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Animals are home to diverse bacterial communities that can

affect their hosts’ physiology, metabolism, and susceptibility to

disease. Here we highlight recent research that reveals

surprising and important connections between an individual’s

microbiome and its social behavior. We focus on two recent

discoveries: (i) that social interactions can affect the taxonomic

and genic composition of animal microbiomes, with

consequences for microbiome function and potentially host

fitness, and (ii) that microbiomes can affect host social behavior

by producing chemical signals used in social communication

and by directly influencing host nervous systems. Investigating

the reciprocal relationships between host behavior and the

microbiome thus promises to shed new light on both the

evolution of host social behavior and microbial transmission

strategies.
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Introduction
In the last decade, biologists have gained a new apprecia-

tion for the roles that host-associated microbiomes play in

the lives of animals, including effects on animal physiolo-

gy, health, and evolution [1–4]. Thus far, some of the most

surprising discoveries have involved links between micro-

bial communities and host social behavior [5–11]. Here we

focus on two emerging themes from this literature. The

first is that social organization and behavior, either through

direct physical contact or via shared environments,

can influence the bacterial communities associated with
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individual animals (e.g. [12,13�,14,15�]). In turn, these

social processes can alter the taxonomic and genic com-

position of the microbiome, with implications for the

services microbiomes provide to their hosts (e.g.

[13�,16��,17]). The second major discovery is that the

microbiome can shape host social behavior. Because mi-

crobial metabolism can release volatile compounds de-

tectable to animals, and because bacterial communities

can vary with host traits, microbial communities have the

potential to communicate considerable information about

animals—a function that may be co-opted by their hosts

for use in social signaling [5,7]. Furthermore, microbes

may directly ‘hack’ the host nervous system to increase

microbial transmission—essentially manipulating host be-

havior to benefit their own fitness [18]. Here we highlight

the most compelling examples of both sets of findings for

host-associated bacterial microbiota, focusing primarily on

recent studies that use high-throughput profiling meth-

ods. Together, these studies provide some of the first

insights into the unexpectedly intimate links between

social behavior and the microbiome.

Social behavior affects the microbiome
Social effects on the composition of host-associated

bacterial communities

Biologists have long appreciated the effects of host social

behavior on transmission of parasites and pathogens [19–
22]. However, recent high-throughput, culture-indepen-

dent techniques have greatly expanded the scope of what

we can measure, extending this perspective to whole

bacterial communities. Significant correlations between

microbiome composition and social co-residency or group

membership have now been reported in humans, nonhu-

man primates, carnivores, rodents, insects, and birds

[12,13�,14,15�,16��,23–27]. For example, breeding pairs

of kittiwakes [14], chimpanzees or baboons that live in the

same social group [13�,27], and humans that live in the

same household [12,15�], all exhibit more similar micro-

bial communities than individuals in their populations at

large. In a few cases, these relationships have been

extended to the genes encoded by host microbiota

[13�,15�]. Thus far, studies of skin-associated and gut-

associated communities dominate this literature, but re-

search on other microbiota (e.g. the oral cavity, the vagina,

the cloaca, and scent glands) suggests that the pattern

may be widespread across body sites [12,24,25�,28].

While social structuring of the microbiome appears to be

common, the mechanisms that underlie this phenomenon

are not well understood. Because social partners are often

exposed to shared environments or consume similar diets,

disentangling bacterial transmission due to direct social
www.sciencedirect.com
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contact from other explanations is challenging, especially in

non-invasive or minimally invasive studies (but see Box 1).

For instance, social partners could be colonized by similar

microbes due to contact with shared environmental sources,

or behavioral similarities between partners could create

similar ecological niches within microbial communities,

particularly through consumption of similar diets [29,30].

In practice, the explanation for observed associations be-

tween social interactions and microbiome similarity often

remains unclear. Excluding transmission via coprophagy,

only a handful of studies have been able to make a

strong case that direct transmission between hosts plays

an important role in shaping microbiome composition

[13�,14,15�,28]. However, these studies indicate potentially

useful study designs for identifying such effects (Box 1) and

have helped shape an emerging two-level paradigm for

understanding social effects on the microbiome, with roles

for both coarse social structure (e.g. group co-residency) and

more fine-grained, individually differentiated social inter-

actions (e.g. social networks within groups).

