
Introduction

Geometry of
plane curves

Counting
ovals

Trichotomy
of curves

Lecture 5: Trichotomy of curves

Brian Lehmann
Boston College

1



Introduction

Geometry of
plane curves

Counting
ovals

Trichotomy
of curves

Trichotomy of curves

Definition
Trichotomy: a division into three categories.

Today we discuss the famous “trichotomy” of curves: all algebraic curves can
be split into three different types.

This decomposition is the same no matter what field we are working in!
Complex geometry, number theory, and algebraic geometry all give the same
trichotomic classification. We will focus on the case of plane curves
P(x , y) = 0.
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Notation
Suppose P(x , y) is an irreducible polynomial with rational coefficients. The
solutions to P(x , y) = 0 is called a “curve”; we will denote it by C . (We will
might think of C as an object in R2 or an object in C2.)

The set of rational solutions is denoted by C(Q).
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Definition
We say that C is smooth if the partial derivatives ∂P

∂x and ∂P
∂y do not

simultaneously vanish for any point in C .

To be clear: we are asking whether there is any point (x , y) for which the
three polynomials P, ∂P

∂x , and
∂P
∂y all vanish simultaneously.

Smoothness should be thought of as a property in C2: we need to make sure
there are no complex pairs (x , y) where these polynomials vanish.
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Example
The curve y − x2 = 0 is smooth. The partial derivatives are ∂P

∂x = −2x and
∂P
∂y = 1. Note that the second polynomial will never vanish (no matter what
inputs we choose).

Example
The curve x2 + y 2 = 0 is not smooth. The partial derivatives are ∂P

∂x = 2x and
∂P
∂y = 2y . These will both vanish at the point (x , y) = (0, 0). Since (0, 0) also
lies on C , it is a non-smooth point of C .
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Plane curves

Question
Let P(x , y) be a degree d polynomial with rational coefficients that defines a
smooth curve C . What is χ(C)?

The “right” version of this question requires two improvements:

1 We take a “compactification” of C in projective space.
2 We think of C as an object over the complex numbers, not the reals.

Let’s discuss these one at a time.
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Compactification

Suppose that P(x , y) = 0 defines a curve C in R2. The curve C will contain
several pieces which we will call “ovals”.

Four ovals Four ovals

Some ovals are bounded, while some escape to infinity.
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Compactification

The bounded ovals in C are examples of compact sets.

However, the unbounded ovals are not compact. To fix this issue, we need to
add some “points at infinity” to turn them into compact sets. Loosely, we can
think of these points at infinity as directions along the horizon.
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Definition
P2
R is equal to R2 ∪ (R∪ {∞}). We call the new points (R∪ {∞}) the “points

at infinity” in projective space.

The point at infinity labeled t corresponds to the points in the horizon “at
slope t”. More precisely, suppose we start from some point and start walking
along the line with slope t (in either direction). If we walk “infinitely far out”
along the line, we will eventually reach the horizon at the point labeled t.
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Compactification rule: suppose we have an unbounded oval.
1 It is possible that as we move out to infinity the slopes of the tangent
lines to the oval will converge to a value t. In that case we add the point
marked t at infinity to our oval.

2 It is possible that as we move out to infinity the slopes of the tangent
lines to the oval will converge to two different values. In this case we add
the two corresponding points at infinity to our oval.

Sometimes two unbounded ovals have the same points at infinity. In this case
we “glue the two ovals” to get a single oval that “stretches out over ∞.”
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Example
The parabola limits to a single point at infinity. When we add this point, the
parabola “looks like” a typical ellipse.

Compactifying the parabola
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The parabola limits to a single point at infinity. When we add this point, the
parabola “looks like” a typical ellipse.

Compactifying the parabola
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Example
In addition to ellipses and parabolas, the third type of conic section in the real
plane is a hyperbola.

A hyperbola
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Example
The hyperbola limits to two points at infinity corresponding to the two
asymptotes. The two branches of the hyperbola become “glued” together at
these infinite points to form a single object.

Compactifying the hyperbola
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The hyperbola limits to two points at infinity corresponding to the two
asymptotes. The two branches of the hyperbola become “glued” together at
these infinite points to form a single object.
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Plane curves

As these examples demonstrate, when we add in the points at infinity we are
getting objects that honestly look like ovals (justifying the name).

The other change is to consider the curve P(x , y) = 0 over the complex
numbers. Unfortunately it is hard to visualize this procedure:

The spaces C2 and P2
C have four real dimensions.

The curve complex C will have two real dimensions.
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Fact
Suppose C is the closure of a plane curve P(x , y) = 0 inside of P2

C. If C is
smooth, then the geometric shape underlying C is a compact orientable
surface.

To compute χ(C), all we need to do is count the number of holes!

A compact algebraic curve
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Plane curves

We will use the following visualization procedure. When we intersect C with
the plane R2 ⊂ C2, we will obtain a “slice” of our surface. If we get lucky, this
slice will intersect every hole. (However, it is also possible that our slice will
miss some holes.)

