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In male vertebrates, two conflicting paradigms—the energetic costs of high
dominance rank and the chronic stress of low rank—have been proposed
to explain patterns of immune function and parasitism. To date, neither
paradigm has provided a complete explanation for status-related differences
in male health. Here, we applied meta-analyses to test for correlations bet-
ween male social status, immune responses and parasitism. We used an
ecoimmunological framework, which proposes that males should re-allocate
investment in different immune components depending on the costs of dom-
inance or subordination. Spanning 297 analyses, from 77 studies on several
vertebrate taxa, we found that most immune responses were similar between
subordinate and dominant males, and neither dominant nor subordinate
males consistently invested in predictable immune components. However,
subordinate males displayed significantly lower delayed-type hypersensitiv-
ity and higher levels of some inflammatory cytokines than dominant males,
while dominant males exhibited relatively lower immunoglobulin responses
than subordinate males. Despite few differences in immunity, dominant
males exhibited consistently higher parasitism than subordinate males, includ-
ing protozoan blood parasites, ectoparasites and gastrointestinal helminths.
We discuss our results in the context of the costs of dominance and subordina-
tion and advocate future work that measures both parasitism and immune
responses in wild systems.

1. Introduction

Social hierarchies are a fundamental feature of many human and non-human
animal societies [1]. In humans, socio-economic status (SES) has played a critical
role in both historical and sociological contexts, manifesting itself in movements
such as the French Revolution, and more recently, Occupy Wall Street and the
emergence of the Tea Party [2—5]. An individual’s position in a hierarchy can
have striking effects on their health. Studies of humans have shown that individ-
uals of lower SES suffer disproportionately from most documented diseases and
exhibit higher rates of mortality relative to individuals of higher SES [6-8]. Social
status is also often linked to health disparities in non-human animals, but the
effects are mixed; sometimes low-status animals have worse health than high-
status animals (e.g. [9-11]), and sometimes high-status animals exhibit worse
health than low-status animals (e.g. [12—15]). These differences are puzzling.

In both humans and non-human animals, status-related differences in health
are thought to be partly caused by status-related differences in immune function
[16—18]. Here, we focus on these relationships in adult male vertebrates. Under-
standing the connections between social status and immune function in males is
important because, in many species, high-status males engage in greater mating
effort than low-status males, and these energetic costs of reproduction may result
in trade-offs with survival-related tasks, including immune function [19-22].
Thus, discovering how immune responses vary with social status helps reveal
how males allocate energy towards two major components of fitness—survival
and reproductive effort.
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To date, two disparate and somewhat contradictory para-
digms have been proposed to explain hierarchy-related
differences in male health and immune function. The first
explanation, which is usually invoked to explain observations
of low immune function in high-status males, is that the
energetic costs of high social status, such as high reproductive
effort and intense male—male competition, cause immuno-
suppression [23—28]. This trade-off may be partly mediated
by testosterone, and sometimes glucocorticoids, which help
direct energetic resources toward reproduction and away
from tasks associated with long-term survival, such as
immune function [13,23,24,26,27]. Hence, the greater intensity
of effort displayed by high-status males via reproductive effort,
maintenance of rank, and the subsequent differences in social
organization, diet and foraging behaviours may mean that
high and low-status males effectively occupy different socio-
ecological niches, leading to differences in immune function
or parasitism [29-31]. In support, some studies have shown
that investment in reproduction and/or elevated testosterone
is associated with decreased immunity [27,32]. Similarly,
other studies have shown that investments in reproductive
effort via testosterone production and/or body ornamentation
positively correlate with parasite load [14,28,33—-37].

Conversely, a second explanation, usually invoked to
explain low immune function in low-status males, is that
status-related differences in immune function are caused
by differences in exposure to chronic stress [16,38—40].
Low-status males may be more likely to experience unpredict-
able events, or are less able to cope with these events, leading to
chronically elevated glucocorticoid levels and ultimately
immunosuppression [16,39,41]. In support, there is strong evi-
dence that the cumulative physiological burdens associated
with chronic stress tend to depress immune function [40,42]
especially in low-status individuals [9,43—-47]. Furthermore,
in many societies, low social status in males is generally associ-
ated with poor health and elevated disease risk [16,18,41,48].
Studies have also shown that chronic psychological stress
tends to suppresses cell-mediated (Th-1) defences [49] and
enhance pro-inflammatory responses [50], and that Th-2 cells
generally stimulate the production of pro-inflammatory IL-6
[51], which transiently proliferates following exposure to
physical and psychological stressors [52,53].

