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Numbers from shapes

Today we start with a game that assigns numbers to shapes.

We start by assigning 1 to a single point.

One point
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Numbers from shapes

When we add on more shapes, the numbers add as well:

Several points
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Numbers from shapes

Next, we assign a line segment the number −1.

Line segment

Again, we can combine shapes:

A shape
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Numbers from shapes

Now we start formalizing these constructions. First, some terminology:

Definition
A 0-cell is a point.

A 1-cell is any shape that can be “continuously deformed” to a line segment.

Three 1-cells Not 1-cells
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Definition
A 1-dimensional cellular complex is a union of 0-cells and 1-cells that satisfies
the following rules:

1 The ends of every 1-cell must be attached to 0-cells.
2 The interior of a 1-cell does not intersect any other cells.

(This is the same as the mathematical object called a “graph.”)

Four 0-cells, five 1-cells
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Numbers from shapes

Given a 1-dimensional cellular complex S, we define its Euler characteristic
χ(S) by adding up the numbers associated to its pieces.
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Numbers from shapes

Let S be a one-dimensional shape. Then we can give S the structure of a
cellular complex: we cover S with 0-cells and 1-cells which satisfying the
earlier rules. Once we do this procedure, we also obtain an associated Euler
characteristic for S.
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There are many different cellular structures we can give S. However, these
different choices will end up giving us the same Euler characteristic!

Observation 1: The Euler characteristic of S does not depend on which
cellular structure we use for S.
Observation 2: If we “continuously deform” the shape S the Euler
characteristic does not change.
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Example
Let S be the circle. Then χ(S) = 0.

In fact, the number of 0-cells is equal to the number of 1-cells no matter what
cellular structure we give to S.
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When S is connected, we can think of χ(S) as “1 - (number of holes in S).”
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Two dimensions

We now introduce a new shape: a 2-cell (with no boundary).

A 2-cell

Since a 2-cell is a product of 1-cells, we assign it the number (−1)× (−1) = 1.
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Two dimensions

Just as with 1-cells, we can “deform” 2-cells freely. However, we are not
allowed to tear them, glue them, etc.

More 2-cells Not a 2-cell
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Two dimensions

Definition
A 2-dimensional cellular complex is a union of 0-cells, 1-cells, and 2-cells that
satisfies the following rules:

1 The entire boundary of a k-cell must be attached to cells of dimension
≤ (k − 1).

2 The interior of a k-cell does not intersect any cells of dimension ≤ k.

Cellular complex: two 0-cells, three 1-cells, two 2-cells
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Two dimensions

Given a 2-dimensional cellular complex S, we define the Euler characteristic
χ(S) by adding up the numbers associated to the various cells.

Sphere: one 0-cell, one 1-cell, two 2-cells

Cylinder (no caps): two 0-cells, three 1-cells, one 2-cell
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Two dimensions

Definition
The Euler characteristic χ(S) of a 2-dimensional shape S is found by giving S
the structure of a cellular complex and computing the associated number.

Just as in the 1-dimensional case:
Observation 1: The Euler characteristic of S does not depend on which
cellular structure we use.
Observation 2: If we “continuously deform” the shape S the Euler
characteristic does not change.
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Two dimensions

Sphere: one 0-cell, one
1-cells, two 2-cells

Torus: one 0-cell, two 1-cells, one
2-cell

There is no way to continuously deform a torus to a sphere! If there were such
a deformation, their Euler characteristics would be the same. But the sphere
has Euler characteristic 2 and the torus has Euler characteristic 0.
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Two dimensions

We will be particularly interested in the the connected compact orientable
surfaces (which we will simply call “surfaces”).

A surface

Loosely, one can think of a surface as a “doughnut with g holes.” The
quantity g is called the “genus.”
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Two dimensions

Theorem
Suppose that S is a surface with g holes. Then

χ(S) = 2− 2g .

A picture of S

Proof.
The proof is by induction on g . We have already seen the base case g = 0: a
sphere has Euler characteristic 2.
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Two dimensions

Proof.
For the induction step, any surface S with g holes can be constructed by
taking a surface T with g − 1 holes, removing two disks, and “gluing on” a
shape C that deforms to a cylinder.

Constructing S from T and C
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Two dimensions

Proof.
Let’s analyze how this operation changes the Euler characteristic.

First, we need to remove two disks D from T to create a space to glue the
cylinder. If we choose our cellular complex carefully, we can simply remove two
2-cells from T . Thus the Euler characteristic of the new shape is χ(T )− 2.

