Tag Archives: hip

Packing a punch: Does strength indicate boxing performance?

Every sport has a different “ideal” body type, which is largely dictated by the muscle groups it focuses on training. Swimmers prioritize developing the muscles in their shoulders and backs, which allows them to propel themselves through the water with their arms. On the other hand, runners prioritize the hamstrings and quads in their legs, which allows them to generate greater force when pushing off of the ground. So, what is the ideal body type for boxing? Strength is clearly important when punching an opponent, but is it even the most important factor in boxing performance? Should either upper- or lower-body strength be prioritized over the other?

""
Photo by Bradley Popkin for Men’s Journal.

The overall goal in boxing is to either knock out your opponent with a single punch or land more punches in the scoring area than your opponent. One of the best ways to achieve the latter is by wearing down your opponent with powerful strikes to reduce their ability to retaliate. Therefore, hitting your opponent, and hitting them hard, is crucial within the sport of boxing. 

First, let’s take a look at upper-body strength. Boxers execute punches by using muscular force to accelerate their arms, so it is easy to assume that arm strength is the most important factor in punch performance. However, this may not be the case. One of the most common upper-body strength exercises is the bench press, and research has shown that there is no significant correlation between the maximum weight a boxer can bench press and the force they deliver in a punch. While this may be surprising, the relationship between upper-body strength and punching actually comes down to speed rather than force. Based on data from both professional and elite amateur boxers, the maximum speed at which a boxer can bench press is indicative of improved punch performance. More specifically, professional boxers showed a strong relationship between the maximum velocity of their bench press and maximum punch velocity of their rear, or dominant, arm. 

If upper-body strength does not indicate punch force, then does lower-body strength? A study of amateur boxers found a positive correlation between maximum punch force and lower-body strength measures, including countermovement jump (see video below) and isometric midthigh pull. In contrast to the upper-body exercises, the maximum force generated in lower-body exercises is more important for increasing maximum punch force than the speed at which the exercise is completed.

Plot of countermovement jump force in Newtons versus punch force in Newtons. The data has a correlation of 0.683 and a p-value of less than 0.001. Plot of isometric midthigh pull force in Newtons versus punch force in Newtons. The data has a correlation of 0.680 and a p-value of less than 0.001.
Plots showing a strong, positive correlation between punch force and the lower-body strength exercises, countermovement jump, CMJ, (left) and isometric midthigh pull, IMTP, (right). Adapted from “Relationships Between Punch Impact Force and Upper- and Lower-Body Muscular Strength and Power in Highly Trained Amateur Boxers” by Emily C. Dunn, et al.
Video of how to execute the countermovement jump test by Training & Testing.
Kinetic Chain: Force is generated from the floor and transferred from foot to fist. Leg force, hip and torso rotation are key. Arrows show movement of force from foot, through the body, to fist.
Graphic of Kinetic Chain in a boxer from Boxing News.

When executing a punch, a boxer gains forward momentum by pushing off of the ground with their legs. Through a kinetic chain, force moves through a boxer’s body from the floor to the foot, then through the legs and torso, and finally, to the arm and hand. This phenomenon is what explains why lower-body force is crucial to a boxer’s maximum punch force. 

So, what does this all mean? How should boxers train in order to improve their punching performance? Most importantly, boxers should focus on their lower-body strength, as it is the most direct indicator of maximum punch force. While lower-body strength should be a primary training goal, exercising muscles within the upper-body, specifically while focusing on the speed of the movements, will also likely improve overall punch performance. We now know that developing strength is clearly beneficial in improving a boxer’s punch; however, brute force alone does not win a fight. Boxers should develop correct boxing technique through methods such as those suggested in this article, which will allow them to implement their new strength in the most effective manner.    

For additional information on the impact of strength on athletic performance click here and here.

