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Counting points

Last time we saw how to classify all Pythagorean triples. A key idea was using
the geometry of the circle x2 + y 2 = 1.
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Finding rational points
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Counting points

Today we are going to “count” Pythagorean triples.

Of course, since there are infinitely many we do not literally “count” them.
Instead, we will analyze how many tuples (a, b, c) there are such that

max{|a|, |b|, |c|} ≤ T

for some positive number T . This gives us a sense of “how dense”
Pythagorean triples are inside all triples of integers.
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Warm-up problem

We start with a warm-up problem which is similar to our original problem, but
has a few key differences that make it easier to understand.

Question
Fix a positive number r . How many pairs of integers (x , y) satisfy
x2 + y 2 ≤ r 2?

In other words: how many integer points in R2 have distance ≤ r from the
origin?
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Warm-up problem

Geometrically, we are counting the number of integer points in the ball B0(r)
of radius r centered at the origin.

81 integer points in B0(5)

Counting these integer points is known as “Gauss’ circle problem.”
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Warm-up problem

We let N(r) denote the number of integer pairs (x , y) such that x2 + y 2 ≤ r 2.
The following table records N(r) for some small integer values of r :

r 1 2 3 4 5 6 7 8 9 10
N(r) 5 13 29 49 81 113 149 197 253 317

It looks like N(r) grows proportionally to r 2.
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Estimate

Here is a heuristic argument justifying this estimate.

For each integer point p ∈ B0(r), let’s draw a square of side length 1 centered
at p. The overlap of these squares has zero area and the union of these
squares is roughly the circle B0(r).
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Estimate

Comparing areas, we see that

N(r) ≈ πr 2.

r 1 2 3 4 5 6 7 8 9 10
N(r) 5 13 29 49 81 113 149 197 253 317

round(πr 2) 3 13 28 50 79 113 154 201 254 314

This estimate is pretty good! Our real goal is to control the error term: if we
write N(r) = πr 2 + E(r), can we put an upper bound on |E(r)|?
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Gauss’ result

Theorem (Gauss)

πr 2 −
√
2πr + 1

2 ≤ N(r) ≤ πr 2 +
√
2πr + 1

2

It is common to write
N(r) = πr 2 + O(r)

to signify that the error term is bounded by a linear function in r , namely,
|E(r)| ≤

√
2πr + 1

2 .
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Gauss’ result

Proof
For each integer point p ∈ B0(r), consider the square with unit side length
centered at p. Take the union of all such squares to get a shape R ⊂ R2.
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Gauss’ result

Proof
Suppose that x is a point in R. By definition, there is some integer point p in
B0(r) such that x is contained in the unit square centered at p. By the
triangle inequality,

d(x ,~0) ≤ d(x , p) + d(p,~0)

≤ 1√
2

+ r

We conclude that x ∈ B0(r + 1√
2 ). In other words,

R ⊂ B0

(
r + 1√

2

)
.
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Gauss’ result

Proof
Conversely, suppose that y ∈ B(r − 1√

2 ). Every point in R2 is at most 1√
2

away from the closest integer point. If we let p denote the closest integer
point to y , then

d(p,~0) ≤ d(p, y) + d(y ,~0)

≤ 1√
2

+
(

r − 1√
2

)
= r

Since p ∈ B0(r), we conclude that y ∈ R. In other words,

B0

(
r − 1√

2

)
⊂ R.
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Gauss’ result

Proof
In sum,

B0

(
r − 1√

2

)
⊂ R ⊂ B0

(
r + 1√

2

)
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Gauss’ result

Proof.
Thus

area
(

B0

(
r − 1√

2

))
≤ area(R) ≤ area

(
B0

(
r + 1√

2

))
.

Computing areas, we see that

π

(
r − 1√

2

)2

≤ N(r) ≤ π
(

r + 1√
2

)2

.
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Conjecture

Modern mathematicians have improved the bound on the error term. The
conjectural “best” bound is:

Conjecture
N(r) = πr 2 + O(r 1

2 +ε).

It is known that the exponent must be > 1
2 (Hardy), but the precise value is

not known! The current best upper bound on the exponent is 0.6274 . . ..
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Primitive circle problem

We next “upgrade” our question with a harder variant.

Question
Fix a positive number r . How many relatively prime pairs of integers (x , y)
satisfy x2 + y 2 ≤ r 2?