The functional and adaptive importance of social

transmission

Microbial transfer between socially interacting hosts is

often invoked as an important component in the cost–
benefit calculus of group living [4–6,8,31]. However, our

ability to accurately measure microbiome function remains

limited, leaving the relationship between social transmis-

sion of microbes and host health or fitness opaque in most

cases. Metagenomic and metatranscriptomic high-through-

put sequencing methods may provide insight in this regard

by opening a window into the genes encoded and

expressed by microbial communities. Such studies have

identified both disease-causing microbes and antimicrobi-

al-resistance genes among the taxa and sequences shared

through social contact [15�,32]. However, not all microbes

are equally likely to transfer through social routes. Bacteria

that are most dependent on specialized, host-associated

environments might be the most likely to be transmitted

via social contact [13�], and the types of bacteria that

transfer may also depend on the physiological state of their

hosts [33,34]. Which taxa benefit most from social trans-

mission remains an important open question, with the

search for answers currently limited by our incomplete

knowledge of bacterial life styles and their roles within

hosts. Furthermore, while arguments linking social living

to beneficial microbial transfer tend to assume long-term

coevolution (e.g. [4,8]), environmental factors can lead to

surprisingly rapid shifts in host microbial communities, at

least in the gut [35�]. This observation suggests either

weaker coevolutionary coupling than previously believed,

or a more complicated coevolutionary pattern (e.g. adapta-

tion to dietary plasticity rather than a constant diet).

Consequently, relatively few studies have linked socially

mediated microbial transfer to clear fitness-related out-

comes, but those that have point to both positive and
www.sciencedirect.com 
negative effects. In bumblebees, for example, transfer of

gut microbiota from nest mates to emerging adults is

essential for defense against the trypanosomatid parasite

Crithidia bombi, which severely restricts the fertility of

infected queens [16��]—a clear case of beneficial social

transmission. However, bumblebee guts are relatively

species poor, and for species with more complex gut

microbiota, the influence of social transmission may dif-

fer. Indeed, a case of social transmission in mice reveals a

more complicated pattern. In a colitis-susceptible mouse

strain, high rates of intestinal colitis are associated with

colonization by the gut microbes Klebsiella pneumonia and

Proteus mirabilus [17]. Strikingly, cross-fostering wild-type

pups to susceptible mothers leads to transfer of these

microbes and associated susceptibility to colitis, whereas

cross-fostering pups of the susceptible strain to wild-type

mothers eliminates both effects. In this case, social trans-

mission is protective in one context but deleterious in

another: the ‘good’ versus ‘bad’ consequences of social

transmission depend instead on what gets transferred.

The microbiome affects social behavior
Microbes create chemical cues that animals use in

social communication

While social interactions can alter microbiome composi-

tion and function, microbes can also affect host social

behavior. One of the main ways these effects arise is

through chemical signals: considerable evidence indicates

that some animals cultivate odor-producing bacteria in

their scent glands, specifically for use in social communi-

cation [7,9,11]. Because animal-associated bacterial com-

munities can be shaped by social contacts, family

relationships, genotypes, and environments, bacterial

communities have the potential to communicate substan-

tial information about their hosts [24,25�,36,37]. In sup-

port, several studies have observed correlations between

host traits (e.g. sex, dominance rank, social group mem-

bership), the bacterial communities living in scent glands,

and the volatile compounds that emerge from these

glands [25�,36].

Experimental approaches—including manipulations of

diet or social interactions, clearing host microbiota using

antibiotic interventions and reintroducing individual spe-

cies, or using germ-free animals—are important for test-

ing for causality and dissecting the mechanistic basis of

these signals. For instance, experiments in fruit flies

(Drosophila melanogaster) have shown that gut bacteria

mediate olfactory cues involved in social attraction

[38], mating preferences [39], and kin recognition [40].

Similarly, in lab mice, careful work has enabled research-

ers to elucidate the metabolic pathways involved in the

production of trimethylamine (TMA), a volatile com-

pound proposed to signal species identity [41��]. TMA

smells like rotting fish and is produced by gut bacteria

during choline metabolism. In most mammals, including

humans, TMA is converted into an odorless compound by
Current Opinion in Behavioral Sciences 2015, 6:28–34
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Box 1 Investigating social processes that affect microbiome composition in minimally invasive studies.