Living Off Balance

Person walking in woods, balancing on a fallen tree

Imagine yourself walking at a normal pace down the sidewalk. Maybe you are on your way to class. The sidewalk has a little bit of a tilt causing your left foot to be higher than the right as it plants on the ground. Imagine how your body may compensate after a few minutes of walking on this path. We have all walked on uneven ground and began to feel the effects with sore knees or hips. But what if you felt this same way all the time even on perfectly flat terrain? This is the reality for those with leg length discrepancies.

Leg Length Discrepancy

A leg length discrepancy (LLD) is any difference in your legs compared to one another. This can be as small as a few millimeters or as large as a few centimeters. Leg length discrepancies can be caused by a number of things including genetics, trauma, or disease. Leg length discrepancies can be categorized in two ways; real and apparent LLD. Real leg length discrepancies are one in which the bony structures are measured to be two different lengths. Apparent leg length discrepancies are caused by other factors such as muscle or joint tightness making the limbs appear two different lengths.

Image depicting pelvic tilt when leg length discrepancy is present
Pelvic tilt caused by real leg length discrepancy

Hopping Along

The actual significance of a LLD on posture and gait depends heavily on the magnitude of the discrepancy. It is highly debated by researchers if a LLD of less than 2-3cm has physical effects on the body and if symptoms a patient is experiencing are due to another cause. R.K. Mahar and R.L. Kirby at Dalhousie University performed a study in which people without a LLD, asking them to stand on blocks simulating a real leg length discrepancy, the researchers saw a misalignment of the hips, an increase in knee flexion and a shift in the center of gravity.

In contrast D.C. Reid conducted a study for those with actual LLD and many did not complain of pain or feeling off balance and chose to not use corrective devices. The body is able to compensate for the difference over time to minimize the displacement of the center of mass of the body. It was also seen in a study done by Gross that athletes are more likely to correct smaller LLD than the average person due to the increased loads experienced during their activity.

Lift is placed in the sole of the shoe to correct moderate LLD
Shoe lift place in sole used to correct LLD

Fix it

For people that are experiencing pain because of the difference there are several ways to reduce the pain. For small discrepancies (less than 1cm) inserts can be placed into the shoe to even out the hips. For differences between 1cm and about 5cm a lift can be placed in the sole of the shoe for the same reason as the inserts. For some special cases or discrepancies larger than 5cm corrective surgery to lengthen or shorten the limb can be performed, but this is often used as a last resort.

Canine Hip Dysplasia: What You Should Know

Canine hip dysplasia (CHD) is a degenerative hip disease that tends to develop in large breed dogs, such as the Bernese Mountain Dog, affectionately referred to as Berners. CHD significantly decreases the quality of life of a dog and often leads to complete immobility if left untreated. Experts estimate that about 28% of Berners are affected by dysplastic hips, making them the 8th most susceptible dog breed.

Bernese mountain dog with superimposed image of hip ball and socket joint.
Image from Packerland Veterinary Clinic.

At birth, puppy skeletal structures are largely composed of cartilage that is much softer than bone. This softer cartilage is able to adapt much more easily to the rapid growth that occurs during the early months of a dog’s life. In their first few months, Berners will typically gain 2-4 pounds per week, which adds increasingly large stresses to their developing bones and joints. While genetics play a large role in the susceptibility of a dog to develop CHD, the loading cycles and forces on the cartilage greatly shape the development of the dog’s hip.

Correctly formed hip versus a deformed femur head and shallow hip socket.
Image from Dog Breed Health.

The hip is a ball and socket joint, where the head of the femur, the very top of the dog’s leg, should fit perfectly into a socket in the pelvis. If the ligaments that hold the femur in the hip socket are too weak or damaged at all, the positioning of the

Evenly distributed forces on a correctly developed hip joint versus force concentration acting on a dysplastic hip joint.
Modified from The Institute of Canine Biology.

hip joint will be off and the hip will be subjected to unbalanced forces and stresses over the course of the dog’s life. The distribution of forces experienced by the hip joint in normal hips is evenly spread, while dysplastic hips are subjected to a stress concentration on the tip of the femur. These unnatural forces will cause laxity in the hip joint, leading to instability, pain, and often times the development of osteoarthritis.