This is known as the primitive circle problem.
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Primitive circle problem

Each primitive point is the “first one” on the ray connecting it to the origin.
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Primitive circle problem

Let Nprim(r) denote the number of relatively prime pairs of integers (x , y) with
x2 + y 2 ≤ r 2. We will estimate this value by relating it to N(r).

Every point (x , y) in B0(r) except for (0, 0) has a unique expression
k · (xprim, yprim) where k is a positive integer k and (xprim, yprim) is relatively
prime. We let N(r , k) denote the number of points in B0(r) which are
associated to the number k.
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Primitive circle problem

k=1k=1k=1k=1k=1k=1k=1

k=1

k=2k=2k=2k=2k=2k=2k=2

k=2

k=3k=3k=3k=3k=3k=3k=3

k=3

k=4k=4k=4k=4k=4k=4k=4

k=4

k=5k=5k=5k=5k=5k=5k=5

k=5

Different k values
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Primitive circle problem

We have two important equations. First, every point with non-zero
coordinates has some k associated to it:

N(r) = 1 +
r∑

k=1

N(r , k).

(Here the 1 accounts for the origin.)

Second, every point counted by N(r , k) will be a primitive point if we scale
down by k:

N(r , k) = Nprim
( r

k

)
.
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Primitive circle problem

Combining these two equations:

N(r) = 1 +
r∑

k=1

Nprim
( r

k

)
.

In this situation one can “reverse” the roles of Nprim and N using the Mobius
inversion formula:

Nprim(r) =
r∑

k=1

µ(k)
(

N
( r

k

)
− 1
)
.

It would take a little time to set up Mobius inversion, so instead we will use a
(less rigorous) heuristic argument to estimate the size of Nprim(r).
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Primitive circle problem

We already know that N(r) ≈ πr 2 and we would like to find an approximation
Nprim(r) ≈ Cr 2. Let’s substitute this into our equation:

πr 2 ≈
r∑

k=1

C
( r

k

)2

≈ Cr 2
(
1 + 1

22 + 1
32 + . . .+ 1

r 2
)

Solving for C and taking a limit as r →∞, we have

C ≈ π(
1 + 1

22 + 1
32 + . . .

)
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Primitive circle problem

The famous Riemann zeta function has made an appearance!

ζ(2) = 1 + 1
22 + 1

32 + . . .

In fact, by Euler’s solution to the Basel problem we know the precise value of
this series: ζ(2) = π2

6 . Substituting backwards, we see that C = 6
π
, or

equivalently:
Nprim(r) ≈ 6

π
r 2.

A more careful argument using Mobius inversion shows that

Nprim(r) = 6
π

r 2 + O(r log r).
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Counting rational points

Now we return to the setting of Pythagorean triples. In keeping with our
geometric theme, we will focus on rational points on the circle x2 + y 2 = 1.
How can we measure the “size” of a rational point?

Definition
Let (x , y) be a non-zero point with rational coordinates. There is a unique
(up to sign) triple of relatively prime integers (a, b, c) such that x = a

c and
y = b

c . The height of the point is

H(x , y) = max{|a|, |b|, |c|}.
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Counting rational points

The height is a measure of the “arithmetic complexity” of a point: what is the
size of the numbers needed to write the fractions defining the point?

Example: H( 3
5 ,

4
5 ) = max{|3|, |4|, |5|} = 5.

Note that points that are close together can have very different heights. For
example, H(1, 0) = 1 but H(1, 1

100 ) = 100.
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Counting rational points

Question
Fix a positive number T . How many rational points (x , y) on the circle
x2 + y 2 = 1 satisfy H(x , y) ≤ T?

Note that for rational points on the circle the height is particularly easy to
compute. Indeed, every such point has the form ( a

c ,
b
c ) where a2 + b2 = c2.

Thus we simply have
H(x , y) = |c|.
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Counting rational points

The previous question can be rephrased by clearing denominators:

Question
Fix a positive number T . How many relatively prime pairs of integers (x , y)
satisfy x2 + y 2 ≤ T 2 and x2 + y 2 is the square of an integer?

We will let M(T ) denote the number of relatively prime pairs of integers
(x , y) which satisfy x2 + y 2 ≤ T 2 and x2 + y 2 is the square of an integer.
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Counting rational points

This is very close to the primitive circle problem, but looks much harder due
to the “gaps” in our counting problem!

Primitive circle problem Height problem
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Rational parametrizations

The key idea is to use the parametrization of the circle from last time.