Invasive experimental manipulation (e.g. clearance of the microbiota and controlled reseeding) is one powerful strategy for testing social effects on

the microbiome, but this strategy is not possible in all systems, including many human and wild animal populations. However, such systems are

important for understanding how social contact maps onto microbiome variation in a natural context, and whether associations between social

structure and the microbiome arise as a consequence of direct social contact or shared environmental exposures. Three types of study designs

have emerged as informative in this regard. Population genetic tracking of strain migration could, in theory, be a fourth, although no microbiome-

wide studies of this type are yet available.

Fine-grained observation: Tung et al. [13�] combined network data on rates of grooming between baboons with parallel data on dietary similarity

and environment use, collected for the same individuals during the same time span. Direct contact-based networks (blue) predicted gut

microbiome similarity (gray) even after controlling for diet similarity networks (purple) or spatial proximity-based networks (green).

social interactions

diet

environment use

gut microbiome 
sampling

Longitudinal studies: Using repeated sampling, Meadow et al. [54] showed that members of competing roller derby teams exhibit more similar

microbial communities following a ‘bout’ than beforehand, supporting transfer between players during the game (left). Lax et al. [15�] sampled host

skin surfaces and household surfaces for seven families over 6 weeks, including 3 families that moved within the sampling window. Skin microbiota

dominated household surfaces, which rapidly converged to mirror the skin microbiota of their owners. Hence, transfers between socially interacting

individuals drive patterns of skin microbiota similarity, sometimes via intermediate surfaces.

pre-interaction
sampling

post-interaction
sampling

time

tim
e

Experimental studies: In kittiwakes, breeding pairs exhibit more similar cloacal microbiota than non-pairs (left). Blocking direct cloacal contact

caused the microbial communities within breeding pairs to diverge, demonstrating that sexual contact was the mechanism driving similarities

between mates [14]. Kort and colleagues [28] used ‘marker’ bacteria from a probiotic drink to track the effects of kissing on the salivary microbiome

(right). Approximately 80 million bacteria were transferred in an intimate kiss.

control treatment

tim
e

tim
e
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enzymes in the liver. However, in male Mus musculus, but

not other rodent species, these enzymes are down-regu-

lated at sexual maturity, allowing TMA to build up in M.
musculus urine and tissues. Mice given antibiotics or low-

choline diets produce much lower quantities of TMA,

demonstrating a causal role for bacteria in driving this

signal. Intriguingly, data from both fruit flies and mice

show that microbes mediate odors involved in mate

choice and pre-mating isolation, raising the possibility

that bacterially produced odors also contribute to host

speciation [39,41��,42]. Microbes living in scent glands

presumably benefit by gaining safe, nutrient-rich places

to live, and opportunities to colonize new hosts during

scent marking. However, how common these relation-

ships are across host taxa and whether they constitute true

host–microbe mutualisms remain important areas for

future research.

Bacteria may manipulate host social behavior to

maximize microbial fitness

Microbes can also influence host social behavior by di-

rectly manipulating the host nervous system [18,43,44].

While it has long been known that parasites can manipu-

late host behavior to improve transmission [45], symbiotic
Figure 1

(a)

Symbiotic bacteria may benefit from manipulating hosts to increase their ab

mirabilis is found in a large range of habitats, including rotting meat. P. mira

swarming. The image in (a) depicts P. mirabilis swarming in a classic bulls e

Swarming allows the colony to locate new resources over short distances, 

carcasses. To solve this problem, P. mirabilis uses the blow fly, Lucilia seric

mirabilis uses to initiate its own swarming behavior—lactic acid, phenol, sod

strong, volatile odors that attract blow flies [46]. Without these chemical cue

a carcass undergoing bacterial decomposition, they lay their eggs. Once th

mirabilis. P. mirabilis survives consumption, residing in the fly’s salivary glan

are transported by the newly emerged adult fly to a new carcass.
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bacteria should also benefit from behavioral manipulation

if it increases their ability to access new hosts and new

environments. The bacteria Proteus mirabilis has just such

a relationship with the blow fly, Lucilia sericata: P. mir-
abilis produces volatiles that attract flies to new food

sources, while the flies serve to transport bacteria to

new habitats [46] (Figure 1). However, behavioral ma-

nipulation may be more complex when hosts harbor more

diverse microbiota. The fitness interests of bacteria occu-

pying different body sites or utilizing different resources

within the same body site could theoretically involve

conflicting transmission strategies or resource require-

ments, making host manipulation more difficult to evolve.