Removing two 2-cells from T
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Two dimensions

Proof.
Next, let’s glue on the cylinder. In terms of cellular complexes, we can choose
one 0-cell on the boundary of each disk in T , connect them with a 1-cell, and
then glue on a 2-cell to form the cylinder. Altogether, we have

χ(S) = (χ(T )− 2) + (0− 1 + 1) = χ(T )− 2.

Our induction assumption is that χ(T ) = 2− 2(g − 1) = 4− 2g . Altogether

χ(S) = χ(T )− 2 = 2− 2g .
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Curvature

We next present a different perspective on the Euler characteristic: it
measures the “total amount of curvature” of a surface. This deep result is
known as the Gauss-Bonnet Theorem.

The Gauss-Bonnet theorem gives another connection between different areas
of math. The Euler characteristic of a surface is a “topological” invariant: it
does not change under continuous deformation. The curvature of a surface is
a “metric” invariant: it depends on how our surface is embedded. The fact
that these two quantities are related is quite surprising!

22



Numbers
from shapes

Two
dimensions

Gauss-
Bonnet
theorem

Curvature

Suppose we have a compact orientable surface. The Gaussian curvature at a
point is a measurement of “how much” the surface curves at a point.

Gaussian curvature
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Curvature

The Gaussian curvature at p is a signed quantity: it can be positive, negative,
or zero. The sign will depend on whether or not the curves through p all
“bend in the same direction.”

Positive, negative, and zero curvature
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Curvature

We will only give a precise definition in one special case: a smooth
parametrized surface S ⊂ R3.

Definition
Suppose that S ⊂ R3 is a smooth surface parametrized locally by an equation
f :

f (u, v) = (f1, f2, f3).

We define the vectors:

fu =
(
∂f1
∂u ,

∂f2
∂u ,

∂f3
∂u

)
fv =

(
∂f1
∂v ,

∂f2
∂v ,

∂f3
∂v

)
Similarly, we define fuu, fuv = fvu, fvv as vectors of second partial derivatives.
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Curvature

Definition
We also consider the normal unit vector

n̂ = fu × fv

‖fu × fv‖
.

(For concreteness we choose the outward direction, although it does not
matter.) Then the Gaussian curvature is

K = 〈fuu, n̂〉〈fvv , n̂〉 − 〈fuv , n̂〉2

〈fu, fu〉〈fv , fv 〉 − 〈fu, fv 〉2
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Curvature

Example
Let’s compute the Gaussian curvature of the sphere of radius R. A parametric
equation for the sphere is

f (u, v) = (R sin(u) cos(v),R sin(u) sin(v),R cos(u)).

We can identify the various vectors we need for computation:

fu = (R cos(u) cos(v),R cos(u) sin(v),−R sin(u))
fv = (−R sin(u) sin(v),R sin(u) cos(v), 0)

and so the denominator is

〈fu, fu〉〈fv , fv 〉 − 〈fu, fv 〉2 = R4 sin2(u)
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Curvature

Example
Furthermore

fuu = (−R sin(u) cos(v),−R sin(u) sin(v),−R cos(u))
fuv = (−R cos(u) sin(v),R cos(u) cos(v), 0)
fvv = (−R sin(u) cos(v),−R sin(u) sin(v), 0)
n̂ = (sin(u) cos(v), sin(u) sin(v), cos(u))

and so the numerator is

〈fuu, n̂〉〈fvv , n̂〉 − 〈fuv , n̂〉2 = R2 sin2(u)

Altogether the curvature (at every point!) is the constant value 1/R2.
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Curvature

Example
Consider the torus parametrized by

f (u, v) = ((c + a cos(v)) cos(u), (c + a cos(v)) sin(u), a sin(v))

The Curvature and Geodesics of the Torus
http://www.rdrop.com/~half/math/torus/index.xhtml

Mark L. Irons (half@proaxis.com)

The torus is a standard example in introductory discussions of the curvature of surfaces.
However, calculation of some measures of its curvature are hard to find in the literature.
This paper offers full calculation of the torus’s shape operator, Riemann tensor, and
related tensorial objects. In addition, we examine the torus’s geodesics by comparing a
solution of the geodesic equation with results obtained from the Clairaut parameter-
ization. Families of geodesics are classified. Open questions are considered. The
connection form and parallel transport on the torus are investigated in an appendix.

1. The Line Element and Metric
Our model of a torus has major radius c and minor radius a. We only consider the ring torus, for
which c>a.

We use a u,v coördinate system for which planes of constant u pass through the torus’s axis.

