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Zariski’s Dream
A dimension reduction
First Examples

Zariski’s Dream and Serre’s Question

X projective variety over C and Z ⊂ X a Zariski closed subset.

U := X \ Z

is a quasi-projective variety.
Zariski’s Dream [86]:

Understand the properties that the groups π1(U) share and
their dependence on algebraic invariants if X = P2.

Serre’s Question [75]:
Which finitely presented groups G can appear as π1(U).

Why?
To understand coverings of X ramified along Z .
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A dimension reduction

Theorem (Lefschetz Hyperplane Theorem, Hamm [40], Goresky–Mc
Pherson [35])

X m ⊂ Pn locally complete intersection and Z ⊂ X closed Zariski
subset,
AWhitney stratification of X s.t. Z = ∪p

i=1Ai , Ai ∈ A,
H hyperplane section transversal to A,
U := X \ Z
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A dimension reduction

Theorem (Lefschetz Hyperplane Theorem, Hamm [40], Goresky–Mc
Pherson [35])

X m ⊂ Pn locally complete intersection and Z ⊂ X closed Zariski
subset,
AWhitney stratification of X s.t. Z = ∪p

i=1Ai , Ai ∈ A,
H hyperplane section transversal to A,
U := X \ Z

Then,
U ∩ H ↪→ U,

is an (m − 1)-equivalence.
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Theorem (Lefschetz Hyperplane Theorem, Hamm [40], Goresky–Mc
Pherson [35])

The genericity condition is important.
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Pherson [35])

If X simply connected, only hypersurface complements
contribute to fundamental groups.

The genericity condition is important.
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Theorem (Lefschetz Hyperplane Theorem, Hamm [40], Goresky–Mc
Pherson [35])

If codim Z > 1, then π1(U) = π1(X ).

The genericity condition is important.
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Theorem (Lefschetz Hyperplane Theorem, Hamm [40], Goresky–Mc
Pherson [35])

Example

X = P3, Z = {x ∈ X | x0x1x3 = 0}, U = X \ Z .

A = U ∪ A0 ∪ A1 ∪ A3 ∪ A01 ∪ A03 ∪ A13 ∪ A013
Z = A0 ∪ A1 ∪ A3 ∪ A01 ∪ A03 ∪ A13 ∪ A013
H1 = {x ∈ X | x3 = x0}
H2 = {x ∈ X | x3 = x2}.

Z ∩ H1 = {x ∈ P2 | x0x1 = 0} ∼= C × C ∗

Z ∩ H2 = {x ∈ P2 | x0x1x2 = 0} ∼= (C ∗)2

H1 NOT transversal to A, since it contains A03,
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First Examples

U = P2 \ L ≡ C 2

U = P2 \ (L0 ∪ L1) ≡ C × C ∗

L0, ...,Lr concurrent, U = P2 \ (L0 ∪ ...∪ Lr ) ≡ C ×C \ {r points}
U = P2 \ ({z = 0} ∪ {yz = x2})
U = P2 \ ({z = 0} ∪ {yz2 = x3})
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U = P2 \ (L0 ∪ L1) ≡ C × C ∗ ⇒ π1(U) = Z.
L0, ...,Lr concurrent, U = P2 \ (L0 ∪ ... ∪ Lr ) ≡ C × C \ {r points}
⇒ π1(U) = Fr .
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

C ∗ × C 2 → C 2

(t , (x , y)) 7→ t ∗ (x , y) = (tqx , tpy)
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

Sp,q := {(x , y) ∈ C 2 | ∥x∥p+∥y∥q= 1}
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

Sp,q := {(x , y) ∈ C 2 | ∥x∥p+∥y∥q= 1}

F : I × U → U
(t , (x , y)) 7→ µ ∗ (x , y) := (µqx , µpy),

where
µ(t , x , y) := (1− t) +

t
pq
√
∥x∥p+∥y∥q

.
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

Sp,q := {(x , y) ∈ C 2 | ∥x∥p+∥y∥q= 1}

F : I × U → U
(t , (x , y)) 7→ µ ∗ (x , y) := (µqx , µpy),

where
µ(t , x , y) := (1− t) +

t
pq
√
∥x∥p+∥y∥q

.