Despite decades of research on both of these paradigms,
neither has provided a complete explanation for status-
related differences in male health and immunity [40,54,55].
One challenge is that these two paradigms are rarely exam-
ined simultaneously in the same species or population.
This is important because, while both explanations have
been partly successful in explaining some aspects of status-
related differences in immunity, they explain two seemingly
incongruent phenomena: immunosuppression in high-status
males (e.g. [12-15]) versus immunosuppression in low-
status males (e.g. [9-11]). A second challenge is that studies
testing these ideas have tended to oversimplify the vertebrate
immune system, often relying on only one or a few assays to
evaluate male immune responses in any given species or
population [18,48,56,57]. However, the vertebrate immune
system is multifaceted, with several semi-independent
modes of response that can be upregulated or downregulated
depending on the diseases or injuries organisms face and
their energetic limitations [58,59]. A third challenge is that
the nature of dominance hierarchies can vary within and
between species, and the criteria used to assign rank can

vary between populations and studies [16]. For instance, in
humans, high and low status are often distinguished by
measures of SES, occupation and educational levels [60]. In
non-human animals, hierarchies can be delineated by physio-
logical, ecological or behavioural parameters and can vary in
their strength, linearity and stability [16]. In this paper, we
considered dominance ranks to represent any asymmetrical
relationship in which one or more individuals consistently
outcompeted others in dyadic agonistic interactions [61].

We attempted to address these challenges by drawing on
ideas from ecoimmunology that take a pan-immune system
approach to understanding adaptive variation in immune
response. Under this perspective, organisms are not expected
to experience broad immunosuppression in the face of ener-
getic or hormonal challenges; rather they should reallocate
their investment in different types of immune defence
depending on their energetic and disease-related costs
[31,54,57,58]. To date, two such hypotheses have been pro-
posed that make specific predictions about how males
should allocate investment in immune defence as a function
of reproductive effort or stress.

(a) The trade-offs model: hypothesis and predictions
The first hypothesis (figure 1), adapted from a framework
developed by Lee [31], proposes that the energetic costs
of reproductive effort shape male investment in immune com-
ponents, and that males will favour some immune components
over others depending on their associated benefits and costs
[57,58]. This hypothesis categorizes immune defences based
on multiple dimensions (table 1)—i.e. inducible versus consti-
tutive defences, specific versus non-specific defences [57,58]
and Th-1 mediated versus Th-2 mediated defences [31]. Domi-
nant males, especially those that engage in high reproductive
effort, are predicted to favour less energetically costly
immune defences (i.e. inducible and specific defences) and
anti-inflammatory defences (i.e. Th-2 mediated), while sub-
ordinate males will favour non-specific, constitutive and
inflammatory defences (i.e. Th-1 mediated) [31,57]. In terms
of parasitism, this model predicts that, due to differential
exposure to parasites, high-status males will be at greater risk
for extracellular parasites than low-status males, while low-
status males will be at greater risk for intracellular parasites
than high-status males [31].

(b) The stress—response model: hypothesis and
predictions

A second hypothesis (figure 2), based on a framework devel-
oped by Dhabhar [40], proposes that immune defences will
be shaped by patterns of chronic and acute stress. In this
hypothesis, stressors serve antagonistic functions—in some
cases facilitating immunity and preparing the body for chal-
lenges to the immune system, and in other circumstances
dysregulating immune responses, causing sickness and dis-
ease [40]. Among stable societies, individuals exposed to
short-term, acute stressors, generally high-ranking individ-
uals [16,41,71], are predicted to have enhanced innate (non-
specific), constitutive, adaptive (specific) and induced
immune responses. Conversely, among stable societies, indi-
viduals exposed to chronic stress, generally low-ranking
individuals [16,41,71], are expected to exhibit mostly immu-
nosuppressive responses. Furthermore, chronic stress is
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associated benefits and costs

life-history axis:
variation between
populations:

higher social status

hypothesis: the energetic costs of reproductive effort shape male investment in immune
components, and males will favour some immune components over others depending on their

greater intensity effort
(reproduction, maintaining rank)

lower social status

lower intensity effort

immune defence axis:
less in inflammatory

adaptive immunity
Th2-mediated

inducible

more specific defences/

less specific defences/
more in inflammatory

innate immunity

Th1-mediated

constitutive

»

pathogen axis:

more frequent

more extracellular parasites
(i.e. some bacteria, macro-parasites)

»

more intracellular parasites
(i.e. some bacteria, viruses)

less frequent

Figure 1. The trade-offs model, modified from Lee [31].

predicted to enhance type-2 mediated immunity and to
suppress type-1 mediated responses [72].

We tested predictions of these hypotheses in a meta-
analytical framework to gain a more complete understanding
of how social status affects immune responses and measures
of parasitism in male vertebrates.

2. Material and methods

(a) Identification of studies and inclusion criteria

To identify published studies on the association between male
social status and immune responses, we conducted an extensive
electronic search in Web of Science. The literature search took
place between January and February 2014, and the years covered
in the search spanned 1900-2014. We searched for all possible
pair-wise combinations of two search terms, one each from
either (i) social hierarchy, social dominan* and social status or
(ii) disease*, parasit*, immune function and health. In addition,
we searched the bibliographies of highly cited and/or recent
review articles on social status and immunity to supplement
the Web of Science electronic search [16,18,41,48]. We accepted
both experimental and observational studies, and we accepted
studies published in all languages.

