MINI-COURSE: SYMPLECTIC AND POISSON GEOMETRY IN FIELD THEORY
CMND 2024 THEMATIC PROGRAM IN FIELD THEORY AND TOPOLOGY
SUGGESTED PROBLEMS AND REFERENCES

“Bverything is a Lagrangian submanifold”. Alan Weinstein

1. GENERAL INFORMATION

Hello! These problems are suggested to be discussed/worked out during the problem sessions. Please
feel free to ask any questions, share your thoughts and ideas. There are also some open-ended questions,
in case you want to continue your exploration of symplectic and Poisson geometry in field theory. The
last section contains some suggested references that complement the content of the lectures, and it might
help to put these problems into a broader context.

e Instructor:
Ivan Contreras (Amherst College)
— E-mail: icontreraspalacios@amherst.edu
o TA’s:
Cory Gillette (cgillet2@nd.edu) and Lorenzo Riva (Iriva@nd.edu)

2. PROBLEMS

2.1. Lecture 1: Symplectic Geometry.

(1) Prove that every weak symplectic form on a finite dimensional vector space is actually symplectic.

(2) Prove that the symplectic vector spaces from Example 1 (standard symplectic structure) and
Example 2 (cotangent space) are symplectomorphic.

(3) Let V be a weak symplectic space and W, Z subspaces of V. Prove:
(a) WCZ= Z+cwt.
b) W+2)t=wtnzt.

(c) Wt+ZztCc (Wn2)t.

(d) W Cwtt,

(e) WJ_ — WJ_J_J_'

(4) Let f: (V,wy) = (W,ww) be a symplectomorphism. Prove that the graph gr(f) is a Lagrangian
subspace of (V @& W, wy —ww)

(5) Prove Theorem 2 (the symplectic reduction theorem).

Theorem 2.1. Let W be a linear subspace of a symplectic vector space V.. We define
W :=W/Wnwt,
called the reduction of V. Prove that W is symplectic.
2.1.1. Open Problems.

Problem 6: Classify (up to conjugation by symplectomorphism) all the Lagrangian relations on a finite di-

mensional vector space V

Problem 7: Determine exactly which Lagrangian relations on V' x V' x V are associative H

IFor more details on this problem, see [3]
2For more details on this problem, see [8]
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2.2. Lecture 2: Poisson Geometry.

(8) Prove that a bivector II satisfies the Jacobi identity if and only if the following (so called the
Schouten-Nijenhuis equation) holds:

> I (2) (0,1 () + T () (9,1 () + 10 (2) (9, ) 1T* () = 0,
-
(9) Prove that every bivector II in R? is Poisson.
(10) Let M = R3, and consider the Poisson bracket on M determined by
{z,y} =2, {z, 2} =y, {y, 2} ==
Determine the Casimir functions and the corresponding orbits (symplectic leaves) of M.

2.2.1. Open Problems.
Problem 11: Let M = R" (you may start with n = 3). A bivector II is polynomial, if II(x) is a polynomial in

the variables x1,zo, -+, Z,.
(a) Determine conditions (necessary and sufficients) for which a polynomial bivector II is Pois-
son.

(b) For n = 2,3, classify all polynomial Poisson bivectors up to Poisson isomorphism.

2.3. Lecture 3: Classical Field Theory.

(12) Use Euler-Lagrange equations to prove that on R, the shortest path between two points is the
straight segment connecting them.

(13) Prove that the form w = do on T'M is symplectic if and only if the Legendre map @y, is invertible.

(14) Prove that the evolution relation Lys := mp(ELpy) is a Lagrangian submanifold of Cyyy.

2.3.1. Open Problems.
Problem 15: Under which conditions the evolution relation L), is Lagrangian, and not just isotropic? E|

2.4. Lecture 4: The Poisson Sigma Model.

(16) Prove that the tangent space T.(SU(2)) is a Lie algebra isomorphic to the cross product Lie
algebra.
(17) Prove that if (M, 1) is a Poisson manifold, then T*M is a Lie algebroid with anchor map II*

2.4.1. Open Problems.

Problem 18: Under which conditions a polynomial Poisson bivector admits a symplectic groupoid, i.e. the
reduced phase space of the corresponding Poisson Sigma Model is a smooth manifold? E|

3. SUGGESTED REFERENCES

3.1. Symplectic Geometry.
[1] Bates, S. and Weinstein, A. (1997). Lectures on the Geometry of Quantization, Vol. 8
(American Mathematical Soc.).
[2] Weinstein, A. (1977). Lectures on symplectic manifolds, 29 (American Mathematical Soc.).
[3] Lorand, J. and Weinstein, A. (2015). (Co)isotropic pairs in Poisson and presymplectic vector
spaces SIGMA, Symmetry Integrability Geom. Methods Appl. 11.

3.2. Poisson Geometry.

[4] M. Crainic, Fernandes, R. and Marcut, I. (2021). Lectures on Poisson Geometry, 217 (Grad-
uate Texts in) Mathematics.

3For more details on this problem see [5] and [6]
4For more details on this problem see [4] and [7]
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3.3. Classical Field Theory.
[5] Cattaneo, A. Mnev, P. and Reshetikhin, N. (2011). Classical and Quantum Lagrangian Field
Theories with Boundary. Conference: Proceedings of the Corfu Summer Institute.
[6] Cattaneo, A. and Contreras, I. (2021). Split Canonical Relations, Annales Henri Lebesgue 4.

3.4. The Poisson Sigma Model.
[7] Cattaneo, A. S. and Felder, G. (2001). Poisson sigma models and symplectic groupoids, in
Quantization of singular symplectic quotients, Progr. Math., Vol. 198 (Birkhauser, Basel)
[8] Cattaneo, A. S. and Contreras, I. (2015). Relational symplectic groupoids, Letters in Mathe-
matical Physics 105, 5.
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