Despite these limitations, there is some evidence that gut

bacteria manipulate food cravings in hosts to obtain

optimal resources for bacterial growth [18] and specula-

tion that bacteria manipulate host social interactions to

promote transmission [10]. The strongest evidence for

direct effects of bacteria on host behavior comes from

research on the gut-brain axis (interested readers should

see several recent and excellent reviews of this topic:

[44,47–50]). As in other areas of microbiome research,

building the case that bacteria play a direct causal role
(b)
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ility to access new resources and environments. The bacteria Proteus

bilis is also one of a handful of bacterial species capable of bacterial

ye formation on a Petri dish (image from Wikimedia Commons).

but P. mirabilis is limited in its ability to travel long distances to new

ata (b) as an insect taxi service. In fact, the same chemical signals P.

ium hydroxide, potassium hydroxide, and ammonia—also produce

s, blow flies have difficulty locating carcasses. When blow flies locate

e larvae hatch, they consume the carcass and bacteria, including P.

ds until the larva pupates into adulthood, at which time the bacteria
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remains challenging. However, a handful of exceptionally

strong and careful studies have shown that experimental

manipulations of the gut microbiome, through antibiotics

or changes in diet, can lead to changes in host exploratory

and cognitive behavior, as well as gene expression levels

in the brain (e.g. [51,52�]). These changes are indepen-

dent of other changes in health or immune function and,

most convincingly, fecal transplants are able to re-create

similar effects in animal models [51,52�]. However, we

still do not know why bacteria might benefit from

influencing these particular host behaviors, highlighting

exciting opportunities for collaboration between evolu-

tionary, ecological, and biomedical scientists.

Conclusions and future challenges
Who an animal interacts with and what they do together

can have profound consequences for the composition of

their microbiota. Microbes themselves can also play caus-

al roles in host social interactions through chemical sig-

naling and effects on host nervous systems. However,

several major puzzles continue to confront research on

social behavior and the microbiome. Foremost among

them is the problem of measuring the stability and

functional consequences of compositional variation in

bacterial communities. As yet, most culture free techni-

ques cannot reveal which microbes in a community are

alive and functioning, and which are dead or dormant

(although metatranscriptomics may lend insight here).

Thus, the results of most profiling approaches primarily

capture microbe presence, as opposed to their role in the

host–microbe ecosystem, or their stability over time. This

limitation makes it difficult to understand the effects of

the microbial communities that we profile, and com-

pounds the problem of evaluating whether social effects

on microbial transmission are, on balance, positive or

negative for hosts (an answer that itself may be con-

text-dependent). While social contact can provide access

to beneficial microbes [16��], harmful bacteria could use

the same transmission routes, and both processes are

likely to have been at work throughout the evolution

of host social behavior. Simple host–microbe systems

seem to offer many advantages in addressing these pro-

blems because of the relative feasibility of measuring

functional consequences for both hosts and microbes (e.g.

[53]). However, it remains unclear whether one host–one

microbe systems provide accurate analogs for complex

microbial communities involving hundreds or thousands

of microbial species.

Despite these challenges, now is an exciting time to be

working at the interface between animal behavior and the

microbiome. Untangling the relative costs and benefits of

both social transmission and microbial effects on behavior

will undoubtedly be a priority in the next generation

of research on social behavior and the microbiome.

Social relationships can be a double-edged sword, with

beneficial consequences when they are positive but with
Current Opinion in Behavioral Sciences 2015, 6:28–34 
deleterious effects on health and survival when they are

negative or absent. Because host-associated microbes

appear to both shape and depend on these relationships,

it is becoming increasingly clear that they, too, may play a

key role in the health and fitness consequences of social

organization and behavior.
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