To be included in the meta-analysis, the study species had
to be a member of the vertebrate sub-phylum, including both
captive and free-living populations. In addition, immune
responses of dominant males had to be directly compared to
immune responses of subordinate males. While we conceptually
defined dominance relationships based on asymmetrical, com-
petitive interactions [61], operationally, these included diverse
measures of individual behaviour, morphology, physiology
and condition (electronic supplementary material, table S1).
Studies that compared dominants or subordinates with ‘controls’

(e.g. socially isolated animals) were excluded. We also excluded
analyses that included juveniles, mixed sexes or castrated males.

(b) Data extraction

We extracted several types of data from each study: (i) citation
information, including the journal and authors; (ii) the species
involved; (iii) the study setting as captive (laboratory or zoo
animals), wild (non-provisioned, free-ranging animals) or semi-
natural (provisioned animals or wild animals kept in captivity
only during immune tests); (iv) the method of measuring
dominance rank (electronic supplementary material, table S1);
(v) the types of immunological (electronic supplementary material,
table S2) or parasitological (electronic supplementary material,
table S3) measures used to test status-related differences in
health; (vi) when relevant, the component of immune defence
these measures reflected (table 1); and (vii) the effect sizes,
measures of dispersion, sample sizes and p-values for each test of
immune response included in the study. Parasitological measures
included estimates of parasite prevalence, parasite species richness
and infection intensity. For studies that represented their results
graphically, but did not report exact numerical results, we used
WEB Pror Dicimizer v. 3.3 [73] to extract means and standard
errors or means and standard deviations from relevant figures,
and then converted them to standardized mean differences. All
data were compiled by one author and checked by a second.

(c) Statistical analyses

To quantify the effects of social status on immune response, we
used a meta-analytic approach. We designated dominant males
as the control group and assigned subordinates to the treatment
group. An effect size calculator [74] was used to convert means
and standard errors, means and standard deviations, t-tests and
p-values, as well as other statistical measures, to a standardized
mean difference, Cohen’s d. We then checked these measures
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Table 1. Immune system components used for assessing the effects of social status on immune function.

immune

component description

innate (non- host defences that exist before antigen exposure;

specific) generally confers non-specific and constitutive

immune defences although inducible and specific

properties are critical in certain innate defences.

Three main defences are: phagocytosis,

inflammation and the complement cascade

adaptive host defences that are mediated by antigen

(specific) exposure and the activation of B and T cells.

Adaptive components of the immune system

exhibit highly diverse specificity to pathogens,

retention of immunological memory and non-

self-recognition

constitutive components of either the innate or adaptive arm of
immunity that are expressed at all times; a non-
induced form of immune function; confers a first
line of defence against pathogens prior to
pathogen-specific antigen exposure

inducible components of either the innate or adaptive arm of
immunity that are expressed following challenge
by a pathogen; innate components induce
inflammatory responses and increase rates of
immune responses; adaptive components induce
immunological memory, opsonization of
pathogens and cell-mediated responses

Th-1 mediated subset of adaptive bimmunity; secretes a unidue
profile of cytokines; Th-1 cells provide cellular
immunity against intracellular bacteria, protozoa,
fungi and viruses, help to eradicate cancer cells
and stimulate delayed-type hypersensitivity
(DTH) inflammatory reactions; important for
macrophage and cytoxic T-cell activation

Th-2 mediated subset of adaptive immunity; secretes a unique
profile of cytokines; Th-2 cells provide humoral
immunity against helminths and other
extracellular pathogens; stimulates B cell,
eosinophil and mast cell production and is
subsequently important in the upregulation of
antibody formation; induces B-cell class

switching

using the compute effect sizes [compute.es] package [75] in R [76].
Cohen’s d was used as a measure of effect size and to summarize
differences between dominants and subordinates. We determined
significance by calculating the 95% confidence intervals (CI) sur-
rounding d, which has an unbounded range [77]. Significantly
positive values represented studies in which subordinate males
exhibited higher immune responses than dominant males.

examples references

macrophages, neutrophils, basophils, eosinophils, [62,63]
natural killer (NK) cells and antimicrobial
peptides/proteins (complement, defensins,

C-reactive proteins)

B lymphocytes, T lymphocytes, T helper cells, [62,64]

T cytotoxic cells, antibodies

examples of constitutive innate components: [31,57,58,65,66]
marcrophages, heterophils, granulocytes, NK
cells and various antimicrobial peptides/
proteins

examples of constitutive adaptive components:
naturally circulating antibodies (e.g. IgM)

examples of inducible innate components: [31,57,58]
production of reactive oxygen species (R0S)
and cytokines by macrophages and
granulocytes

examples of inducible adaptive components:
B lymphocytes, T helper cells, antibodies

écuté p‘hase respbnsés; ‘cytokines‘including IFN-y, [51,67—70]

TNF-o, TNF-B, TGF-B

antibody production; cytokines including IL-4,
IL-5, IL-6, IL-10 and IL-13

[51,67-70]

Significantly negative values represented studies in which domi-
nant males yielded higher immune responses than subordinate
males. In the case of parasitism, significantly positive values
reflected lower parasitism in subordinate relative to dominant
males and vice versa. We rejected the null hypothesis of no effect
when effect sizes differed significantly from zero. For studies
that included multiple time points for a given test of immune
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|

hypothesis: immune defences are shaped by patterns of chronic and acute stress

lower social status

1

T innate immunity
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T Thl-mediated