We will “clear denominators” to write the parametrization as a 2-variable map
instead of a 1-variable map:

ϕ : (m, n) 7→ (m2 − n2, 2mn)

Remember, when m, n are integers then the quantities m2 − n2, 2mn are the
first two entries in a Pythagorean triple (whose last entry is m2 + n2).

Note that ϕ is the same as the squaring map z 7→ z2 in complex analysis!
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Rational parametrizations

https://youtube.com/clip/UgkxHflmOEnVwvKAULWpj-86pB-aNxUVfRkO
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Rational parametrizations

The good news is that the map

ϕ : (m, n) 7→ (m2 − n2, 2mn)

allows us to turn our original problem into an easier problem:

Key Observation
Counting relatively prime integer pairs (x , y) such that x2 + y 2 is a perfect
square and x2 + y 2 ≤ T 2 is roughly the same as counting relatively prime
integer pairs (m, n) such that m2 + n2 ≤ T.

We first need to put in some hard work relating the pairs (x , y) and the pairs
(m, n).
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Rational parametrizations

The following theorem describes how ϕ interacts with Pythagorean triples.

Theorem
Suppose that (x , y) is a relatively prime pair of integers such that x2 + y 2 is
the square of an integer. Then one of x , y is even and the other is odd.

1 If y is even, there are two relatively prime pairs (m, n) satisfying
ϕ(m, n) = (x , y).

2 If x is even, there are two relatively prime pairs (m, n) satisfying
ϕ(m, n) = (2x , 2y).

Conversely, if (m, n) is a relatively prime pair of integers then ϕ(m, n) falls
into one of the two categories above.
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Counting using parametrization

Consider all relatively prime pairs (m, n) satisfying m2 + n2 ≤ T . For each
such (m, n) its image will have the form (x , y) or (2x , 2y) for a relatively
prime pair (x , y) such that x2 + y 2 is the square of an integer.

If y is even, then

x2 + y 2 = (m2 − n2)2 + (2mn)2 = (m2 + n2)2

is at most T 2.
If x is even, then

(2x)2 + (2y)2 = (m2 − n2)2 + (2mn)2 = (m2 + n2)2

is at most T 2. In other words, x2 + y 2 ≤ T 2

4 .
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Counting using parametrization

Next let’s identify the sizes of the various sets:
The number of relatively prime pairs (m, n) satisfying m2 + n2 ≤ T is
Nprim(

√
T ).

The number of relatively prime pairs (x , y) such that y is even and
x2 + y 2 is the square of an integer ≤ T 2 is 1

2M(T ).
The number of relatively prime pairs (x , y) such that x is even and
x2 + y 2 is the square of an integer ≤ T 2

4 is 1
2M( T

2 ).
Altogether we have

1
2Nprim(

√
T ) = 1

2M(T ) + 1
2M

(T
2

)
.

(The left-hand side includes the factor 1/2 to account for the fact that ϕ is
2-to-1.)
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Counting using parametrization

We can isolate M(T ) by repeated substitution:

M(T ) = Nprim(
√

T )−M
(T
2

)
= Nprim(

√
T )−

(
Nprim

(√
T
2

)
−M

(T
4

))

= Nprim(
√

T )− Nprim

(√
T
2

)
+

(
Nprim

(√
T
4

)
−M

(T
8

))
= . . .
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Counting using parametrization

Since Nprim(T ) approaches 0 as T → 0, this alternating series has a limit:

M(T ) =
∞∑

k=0

(−1)kNprim

(√
T
2k

)
.

We can now use the fact that Nprim(r) ≈ 6
π

r 2:

M(T ) ≈
∞∑

k=0

(−1)k 6
π

(T
2k

)
≈ 6T

π

∞∑
k=0

(−1)k

2k

≈ 4T
π

35



Counting
points

Gauss’
circle
problem

Counting
rational
points

Summary

We have achieved our goal of counting how many rational points on the circle
have height at most T .

Theorem
Let M(T ) denote the number of rational points on the circle x2 + y 2 = 1
which have height at most T . Then

M(T ) ≈ 4
π

T .

This is a special case of the Batyrev-Manin Conjecture which predicts the
asymptotic growth rate of M(T ) for a more general set of polynomial
equations.
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Exercises

Exercises:
1 Sums of squares: study sums of the form x2 + y 2 using properties of
complex numbers.

2 Lattice points and area: can we generalize Gauss’ circle problem to other
shapes? What is the relationship between the area of a shape in R2 and
the number of lattice points it contains?

Images made using Desmos and taken from 3Blue1Brown.
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