t(\overline{c},\overline{d}_{\alpha})=F(a_{\alpha}) < F(a)$ (a_{α} is chosen from I_{α}^{A} *α*), so in fact if $x < \overline{j} < y$ then $t(\overline{c}, \overline{j}) < F(a)$.

Finally we can prove the lemma. Since $\delta \in A\Delta B$, WLOG we can take $I^A_\delta = \omega^*$ and $I_\delta^B \, \equiv \, \omega_1^*$ $_1^*$. If α < $\underline{\delta}_1$ then \overline{d}_α \in $I^B_{<\alpha}$ $\frac{B}{<\delta}$ and $\overline{d}_{\delta}\not\in I_{<\delta}^B$ $\frac{B}{<\delta}$ so $d_{\alpha}\ \le\ d_{\delta}$. Because $a_\alpha=t(\overline{c},\overline{d}_\alpha)< a_\delta=t(\overline{c},\overline{d}_\delta)$, by indiscernibility $a_\alpha for all $\overline{j}\in I_\delta^B$$ *δ* . On the other hand, we fix a descending sequence $z_0 > z_1 > \dots$ cofinal in I^A_δ δ^A and use the previous conclusion to get $x_i \in I^B_{\leq i}$ $\frac{B}{\langle \delta, y_i \in I_{\delta}^B}$ J_{δ}^B for each j_i . Since I_{δ}^B ^{−*B*} is ω^{*} $_1^*$, there is \overline{j} below all y_i and above all $x_i.$ Since z_0 is cofinal, $t(\overline{c},\overline{j}) < F(I_{\delta}^{A}$ *δ*). This means that $t(\overline{c}, \overline{j}) \in M(I^B)$ is between the images of $I^A_{< i}$ $\frac{A}{<\delta}$ and I^A_δ δ^A , but there is no such thing in $M(I^A)$, contradiction.

Solovay famously showed that any *S* stationary in a regular cardinal *κ* can be partitioned into *κ*-many stationary sets, assuming **AC**. A variation of this is: any *S* stationary in *κ* with uncountable cofinality can be partitioned into countably many stationary sets. Both statements are independent of **AC**.

Idea of Proof

The theorem for regular $\kappa > \aleph_1$ follows from the lemma and Solovay's partition theorem.

On the other hand, suppose $\theta > \aleph_{\xi}$. Fix $p = \{\varphi(\overline{x}, \overline{a}_i) \wedge \neg \varphi(\overline{x}, b_i) : i < \theta\}$, for $j < \theta$ let $p_j = \{\varphi(\overline{x}, \overline{a}_i) \wedge \neg \varphi(\overline{x}, \overline{b}_i) : i < j\},$ let p_j be realized by $\overline{c}_j.$

For $\gamma\le\aleph_\alpha$, we define $J_\gamma=\gamma+(\gamma)^*.$ For $\xi\in[\beta,\alpha],$ we let $J^\xi=\sum_{\gamma\le\aleph_\xi}J_\gamma+J_\infty,$ where $J_\infty = (\aleph_\alpha+1)\times \mathbb{Q}$, ordered lexicographically. Let $M^\xi = M(J^\xi)$. We show that these models are mutually not isomorphic.

Idea of Proof

Let θ be a regular cardinal in some inner model $L[T, Y]$ which contains $M = M^{\xi}$. ⊗*^θ* is the following statement: if *p* is a set of formulas with parameters from *M* of cardinality θ that has the form $\varphi(\overline{x}, \overline{a}) \wedge \neg \varphi(\overline{x}, \overline{b})$ (φ is the formula witnessing unstability) and any subset of p of cardinality $\langle \theta \rangle$ is realized in M then some subset of *p* of cardinality *θ* is realized in *M*.

Lemma. M^{ξ} satisfies \otimes_{θ} iff $\theta > \aleph_{\xi}$.

Proof. On the one hand, suppose $\theta \leq \aleph_{\xi}$. Then J_{θ} is in the skeleton of M , so let p be the type which says \overline{x} is φ -between θ and θ^* . Since θ is regular, clearly any $q \subseteq p$ with size $< \theta$ is realized. However, any $q \subseteq p$ with size θ must have parameters that are cofinal in θ and θ^* , by indiscernibility this can't be realized.