T Th2-mediated

T inducible

T constitutive

T leucocyte mobilization
 inflammatory
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processing
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habituation, environment
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immunological [ active/protective | [maintenance] [ health-aversive |
response immune immune
enhancement: suppression:

! innate immunity
 adaptive immunity

| Thl-mediated

T Th2-mediated

! inducible

{ constitutive

d leucocyte mobilization
T inflammatory

Figure 2. The stress—response model, modified from Dhabhar [40]. In this model, blue represents immune enhancement, green represents homoeostasis and red

represents immune suppression/dysregulation.

response, we chose data from the median time point to calculate
the effect size. Owing to the relatively low taxonomic diversity,
we did not account for phylogeny in our meta-analyses.

Before addressing our specific hypotheses, we first tested for
significant differences between dominants and subordinates for
each individual test of immune response (electronic supplementary
material, table S2) or measure of parasitism (electronic supplemen-
tary material, table S3). We also tested one measure of physical
condition, haematocrit, which indicates anaemia [62], and may
reflect costs of parasites that consume blood (electronic supple-
mentary material, table S3). We only conducted meta-analyses
when three or more studies were available for a given test of
immune response or parasitism. We performed tests of significance
using the R metafor package [78], and we generated random effects
models using the rma.mv function. As some studies performed the
same test on multiple, independent populations, we applied
the restricted maximume-likelihood method and performed a multi-
variate meta-analysis to account for correlation between outcomes.
In such cases, we modelled study identity as a random effect.
Furthermore, as the literature review yielded studies of multiple
species, we categorized species into seven vertebrate classes/
orders (Actinopterygii, Artiodactyla, Aves, Carnivora, Primates,
Rodentia and Squamata) and treated taxa as a moderator variable.
When taxa had no significant effect on the model outcome, we
excluded this moderator from the final analysis.

We next tested the specific predictions of the trade-offs and
the stress—response hypotheses (figures 1 and 2). We did so by

combining studies that reflected similar immune components (elec-
tronic supplementary material, table S4). Note that most tests of
immune response were included in multiple tests of immune com-
ponents. For instance, baseline immunoglobulin levels (row 1 in
electronic supplementary material, table S2) measure adaptive,
constitutive, and Th-2 mediated immunity [79,80] and were
included in tests of all of these immune components. For Th-1-
and Th-2-mediated immunity, we also completed three sub-ana-
lyses (electronic supplementary material, table S5): (i) one that
separately assessed all available Th-1 cytokines (IFN-1, IFN-y and
TNF-a); (i) one that separately assessed all available Th-2 cytokines
(IL-4, IL-6 and IL-10); and (iii) one that assessed all available pro-
inflammatory cytokines (IFN-1, IFN-y, TNF-a and IL-6). To test
the links between social status and individual disease risk, we con-
ducted a meta-analysis of the relationships between dominance
rank and measures of parasitism (electronic supplementary
material, tables S3 and S6). Finally, we conducted supplementary
meta-analyses to assess patterns for the taxa that contributed the
largest number of studies to our sample: (i) Rodentia, (ii) Primates
and (iii) Aves. As before, we conducted meta-analyses for sample
sizes of three or more. We applied random effects models and
tests of significance using the rma.mv function in the metafor pack-
age [78]. As some tests included multiple outcomes from the
same study (i.e. two different tests of immune response on the
same population), we modelled study identity as a random effect.
We treated taxa and test of immune response as moderator vari-
ables, but these factors were excluded from the final models if
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they had no significant effect on model outcome. Finally, we
assessed publication bias visually via funnel plot analyses and
quantitatively using Egger’s tests [81].

3. Results

(a) Characteristics of the studies used in meta-analyses
Our literature search yielded 77 studies that met the criteria for
our meta-analyses, including 297 distinct analyses of male
immune responses or parasitism. These studies were found
in 44 distinct scientific journals (electronic supplementary
material, figure S1). We excluded 35 studies because they
did not report effects sizes and/or sample sizes. Among the
77 accepted studies, we identified 34 different tests of
immune response (electronic supplementary material, figure
S2) and three categories of parasitism (ectoparasites, gastroin-
testinal parasites and blood parasites). Five orders and two
classes of vertebrates were represented across analyses (elec-
tronic supplementary material, figure S3). The most common
taxonomic group was rodents (Rodentia; 59%; n = 45 studies;
electronic supplementary material, figures S4 and S5), followed
by primates (Primates; 18%; n = 14; electronic supplementary
material, figure S6) and birds (Aves; 13%; n = 10). The remain-
ing taxa included ray-finned fishes (Actinopterygii; n = 4),
even-toed ungulates (Artiodactyla; n = 2), carnivores (Carni-
vora; 1 = 1) and lizards (Squamata; n = 1). In terms of study
setting, 81% of studies (n = 62) were conducted in captivity,
17% occurred in the wild (n = 13), and 3% took place in a
semi-natural environment (n = 2). Overall, these studies used
16 different methods to measure male dominance status, some-
times using multiple measures in the same study (electronic
supplementary material, table S1).