We parameterize the surface x by . x(u, v) =

 

 

 
 

 

x = (c + a cos v) cos u
y = (c + a cos v) sin u
z = a sin v

 

 

 
 

 

Mark L. Irons 17 November 2005 1

Major radius c, minor radius a
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Example
A similar computation shows that the curvature is

K(u, v) = cos(v)
a(c + a cos(v))

Note that this can be positive or negative depending on the sign of cos(v).
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Gauss-Bonnet

The following theorem relates the Euler characteristic to curvature.

Theorem (Gauss-Bonnet)

Let S be a smooth compact orientable surface with no boundary. Then∫
S

K dA = 2πχ(S)

where dA is the area element on S.

Although the curvature can vary a lot, the “total curvature” will be the Euler
characteristic! If we continuously deform S, the curvature can change but the
net effect on the total curvature will cancel out.

31



Numbers
from shapes

Two
dimensions

Gauss-
Bonnet
theorem

Gauss-Bonnet

Example
Consider the sphere of radius R:

f (u, v) = (R sin(u) cos(v),R sin(u) sin(v),R cos(u)).

The area element is ‖fu × fv‖ du dv = R2 sin(v) du dv . Integrating:∫
S

K dA =
∫ π

0

∫ 2π

0

1
R2 (R2 sin(v)) du dv = 4π = 2πχ(S)

verifying Gauss-Bonnet in this case.
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Gauss-Bonnet

Sketch of proof.
Every smooth compact orientable surface admits a “triangulation”: a cellular
complex structure whose pieces P each consist of three smooth edges
connecting three vertices:

Triangulated surface

Our plan is to analyze
∫

P K dA for each piece P and then add up the results.
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Sketch of proof.
For each triangle P one can prove a “local Gauss-Bonnet” theorem:∫

P
K dA +

∫
∂P
κg +

∑
vertices v in P

θv = 2π

where κg denotes the geodesic curvature and θv denotes the exterior angle at
the vertex v . (One can think of the 2π as the “total rotation” as we traverse
around the boundary of P.)

Geodesic curvature and exterior angles
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Sketch of proof.
We can compute

∫
S K dA by adding up all the pieces:∫

S
K dA =

∑
P

∫
P

K dA

=
∑

P

(
2π −

∫
∂P
κg −

∑
vertices v in P

θv

)
Let’s compute the three terms in the sum one-by-one. We will let V denote
the total number of vertices, E denote the total number of edges, and F
denote the total number of triangles in our triangulation.
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Sketch of proof.
Since we have one contribution of 2π for each triangle P, the total
contribution of this term is 2πF .

Next, consider
∑

P

∫
∂P κg . Every edge in S lies between exactly two triangles

P1,P2. Note that this integral changes sign when we reverse the orientation of
our curve. Since the orientation of our edge in P1 is the opposite of its
orientation in P2, the total contribution of the integral of κg over this edge to
the integral is 0. Adding up, the entire contribution of this integral is 0.

The remaining term is
∑

P

(∑
vertices v in P θv

)
. To compute this sum we will

reverse the summation: we first fix a vertex v and then sum all the exterior
angles θP for triangles P containing v .
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Sketch of proof.
For a vertex v of a triangle P, the sum of the exterior angle θP and the interior
angle αP of P at v is equal to π. Moreover, the sum of all the interior angles
at a given vertex is 2π. Thus the sum of the exterior angles at a vertex v is

∑
P meeting v

θP =

( ∑
P meeting v

θP + αP

)
− 2π

= π · (number of P meeting at v)− 2π
= π · (number of edges meeting at v)− 2π
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Sketch of proof.
Returning to our earlier sum,∫

S
K dA =

∑
P

(
2π −

∫
∂P
κg −

∑
vertices vi in P

θi

)
= 2πF − 0−

∑
vertices v

(π(number of edges meeting at v)− 2π)

= 2πF + 2πV −
∑

vertices v

π(number of edges meeting at v)

Since each edge meets two vertices, every edge appears twice in the sum
above. Altogether∫

S
K dA = 2πV − 2πE + 2πF = 2πχ(S).
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Higher dimensions

One can also define the Euler characteristic for a cellular complex of
dimension n: to each cell of dimension n we assign the number (−1)n.

Question (Hopf sign conjecture)

Suppose that X is a compact Riemannian manifold of dimension 2d . If X has
positive curvature at every point, is χ(X) > 0?

For surfaces, this is true by Gauss-Bonnet. But the general case has been
open for 100 years!
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Exercises

Exercises:
1 Euler’s formula: you can explore Euler’s formula and its relationship with
Euler characteristics.

2 Gauss-Bonnet: you can get more practice with the Gauss-Bonnet formula.
Images made using sketch.io and taken from Wikipedia, Mark Irons, Keenan
Crane, Markus Wallner-Novak
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