(There are fewer exercises today, so use the opportunity to revisit exercises from previous days that you didn’t get to!)

Lecture 5: The refined intermediate Jacobian obstruction

Exercise 1. Let X be a smooth threefold complete intersection of two quadrics.

(1) Show that all lines in X are algebraically equivalent.

(2) Show that any two lines in X are not rationally equivalent.

Exercise 2. Let X be a smooth threefold complete intersection of two quadrics. Show that $\text{NS}^2 \frac{X}{k} \cong (\text{NS}^2 \frac{X}{k})^G_k \cong \mathbb{Z}$, thus showing that the codimension 2 Chow scheme CH^2_X has a \mathbb{Z} grading.

In the next exercise, we’ll introduce the Albanese torsor (see [Poo17, Example 5.12.11]) and the Albanese variety for a variety with (possibly) no k-points.

Exercise 3. Let X be a geometrically integral variety over k, and C_X the category of triples (A, T, f) where A is an abelian variety, T is an A-torsor, and $f: X \to T$ is a morphism. A morphism (A, T, f) to (A', T', f') is a homomorphism $\alpha: A \to A'$ and a morphism $\tau: T \to T'$ such that the following diagrams commute:

$$
\begin{array}{ccc}
T \times A & \longrightarrow & T \\
\downarrow \scriptstyle{(\tau, \alpha)} & & \downarrow \scriptstyle{\tau} \\
T' \times A' & \longrightarrow & T'
\end{array}
\quad
\begin{array}{ccc}
X & \overset{f}{\longrightarrow} & T \\
\downarrow \scriptstyle{\tau} & & \downarrow \scriptstyle{\tau} \\
T' & \overset{f'}{\longrightarrow} & T'
\end{array}
$$

It is a theorem that this category has an initial object $(\text{Alb}_X, \text{Alb}_X^1, \iota)$; Alb_X is the **Albanese variety** of X, and Alb_X^1 is the **Albanese torsor** of X.

(1) Let X be a smooth projective (geometrically integral) genus 1 curve. Show that $\text{Alb}_X \cong \text{Pic}_X^0$, and $\text{Alb}_X^1 \cong X$.

(2) Show that, if X has a k-point $x \in X(k)$, this definition of the Albanese variety agrees with the one discussed in Lecture 3.

(3) Let C be a smooth projective (geometrically integral) curve. Show that $\text{Alb}_{\text{Pic}_C^0} \cong \text{Pic}_C^0$.

Exercise 4. Let $Y \to \mathbb{P}^1 \times \mathbb{P}^2$ be a double cover branched along a $(2, 2)$-divisor.

(1) Show that Y has the structure of a conic bundle over \mathbb{P}^2 as the structure of a quadric surface bundle over \mathbb{P}^1.

(2) Show that the discriminant curve of the conic bundle $Y \to \mathbb{P}^2$ has degree 4.

Date: June 23, 2023.
(The conic bundle examples in [FJS+] with interesting IJT behavior are constructed as these double covers, and the quadric surface fibration is a key ingredient in our understanding of the behavior of the codimension 2 Chow torsors.)

REFERENCES