(b) Neither dominant nor subordinate males
consistently demonstrated reduced immunity

We found little evidence that either dominant or subordinate
males consistently demonstrated low immune responses. For
instance, among the 31 tests of immune response with three
or more analyses, we only observed one test where subordinate
males exhibited significantly lower responses than dominant
males (table 2). Moreover, when we restricted our analysis
to the eight tests of immune response with a sample size of
10 or more analyses, there were no tests where subordinate
males displayed significantly lower immune responses than
dominant males. The only test where subordinate males
displayed significantly lower immune responses than domi-
nant males was delayed-type hypersensitivity (DTH), an
inducible measure of adaptive, Th-1 mediated responses
[79,80] (d = -0.586; p <0.0001; n=7; figure 3a). However,
five of the seven DTH analyses were performed on birds;
hence, this pattern may be taxonomically biased.

Dominant males were also not consistently immunosup-
pressed relative to subordinate males. Dominant males
exhibited significantly lower immune responses than subordi-
nate males in four of 31 tests of immune response (table 2).
When we restricted the dataset to tests with 10 or more ana-
lyses, dominant males exhibited lower immune responses
than subordinate males for two of eight tests (table 2). In
particular, dominant males exhibited significantly lower
immunoglobulin responses to antigen challenge than subordi-
nate males, a test that reflects one aspect of adaptive, inducible

and Th-2 mediated immunity [79,80] (d = 0.277; p = 0.03;
n = 21; figure 3b). For the three remaining significant tests, all
were measures of pro-inflammatory cytokines. Specifically,
subordinate males exhibited relatively greater baseline levels
of IFN-y (d = 0.610, p = 0.042; n=4; figure 3c) and higher
IL-6 and TNF-a responses to immune stimulants than domi-
nant males (IL-6: d=0.387; p=0.025, n=13; figure 3d;
TNF-o: d = 0.476; p=0.007; n=7; figure 3e). These results
indicate that subordinate males may exhibit dysregulated
inflammatory responses relative to dominant males, and prob-
ably should not be taken as evidence for stronger immune
function in subordinate than dominant males. Lastly, when
we combined all individual tests of immunity into a single
meta-analysis, there was no significant difference between
dominant and subordinate males (d =0.082; n =282, p=
0.36).

(c) Neither the trade-offs hypothesis nor the stress—
response hypotheses were well supported

Ecoimmunologists predict that organisms should invest in
different immune components depending on their energetic
and disease-related costs [31,54,57,58]. However, meta-ana-
lyses of the six immune components revealed little support
for the idea that dominant or subordinate males consistently
invest in certain immune components (table 3; see electronic
supplementary material, table S3 for tests and sample sizes).

The trade-offs hypothesis predicted that dominant males
would invest in adaptive, inducible and Th-2 mediated
responses, while subordinate males would invest in innate,
constitutive and Th-1 mediated responses [31]. However,
we found no significant differences in the immune responses
of dominant and subordinate males for any of the six
immune components (table 3). These models were not signifi-
cantly improved by including either taxa or test of immune
response as moderator variables. Furthermore, the patterns
were largely the same when we repeated these immune com-
ponent meta-analyses for the three most frequent taxa in our
dataset: rodents, primates and birds (electronic supplemen-
tary material, table S7). The only exception was that, in
birds, dominant males had significantly higher adaptive
immune responses than subordinate males (4= —0.689,
p <0.0001, n=6). However, five of these studies (83%)
used DTH as a measure of adaptive immune response;
hence, it is unclear whether this pattern reflects the use of
other tests of adaptive immunity in birds.

The stress—response hypothesis predicted that dominant
males would invest in adaptive, innate, inducible, constitutive
and Th-1 immune responses, while subordinate males would
exhibit higher inflammatory responses compared to dominant
males [40]. Support for this hypothesis was limited. There
was little evidence that dominant males exhibited greater
responses than subordinate males for any of the immune
components, with the possible exception of adaptive immunity
in birds (electronic supplementary material, table S7). Further-
more, while we observed some evidence that subordinate
males exhibited elevated inflammation in individual tests of
immune response (table 2), this analysis was not signifi-
cant when we analysed all inflammatory cytokines together
(table 3). Moreover, there was evidence for publication bias
in combined tests of inflammatory cytokines (Egger’s test:
p=0.018; electronic supplementary material, figure S7).
Specifically, there were fewer analyses than expected with
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Figure 3. Forest plots showing effect sizes for the five tests of immune response that demonstrated a significant relationship with social status in table 2. Positive
values indicate higher responses in subordinates; negative values indicate higher responses in dominants. Plots include the effect sizes for (a) DTH responses to
immune stimulants, (b) immunoglobulin responses to antigens, (c) baseline IFN-y levels, (d) IL-6 response to immune stimulants and (e) TNF-o response to
immune stimulants. Values in brackets represent the 95% Cl lower limit and the 95% Cl upper limit; the value outside brackets represents the effect size
(d) of each study. Letters following an author's name represent studies of the same test on multiple, independent populations. In (c), which shows baseline
IFN-y levels, grey diamonds represent a fitted value for each study that incorporates taxa as a moderator.

high inflammatory markers in dominants and small sample
sizes. Finally, the stress—response hypothesis predicted that
dominant and subordinate males make similar investments
in Th-2 mediated responses. In support, we found no signifi-
cant differences between dominant and subordinate males
in the strength of Th-2 responses (table 3; electronic sup-
plementary material, table S7). Funnel plots for immune
components are shown in the electronic supplementary
material, figures S8—S15.

