Problems on jet bundles

eredl

June 2023

1 Day 1

Basic practice

1. Let D be a big divisor and E be an effective divisor. Show that $D + E$ is big.

2. Recall that a divisor D is nef if its restriction to every curve C in X has non-negative degree. Find an example of a divisor that is nef but not ample. (Hint: there’s one on $\mathbb{P}^1 \times \mathbb{P}^1$.)

3. Find an example of a divisor that is big but not nef. (Hint: there’s one on the blowup of \mathbb{P}^2.

4. Suppose X is a complete intersection of hypersurfaces in \mathbb{P}^n of type (d_1, d_2, \ldots, d_k). Find the canonical sheaf K_X. (Hint: use the adjunction formula.)

5. Let L and L' be line bundles on a smooth curve C, and suppose there exists a nonzero map $L \to L'$. Show that $\deg L \geq \deg L'$, with equality if and only if L is isomorphic to L'.

6. Let $C \subset X$ be a smooth curve in X. Show that the degree of the normal bundle $N_{C/X}$ is $2g - 2 - K_X \cdot C$.

7. Let $h : C \to X$ be a birational map from a smooth curve to X. Define $N_{h/X}$ as the quotient of h^*T_X by T_C. Show that $\deg N_{h/X}$ is $2g - 2 - K_X \cdot C$.

8. For all positive integers d, define the syzygy bundle M_d on \mathbb{P}^n via the following sequence:

$$0 \to M_d \to H^0(\mathcal{O}_{\mathbb{P}^n}(d)) \otimes \mathcal{O} \to \mathcal{O}(d) \to 0.$$

Show that $H^0(M_d) = 0 = H^1(M_d)$.

9. Let $f : C \to \mathbb{P}^n$ be a smooth, degree e curve mapping birationally. Show that every quotient of f^*M_1 has degree at least $-e$. Show further that every quotient of a direct sum of s copies of f^*M_1 has degree at least $-se$.
Algebraic hyperbolicity of hypersurfaces

The following series of problems takes you a proof of the algebraic hyperbolicity of general hypersurfaces in \(\mathbb{P}^n \) of degree \(d \geq 2n - 1 \). This problem has a long history, with the original idea dates back to work from Clemens and Ein, which was elaborated on by Voisin, Xu, Pacienza, Clemens-Ran, and Riedl-Coskun. This version most closely resembles the more streamlined presentation from Wern Yeong’s thesis.

1. (Setup) Suppose that a general hypersurface \(X \) in \(\mathbb{P}^n \) contains a curve of degree \(e \) and geometric genus \(g \). Let \(X \subset \mathbb{P}^n \times H^0(\mathcal{O}_{\mathbb{P}^n}(d)) \) be the space of pairs \((f, p)\) such that \(p \) in a point in the hypersurface \(V(f) \). Consider the space \(M' \) of maps from smooth genus \(g \) curves to \(X \) such that the image is a degree \(e \) curve in the fiber of \(X \to H^0(\mathbb{P}^n(d)) \). By hypothesis, \(M' \) dominates \(H^0(\mathbb{P}^n(d)) \).

 (a) Show that there exists a subvariety \(B \) of \(M' \) such that \(M \) parameterizes only finitely curves for a general hypersurface.

 (b) Show that we can select \(B \) to be a \(PGL \)-invariant family.

 (c) Show that by possibly restricting to an open set, we can assume the map \(B \to H^0(\mathbb{P}^n(d)) \) is etale.

 (d) Base-change \(X \) to \(B \), so that we have a family of curves \(Y \to B \) and a map \(h : Y \to X_B \). From now one, we write \(X \) for \(X_B \).

2. Let \(Y_b \) be a general fiber of \(Y \to B \) and \(X_b \) the fiber of \(X \) over \(b \), with map \(h_b : Y_b \to X_b \). Show that \(N_{h/X|Y_b} = N_{h_b/X_b} \). (Hint: write down a commutative diagram with the relevant pieces and use the eight lemma.)

3. Recall we have the relative tangent sheaves \(T_{X/\mathbb{P}^n} \) and \(T_{Y/\mathbb{P}^n} \), given by the kernels of \(T_{X-\mathbb{P}^n} \) and \(T_{Y-\mathbb{P}^n} \). Show that \(N_{h/X} \) is the quotient of \(h^*T_{X/\mathbb{P}^n} \) by \(T_{Y/\mathbb{P}^n} \). (Hint: this is another diagram chase.)

4. Show that \(T_{X/\mathbb{P}^n} \) is isomorphic to the pullback of \(M_d \) from \(\mathbb{P}^n \). (Hint: this is another diagram chase, using the fact that \(T_B|_{X_b} = H^0(\mathbb{P}^n(d)) \otimes \mathcal{O} \).)

5. Show that given any degree \(d - 1 \) polynomial \(P \), we have a natural map \(M_1 \to M_d \) given by multiplication by \(P \).

6. Show that there is a surjection from a direct sum of many copies of \(M_1 \) to \(M_d \).

7. Show that this implies that there is a surjective map from a direct sum of copies of \(h_b^*M_1 \) to \(N_{h_b/X_b} \).

8. Show that in fact there is a generically surjective map from a direct sum of at most \(n - 2 \) copies of \(h_b^*M_1 \) onto \(N_{h_b/X_b} \), and that the degree of \(N_{h_b/X_b} \) is at least \(-(n-2)e \).

9. Conclude that \(X \) must be algebraically hyperbolic for \(d \geq 2n \).

10. Show that for \(d \leq 2n - 3 \), \(X \) must contain a line, leaving open only the cases \(d = 2n - 1, 2n - 2 \).