For each $l < n$ where *n* is the arity of \overline{e}_l^i $\aleph_\alpha+1$ is well-founded, we can make ϵ_l^i constantly ϵ_l^*

We choose t_1,\ldots,t_n s.t. if ϵ_l^i $\frac{i}{l}$ is constantly ϵ^*_l t_l^* then $t_l = (\epsilon_l^*)$ *l , q* ∗ $\binom{1}{l}$, otherwise $t_l =$ $(\epsilon_l^*$ *l ,* min({0*, q* ∗ $\binom{n}{1}, \ldots, \binom{n}{n}$) – $(n-l)$).

Now we have that if $i < j \in S$, then the position of $(\overline{e}^i, \overline{e}^j)$ and $(\overline{e}^i, \overline{t})$ in the linear order J^ξ are the same. Let $\overline{c}=\sigma(\overline{t}),$ by indiscernibility, the type $\{\varphi(\overline{x},\overline{a}_i)\wedge\overline{a}_i\}$ $\neg\varphi(\overline{x}, \overline{b}_i) : i \in S$ is realized, so \otimes_{θ} is true.

Finally we prove the theorem. We fix $M^{\xi_1}, M^{\xi_2}, \xi_1 < \xi_2$, and assume $f: M^{\xi_1} \to$ M^{ξ_2} is an isomorphism. Let $Y \subseteq$ Ord code $f, M^{\xi_1}, M^{\xi_2}, T$. Work in $L[T, Y]$, where we have \mathbf{AC} . Let θ be the successor cardinal in $L[T,Y]$ of \aleph^V_{ϵ} *ξ*1 , so ℵ *V ξ*1 *<* $\theta \leq \aleph_{\xi_1+1}^V \leq \aleph_{\xi_2}^V$ *ξ*2 . Note that in *L*[*T, Y*], *θ* is regular. By the Lemma, *M^ξ*¹ satisfies ⊗*^θ* but *M^ξ*² does not, contradiction.

Analogue in ZF

(Shelah [\[2\]](#page-0-0)) If *T* is well-orderable and unstable, $|T| = \aleph_{\beta} < \aleph_{\alpha} = \kappa$, then $I(\kappa, T) \geq |\alpha - \beta|.$

Idea of Proof

Idea of Proof

 $\overline{a}_i, b_i, \overline{c}_i$ can be expressed as Skolem terms. Since θ is regular, for i in some S unbounded in θ , \overline{a}_i is given by the same term evaluated with different input. Similar for b_i and \overline{c}_i . Moreover, similar in the previous proof, S can be shrinked such that for *i* in *S*, the inputs can be separated into two parts, the first part being a constant $\overline{d} \in \sum_{\gamma \leq \aleph_\xi} J_\gamma$ and the second part being $\overline{e}^i \in J_\infty.$

 i_l^i , we write it as $(\epsilon_l^i$ $\frac{i}{l}, q_l^i$ ϵ_l^i), where $\epsilon_l^i \in \aleph_\alpha + 1$, q_l^i \in Q. Since Q is countable, we can make q_l^i $\frac{i}{l}$ constantly q_l^* $iⁱ$ for $i \in S$. Since $\frac{i}{l}$ either strictly increases with limit ϵ_l^* $\frac{1}{l}$ or i as i increases in S .

Questions

The exact number of nonisomorphic models in \mathcal{ZF} alone does not appear to

• There are independent questions under the broad theme of "model theory" without choice" in Shelah's paper. Ask me about them if you are interested!

References

- be known.
-
- [1] Saharon Shelah.
- [2] Saharon Shelah.

The number of non-isomorphic models of an unstable first-order theory. *Israel Journal of Mathematics*, 9(4):473–487, 1971.

Model theory without choice? categoricity. *The Journal of Symbolic Logic*, 74(2):361–401, 2009.

Yuanshan Li¹

¹University of Notre Dame