(d) Dominant males almost always had higher
parasitism than subordinate males

Despite few differences in immune responses, we found that
dominant males experienced greater parasitism than sub-
ordinate males (table 4; figure 4). Specifically, compared with
subordinate males, dominant males were significantly more
likely to experience greater measures of ectoparasites (d =
2.275; p = 0.0002; n = 3), blood parasites (d = 0.401; p = 0.024;
n=3) and gastrointesinal parasites (4 =1.201; p = 0.0017;
n=13). When we restricted the dataset to gastrointesinal
helminths, dominant males were significantly more parasi-
tized than subordinate males (d = 1.445; p < 0.001; n = 10).
When all individual tests of parasitism were combined, domi-
nant males were also significantly more parasitized than

subordinate males (d =2.015; p <0.0001; n=19; figure 4).
There was a non-significant trend for publication bias
for this test (p = 0.058; electronic supplementary material,
figure 516), and the taxonomic group of the subjects explained
significant between-study heterogeneity and was included as a
moderator variable (p = 0.0002; table 4). Interestingly, the
patterns of parasitism we observed were also consistent with
measures of haematocrit. Animals may exhibit low hae-
matrocrit when they are heavily infected with parasites that
consume blood, including many ectoparasites and helminths
[152-154]. In support, we found that dominant males had
significantly lower haematocrit levels than subordinate males
(d=10.638; p=0.0016; n=4), perhaps reflecting higher
parasitism in dominants.

The observation that dominant males experienced higher
parasitism than subordinate males, and that dominant and
subordinate males demonstrated few differences in immu-
nity, is intriguing. One reason for this pattern may be that
the majority of studies measuring immune responses were
performed on captive populations (89%; 59 of 66 studies)
while most studies of parasitism were performed on either
semi-natural or wild populations (79%; n = 11 of 14 studies).
However, when we analysed the seven wild/semi-natural
studies of immune response, we found no significant differ-
ences between dominant and subordinate males (d = 0.013,
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Figure 4. A forest plot showing the effect sizes of all studies that tested the effects of social status on patterns of parasitism. Positive values indicate lower
parasitism in subordinates; negative values indicate higher parasitism in dominants. The values in brackets represent the 95% CI lower limit and the 95% (I
upper limit; the value outside brackets represents the effect size (d) of each study. Letters following an author's name represent studies of the same test on

multiple, independent populations. Grey diamonds represent a fitted value for each study that incorporates taxa as a moderator.

n =16, p = 0.96). Moreover, there was some evidence that
dominant males experience higher disease risk than subordi-
nate males, even in captivity. Specifically, in individual tests
of immune response, we found that dominant males pro-
duced significantly fewer antibodies to antigen challenge
(figure 3b; table 2; d = 0.277; n = 21; p = 0.03; 100% of these
studies were captive), and we also detected a non-significant
trend for dominant males to be more susceptible to exper-
imental infections with parasites (table 2; d = 0.363; n = 33,
p = 0.092; 97% of these analyses were captive). It is also poss-
ible that taxonomic biases explain the differences between
parasitism and immune response, as most immune tests
were performed on rodents (68%; 45 of 66 studies), while
most tests of parasitism were performed on primates (57%;
8 of 14 studies). However, dominant males still had higher
parasitism than subordinate males, even when we excluded
primates from the dataset (d = 0.822, n =8, p < 0.0001).

4. Discussion

Our meta-analytic review yielded two primary results:
(i) neither dominant nor subordinate males consistently
demonstrated reduced immunity, and (ii) dominant males
almost always experienced greater parasitism than subordinate
males. Specifically, immune responses were most often similar
in dominant and subordinate males, but subordinate males
sometimes exhibited elevated markers of inflammation and
significantly lower DTH than dominant males. By contrast,
dominant males exhibited significantly lower immunoglobulin
responses and greater parasitism than subordinate males.
Recently, ecoimmunologists have proposed that individuals
should differentially invest in different immune components
(e.g. adaptive versus innate immunity; inducible versus consti-
tutive immunity) depending on the disease risks and energetic
costs they face [31,54,57,58]. However, we found little evidence
that, across species, either high- or low-ranking males consist-
ently invest in a predictable set of immune components. Here

we discuss the implications of our results, including prospects
for the trade-offs and stress—response models, possible reasons
why we observed differences in parasitism but not immunity,
and useful directions for future research.