A good slice A bad slice
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To estimate χ(C), we will count the number of ovals for the real curve
P(x , y) = 0 in R2. We then guess that the number of holes in C is one less
than the number of ovals. Using our formula for χ(C):

χ(C) = 2− 2(# of holes)
= 4− 2(# of ovals)

This isn’t quite right; there’s no guarantee that when taking the slice R2 ⊂ C2

we actually see every hole in C . This may be a serious problem depending on
which curve we picked.
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To improve our guess, recall that χ(C) does not change if we “deform C
continuously”. In particular, every curve of degree d should have the same
Euler characteristic! (The number of real ovals we see will change; the value
of χ(C) will not.)

In summary, we pose:

Hypothesis
Suppose that r is the maximal possible number of ovals for a real plane curve
of degree d . Then every curve of degree d will satisfy χ(C) = 4− 2r .
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Example
Suppose P(x , y) has degree 2. Then χ(C) = 2.

An elliptic slice of a surface with χ(S) = 2
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Example
Suppose P(x , y) has degree 3. Then χ(C) = 0.

An elliptic curve A slice of a torus
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Harnack’s Theorem

Theorem (Harnack’s Theorem, 1876)

Let P(x , y) be an irreducible degree d polynomial with rational coefficients.
Let C ⊂ R2 denote the solution set to P(x , y) = 0. If k denotes the number
of ovals making up C, then

k ≤ (d − 1)(d − 2)
2 + 1.

Furthermore, some polynomials P of degree d will achieve this equality.

The proof passes through some results that are interesting in their own right.
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Harnack’s Theorem

Theorem
Let d be a positive integer and set N = (d+2)(d+1)

2 − 1. Suppose we fix N
different points {pi}N

i=1 in R2. There is a non-zero degree d polynomial
P(x , y) that vanishes at every point pi .

For example, the following table shows that we can find a line through 2
points, a conic through 5 points, etc.

d 1 2 3 4 5
N 2 5 9 14 20
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Harnack’s Theorem

Proof.
A polynomial P(x , y) of degree d is determined by (d+2)(d+1)

2 coefficients.
Let’s write down the general form of such a polynomial. If we denote the
coefficient of x ky ` by akl , then

P(x , y) =
∑

k+`≤d
k,` non-neg

ak`x ky `

= ad0xd + a(d−1)1xd−1y + . . .+ a10x + a01y + a00

We also write write pi = (xi , yi ) for 1 ≤ i ≤ N. Note that each xi and each yi
should be interpreted as a constant: it is given to us by the problem!

24



Introduction

Geometry of
plane curves

Counting
ovals

Trichotomy
of curves

Harnack’s Theorem

Proof.
Finding a suitable polynomial P(x , y) is the same as finding coefficients
satisfying

ad0xd
1 + a(d−1)1xd−1

1 y1 + . . .+ a10x1 + a01y1 + a00 = 0

ad0xd
2 + a(d−1)1xd−1

2 y2 + . . .+ a10x2 + a01y2 + a00 = 0
...

...
...

...

ad0xd
N + a(d−1)1xd−1

N yN + . . .+ a10xN + a01yN + a00 = 0

For emphasis: the xis and yis are constant!

This is a linear system in the variables ak` with N unknowns and N − 1
equations. This means that the solution set has dimension ≥ 1. In particular,
there is always a non-zero solution.
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Theorem (Weak Bezout’s Theorem)

Suppose that P(x , y) and Q(x , y) are two polynomials which do not share any
factors. Let d and e denote the degrees of P and Q respectively. The number
of points simultaneously satisfying

P(x , y) = 0
Q(x , y) = 0

is at most d · e (counted with multiplicity).

In fact, if we take the closures of P(x , y) = 0 and Q(x , y) = 0 in P2 then the
number of simultaneous solutions is exactly d · e (counted with multiplicity).

Unfortunately we don’t have time to prove this.
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Harnack’s Theorem

Proof. (Proof of Harnack’s Theorem)

We will only prove the upper bound on the number of ovals k. Suppose for a
contradiction that P(x , y) has degree d and the curve C defined by
P(x , y) = 0 has k ovals where k ≥ (d−1)(d−2)

2 + 2.

One can divide the ovals composing C into two types – even and odd –
depending on whether or not they divide the plane into two pieces.
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Harnack’s Theorem

Proof. (Proof of Harnack’s Theorem)

At most one oval composing C can be odd.

(Aside: we have π1(P2
R) ∼= Z/2Z. An oval is even/odd depending on whether

it represents 0 or 1 in the fundamental group. If C contains an odd loop, then
the complement of this loop is simply connected so that every other oval in C
is even.)
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Proof. (Proof of Harnack’s Theorem)

Next we construct a new curve Q(x , y) = 0 of degree d − 2 in the following
way. Choose (d−1)(d−2)

2 + 1 different even ovals O1,O2,O3, . . . and choose 1
point on each of them. We also choose some other oval (even or odd) and
choose d − 3 points on it. Altogether the number of points we have chosen is

(d − 1)(d − 2)
2 + 1 + (d − 3) = d(d − 1)

2 − 1

Our earlier theorem guarantees that there is a polynomial Q(x , y) of degree
d − 2 that vanishes at all of these points. We denote the curve Q(x , y) = 0 by
D.
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Harnack’s Theorem

Proof. (Proof of Harnack’s Theorem)

Now let’s count how many times C and D intersect. D meets each oval Oj at
a point p and either:

D is tangent to Oj at p. In this case the multiplicity of intersection of D
and C at p is ≥ 2.
D enters the interior of Oj at p. In this case D must also leave Oj ,
adding at least one more point of intersection.