 

There are also a number of environmental factors, many of which are inherent to large dog breeds, that dramatically increase a dog’s susceptibility to CHD. A study by Dr. Wayne Riser concluded that factors such as oversized head and feet, stocky body type with thick, loose skin, early rapid growth, poor gait coordination, and tendency of indulgent appetite all contributed to the development of CHD. All of these features are generally inherent to large breed dogs, such as Berners, so great care must be taken in order to mitigate their effects on the quality of life for these dogs.

Multiple studies have shown that treatment that is implemented early in the dog’s life is much more effective than late-in-life treatments. CHD warning signs can be seen in puppies as young as 4 months old, and most veterinary professionals agree that if scans occur at 2 years of age, the most optimal time for treatment has passed. Since larger stresses will be put on the hip joint as the dog grows, surgical repairs, or changes in diet and exercise, are most effective if implemented before the dog’s skeletal frame is completely developed.

 

timeline of canine hip dysplasia development
Modified from The Institute of Canine Biology

Additional information regarding this topic can be found at The US National Library of Medicine or The Journal of Veterinary Pathology.

Female Athletes Compete Against Higher Risk of ACL Injuries Than Males

Female athletes face a greater rate of anterior cruciate ligament (ACL) rupture than males. According to Dr. Karen Sutton and Dr. James Bullock from the Department of Orthopaedics and Rehabilitation at Yale University, female athletes are 2 to 8 times more likely to tear their ACL than male athletes. The majority of these injuries (more than two-thirds) are from non-contact situations. A variety of anatomical, biomechanical, and hormonal factors attempt to explain this difference.

Female soccer player stretching her leg
Photo by rawpixel on Unsplash

Differences between female and male lower-body anatomy show the disparity in Q-Angle that results
Taken from Desrosiers, Soccer Nation 2018

Some anatomical factors that help stabilize the knee joint and may be linked to ACL injuries include: the quadriceps angle (Q angle), tibial slope, and intercondylar notch. The Q angle is the angle formed between the upper leg at the hip joint and the lower leg at the knee joint. This angle tends to be 3.4-4.9 degrees greater in females than males when measured in a standing position. The figure at right shows the Q angle difference between men and women that is caused by anatomical differences including a wider pelvis in females. A greater Q angle causes more strain on the quadriceps muscle away from the centerline of the body, which can affect the position of the ACL to be more prone to rupture.

Tibial slope is a quantity used to describe the position of the tibia relative to the femur. When the tibia is positioned more forward than the femur there is a greater posterior tibial slope and therefore increased ACL strain. On average, females have shown to have a greater tibial slope, which may contribute to the higher incidence of ACL injuries. The figure below illustrates the biomechanics of posterior tibial slope: the effect of the knee joint compressive load (down arrow) and the force of the quadriceps (up arrow) result in an anterior shear force, causing anterior translation of the tibia relative to the femur (right-directional arrow) .

Biomechanical force diagram describing posterior tibial slope
Modified from Sutton and Bullock, JAAOS 2013

In terms of biomechanical differences between men and women, women have greater natural muscle contractions for movement away from the centerline of the body. This translates to a difference in landing positions for women compared to men – females tend to land more straight, creating more force on the knee joint, while males absorb the impact better by naturally flexing their knees upon landing. The hamstring to quadriceps ratio (H:Q ratio) is the functional strength of the hamstring muscles (peak torque) relative to the strength of the quadriceps in motion. Poor muscle strength has been linked to higher risk of lower extremity injury. Males have the ability to increase their H:Q ratio during sport motion, but females fail to do so. Women have also shown greater internal rotation laxity – slackness or lack of tension in a ligament – than men. Generalized laxity was also significantly greater among individuals who suffered a noncontact ACL injury compared to an uninjured control group.

Hormonal factors are an additional consideration that researchers have explored, but the results have been inconclusive in making a direct link between hormone levels and the rate of ACL injury.

Additional reading on this topic can be found at VeryWellHealth and SoccerNation. The following video shows some advice for female ACL injury prevention.