(a) The trade-offs and the stress—response models
Our meta-analyses revealed little support for either the trade-
offs or the stress—response models. This lack of support is
probably due to several factors, but one primary reason was
that many of the tests of immune response we reviewed were
conducted in captive settings, which may affect the costs of
male rank. Specifically, our analyses rested on two assump-
tions: (i) that dominant males experience higher energetic
costs than subordinates, either as a result of reproductive
effort or agonistic conflict and (ii) that subordinate males,
rather than dominant males, experience chronic stress. Many
of these assumptions are well supported for the species we
included in our meta-analyses. Indeed, the energetic costs of
male reproductive effort have been documented in numerous
taxa, including primates [28,155,156], rodents [140], birds
[157,158] and ungulates [159-161]. For example, in wild chim-
panzees, dominant males invest a considerable proportion of
time attaining and maintaining dominance rank, and this
effort appears to be traded off with helminth parasite rich-
ness [28]. Likewise, the costs of chronic stress have also been
documented across numerous taxa, including primates
[16,41,43,132,162], rodents [11,47], birds [106] and fishes
[114]. However, the majority of tests of immune response avail-
able for meta-analyses were conducted on males housed in
captivity (89% of studies). These males probably did not
experience natural opportunities for male—male competition
and reproduction. In addition, in captivity, subordinate
males may be less able to escape aggressive targeting by domi-
nants, potentially exacerbating chronic stress in captive versus
wild settings [163-165]. Hence, the males in our meta-analyses
may not have experienced the same costs of high and low rank
as they would in a natural population, limiting our abilities to
fully test the trade-offs or the stress—response models.
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In addition to the effects of study setting, the costs of social
status probably also vary across species and social systems.
For instance in humans, SES appears to be a robust predictor
of health and disease risk, but evidence from non-human
animals is more equivocal [16]. Some of these differences
might be caused by a lack of social mobility between humans
from generation to generation as compared to animals, but
the underlying causes remain an open question. Variation in
social organization and the stress associated with low versus
high social status in different societies is also likely to be an
important determinant of status-related differences in health
[163] (but see [166]). Furthermore, the type of mating system
probably also plays an important role in status-related vari-
ation in immune responses [167]. Finally, dominance
hierarchies vary across species in their strength, stability and
linearity, and these differences probably also have important
consequences for male immune function [16,41]. Thus, both
the taxa and the dominance structures in our meta-analyses
may have been too diverse for either the trade-offs or the
stress—response models to be broadly predictive. However,
even when we restricted our analyses to each of the three
most common taxonomic groups (i.e. rodents, primates or
birds), the trade-offs and the stress—response models were
still not well supported. This finding suggests that male invest-
ment in different immune components may be relatively
species specific, making it challenging to develop hypotheses
that accurately predict the immune-related costs of social
status in a wide range of species.

One conceptual framework that may prove useful in future
analyses is the idea that status-related variation in allostatic
load—defined as the cumulative physiological burdens exerted
on the body to meet life-history demands [168—170]—may pre-
dict status-related differences in immune defence. In 2004,
Goymann & Wingfield [166] proposed that differences in allo-
static load between high- and low-status individuals should
predict status-related differences in glucocorticoid hormone
levels. In support, this study found a significant relationship
between the relative allostatic load of high- versus low-ranking
animals and their relative glucocorticoid levels. This allostatic
load framework may be useful to clarify the costs experienced
by high and low social status males. Indeed, Goymann &
Wingfield’s [166] framework incorporates some ideas from
the trade-offs model (i.e. the cost of rank acquisition and main-
tenance), some of the ideas of the stress—response model
(i.e. degree of threat from dominants, outlets to avoid conflict),
as well as environmental effects (i.e. resource control and
availability). To date, Goyman’s and Wingfield’s approach
has not been applied to immune responses or other measures
of health, but we think this may be a fruitful approach to
develop future predictive models of variation in male health
as a function of social status.

(b) Immune responses versus patterns of parasitism

While we did not observe consistent links between domi-
nance status and immune responses, we did observe a striking
correlation between male dominance status and patterns of
parasitism. Specifically, dominant males almost always experi-
enced higher parasite prevalence, intensity of infection or
parasite species richness than subordinate males. These results
are puzzling: why would dominant males experience higher
disease risk than subordinates, but demonstrate so few differ-
ences in immune responses as compared to subordinates?

These findings may be explained by both biases in study setting
as well as real biological phenomena.

As discussed previously, most tests of immune response
occurred in captive settings, while most measures of parasitism
were obtained in semi-natural or wild conditions. Thus, study
context may explain the differences in patterns of immune
response versus parasitism because captive subjects are often
treated for parasites as part of animal care and use policies.
Even when treatment is given, captive animals may be expo-
sed to diseases and parasites that are not prevalent in their
natural environment [171,172]. Thus, when captive subjects
experience parasitism, such patterns may be viewed as
animal management problems rather than opportunities to
measure differences in parasite infection between individuals.