Either way, each Oj contributes at least 2 points to the intersection. This
means that the total number of intersection points of C and D is at least

2 ·
(

(d − 1)(d − 2)
2 + 1

)
+ (d − 3) = d2 − 2d + 1

This contradicts the upper bound (degP) · (degQ) = d(d − 2) from Bezout’s
Theorem.
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Hilbert’s 16th problem

Question (Hilbert’s 16th problem)

Suppose C is a smooth plane curve of degree d . What are the possible
“arrangements” of the ovals in C? (Open for degree ≥ 8.)

Oval arrangements for degree 4
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Euler characteristics

The following statement summarizes our work in the previous section.

Corollary
Let P(x , y) be an irreducible degree d polynomial with rational coefficients.
Let C be the closure of the curve P(x , y) = 0 in P2

C. If C is smooth, then

χ(C) = 4− 2 ·
(

(d − 1)(d − 2)
2 + 1

)
= d(3− d).

The first few values are: degree 1 2 3 4 5 6
χ(C) 2 2 0 -4 -10 -18
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Euler characteristic

Remember our Guiding Principle: the curvature of C should determine the
geometry/arithmetic of the curve.

Last time, we saw that the Euler characteristic measures the “total curvature”.
Our trichotomy is determined by whether this “total curvature is positive,
zero, or negative. For plane curves, this turns into a trichotomy of degrees:

Trichotomy type spherical flat hyperbolic
Euler characteristic > 0 = 0 < 0

Degree of plane curve 1, 2 3 ≥ 4
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Rational points

Let’s see how the trichotomy of curves interacts with rational points. Suppose
that P(x , y) is a polynomial with rational coefficients and the equation
P(x , y) = 0 defines a smooth curve C .

Degree 1: C always has infinitely many rational points.
Degree 2: if C has a rational point, then C(Q) can be analyzed
projection away from a point.
Degree 3: the set C(Q) has a finite generating set under the operation +.

In both cases the key to our construction was intersecting C with lines
through rational points. What about higher degrees?

34



Introduction

Geometry of
plane curves

Counting
ovals

Trichotomy
of curves

Higher degrees

The analogue of our Key Observation in arbitrary degree is:

Theorem
Suppose anxn + an−1xn−1 + . . .+ a0 = 0 is a degree n equation with rational
coefficients. If this equation has n− 1 rational solutions, then every solution is
rational.

However, this is not so useful when n > 3. The issue comes from geometry!
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Higher degrees

If we have one or two points in the plane, we can always find a line through
them. But if we have ≥ 3 points in the plane, they will “usually” not be
collinear. So “usually” there is no way to generate new points by looking at
lines through rational points.

ppppppp

p

qqqqqqq

q

2 points: always collinear 3 points: rarely collinear
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Higher degrees

Of course one can imagine trying to generate new rational points using some
other method besides lines. However, a celebrated theorem of Faltings dashes
our hopes:

Theorem (Faltings’s theorem)

Let P(x , y) be a polynomial of degree ≥ 4 with rational coefficients such that
the equation P(x , y) = 0 defines a smooth curve C. Then C(Q) is finite.
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Higher degrees

The following table summarizes the situation for polynomials in two variables:

degree 1, 2 3 ≥ 4
number of

rational points
infinite
(if ≥ 1)

could be finite
or infinite finite

This is exactly the same trichotomy we noticed earlier!

38



Introduction

Geometry of
plane curves

Counting
ovals

Trichotomy
of curves

Algebraic curves

For perspective, here is a more complete table describing the “trichotomy” for
smooth projective curves over Q.

Trichotomy type spherical flat hyperbolic
genus 0 (P1) 1 (elliptic) ≥ 2

Euler characteristic / C > 0 = 0 < 0
Universal cover / C P1 C H
Automorphisms / C PGL2 ≈ itself finite

number of
rational points

infinite
(if ≥ 1) thin set finite
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Algebraic curves

Question
Is there a “trichotomy” of algebraic varieties in dimension > 1?

There are many famous conjectures in this direction. But very little has been
proved!

Recently I have studied the behavior of rational points for higher dimensional
varieties with “spherical” curvature, mainly over function fields of complex
curves.
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Exercises

Exercises:
1 Plane curves: study the relationship between affine curves in R2 and
projective curves in P2.

Images made using Desmos and taken from Wikipedia, Bill Shillito, Thomas
Banchoff, Andreas Gathmann, Viatcheslav Kharlamov and Oleg Viro
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