The observation that dominant males were more parasi-
tized but exhibited few differences in immunity compared
with subordinate males may also be caused by real biological
phenomena. First, as Lee [31] suggests, differences in social
interactions, diet and foraging behaviours may lead to eco-
logical differences between dominant and subordinate
males that affect exposure to pathogens [29,30,37]. In support,
dominant individuals tend to have priority of access to food
(e.g. [111,140,173]) and mates (e.g. [27,174,175]), which may
result in differential exposure to parasites. For example,
dominant male gazelles, which vigorously defend parasite-
rich breeding territories, subsequently exhibit significantly
greater gastrointestinal nematode burdens compared with
subordinate bachelor males [30]. Furthermore, in feral cats,
dominant males have priority of access to mates, larger
home ranges and higher rates of feline immunodeficiency
virus (FIV) than subordinate males [176].

Second, dominant males may also be more tolerant of
parasites than subordinate males [177,178]. Specifically,
instead of using immune responses to resist parasite infection,
dominant males may bear the burden of parasite infection
without experiencing substantial symptoms or compromising
their health. The mechanisms that underlie parasite tolerance
are not well known, but may include a greater ability to
repair tissue damage caused by parasites [178]. In support, in
baboons, dominant males appear to heal more quickly from
naturally occurring wounds than subordinate males [179].
Future studies that compare status-related differences in
MHC variation and its association with tolerance may also
shed light on this topic.

Finally, our results suggest that, while dominant and sub-
ordinate males largely experience similar patterns of immune
response, the costs of high rank may lead dominant males to
experience immunosuppression of one aspect of immunity:
antibody production in response to antigens. Antibody pro-
duction plays a key role in parasite resistance [180,181], and
suppressed antibody responses may be linked to higher dis-
ease risk in dominant males. For instance, Halvorsen [159]
found that during the mating season, male reindeer exhibit
decreased antibodies to the nematode Elaphostronylus rangi-
feri. Such results may also point to a trade-off between Th-2
and Th-1 mediated defences in dominant males. In particular,
antibody production is one aspect of Th-2 mediated defence,
and Th-2 defences can downregulate Th-1 defences and vice
versa [182]. Interestingly, in the present meta-analytic review,
dominant males had significantly greater DTH reactions than
subordinates, a measure of Th-1 mediated immunity [79,80].
These results warrant further investigation and provide initial
evidence that the higher Th-1 mediated defences found in
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dominant males may indicate suppression of Th-2-mediated
defences, and that the higher Th-2-mediated defences found
in subordinate males may indicate suppression of Th-1-
mediated defences.

This review illustrates some of the challenges of using meta-
analyses to understand status-related differences in health. In
particular, 35 papers were excluded simply because authors
did not properly report effect sizes and/or sample sizes.
This was especially true when studies found non-significant
and negative results. In a number of cases, we were able to
circumvent this problem by extracting means and estimates
of variance from figures. However, we must emphasize that
a major shortcoming of many of the published studies we
reviewed was the tendency of some authors to overempha-
size positive results and to largely ignore non-significant
and negative results. This pattern is evident in the trends
we observed for publication bias (e.g. electronic supplemen-
tary material, figures S7, S8, S15 and S16). Petticrew &
Smith [183], in a review of the status-related effects of stress
on coronary artery disease, argue that this practice of selec-
tively emphasizing positive results has resulted in
inaccurate citations and overstatements of the ‘strength of
associations between variables’ [184,185]. Consequently, the
sample sizes for our meta-analyses were considerably less
than the number of published studies on status-related differ-
ences in male immunity and parasitism. Furthermore, our
meta-analytic review revealed a lack of studies that measure
diverse aspects of immunity in males in wild populations.
Only 17% of the studies occurred in wild settings and most
of these assessed patterns of parasitism. Importantly, few
studies measured both parasitism and immune response in
the same system, especially in wild populations. Therefore,
we suggest that tests of parasitism are conducted in conjunc-
tion with tests of immune response in natural environments
(e.g. see [161]). Also, further research on tolerance versus
resistance to infection, as well as trade-offs in Th-1 versus
Th-2 mediated immunity, may provide new insights. Lastly,
we think that a greater focus on the differences in the strength

1. Alexander RD. 1974 The evolution of social 7.

of allostatic load experienced by dominants and subordinates
may be a fruitful direction for future research.

Two paradigms have been used to explain status-related differ-
ences in male health, one that predicts immunosuppression
in dominant males [23—-28], and another that predicts immuno-
suppression in subordinate males [16,38—40]. The results of
the present meta-analyses provided little support for either para-
digm. As such, these findings reveal the considerable limitations
of current theory and the need for new competing models.
Despite glaringly few differences in immunity, dominant
males, almost always had higher parasitism than subordinate
males including measures of blood parasites, ectoparasites and
gastrointestinal helminths. These results indicate the need for
further research on the differences in ecological niches between
dominant and subordinate males and the interplay between
parasite tolerance and susceptibility. Furthermore, one major
hurdle to understanding status-related differences in health
and immunity is a lack of studies that measure diverse aspects
of immunity in males in wild populations. Hence, we support
the growing consensus among ecoimmunologists that more
immunological studies, addressing a broader range of immune
components, need to take place in natural environments
in order to better understand adaptive variation in immune
function [57,62,186,187].

The datasets supporting this article have been
uploaded as part of the electronic supplementary material. Data
used for meta-analyses have been uploaded to the Dryad repository
(doi:10.5061/dryad.54s81).
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