Note that µ(0, x , y) = 1 and µ(1, x , y) = 1
pq
√

∥x∥p+∥y∥q
. Hence

F (0, x , y) = (x , y) and F (1, x , y) = µ(1, x , y) ∗ (x , y), where

∥µ(1, x , y)qx∥p+∥µ(1, x , y)py∥q= 1.
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

π1(U) = π1(S3 \ Trp1,rq1)

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Zariski’s Dream
A dimension reduction
First Examples

First Examples

U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

π1(U) = ⟨m1, . . . ,mr , α, β, ℓ :
∏

mi = αaβb, [ℓ,mi ] = 1, ℓ = αp1 = βq1⟩

where p = rp1, q = rq1, gcd(p1,q1) = 1, and ap1 + bq1 = 1.
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

π1(U) = ⟨m1, . . . ,mr , α, β, ℓ :
∏

mi = αaβb, [ℓ,mi ] = 1, ℓ = αp1 = βq1⟩

where p = rp1, q = rq1, gcd(p1,q1) = 1, and ap1 + bq1 = 1.
If r = 1, then π1(U) = ⟨α, β : αp = βq⟩.
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U = C 2 \ C where C = {(x , y) ∈ C 2 | yq = xp}.

π1(U) = ⟨m1, . . . ,mr , α, β, ℓ :
∏

mi = αaβb, [ℓ,mi ] = 1, ℓ = αp1 = βq1⟩

where p = rp1, q = rq1, gcd(p1,q1) = 1, and ap1 + bq1 = 1.
If r = 1, then π1(U) = ⟨α, β : αp = βq⟩.
If p = q = r , then π1(U) = ⟨m1,m2, . . . ,mr : [

∏r
i=1 mi ,mj ] = 1⟩.
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Homology

Proposition

Let C = C0 ∪ C1 ∪ · · · ∪ Cr ⊂ P2 irreducible decomposition of a plane
curve. Then

H1(P2 \ C) = Zr × Z/dZ,

where d := gcd(d0, ...,dr ), di := deg(Ci).
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].

Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].
Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2

h : F → F
(x , y , z) 7→ ξd (x , y , z)

where ξd
d = 1 primitive.
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].
Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2

F
j→ U

p = (x , y , z) 7→ [x : y : z]

and j(p1) = j(p2) iff p2 = hk (p1) for some k = 0, ...,d − 1.
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].
Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2

F
j→ U

∼=→ F/⟨h⟩
p = (x , y , z) 7→ [x : y : z] 7→ p
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].
Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2

F
j→ U

∼=→ F/⟨h⟩
p = (x , y , z) 7→ [x : y : z] 7→ p

Hence,
1→ π1(F )→ π1(U)→ Z/dZ = H1(U)→ 0
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Milnor Fiber

Assume C = V (f ) ⊂ P2 irreducible, f homogeneous polynomial of
degree d in C [x , y , z].
Milnor fiber: F = {(x , y , z) ∈ C 3 | f (x , y , z) = 1} ⊂ C 3 \ {0}
Complement: U = P2 \ C = {[x : y : z] ∈ P2 | f (x , y , z) ̸= 0} ⊂ P2

Corollary

If C ⊂ P2 irreducible, then π1(F ) = [π1(U), π1(U)].
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Meridians

p ∈ Z smooth point on Z ⊂ X n+1 irreducible hypersurface in X
manifold.
(X ,Z ,p) ∼= (Bn+1, {xn+1 = 0},0)
N = {(0, . . . ,0, xn+1)} transversal line positively oriented.
γp(t) = {(0, . . . ,0,e2πit) | t ∈ [0,1]} ⊂ N

Definition

The loop γ := δ ∗ γp ∗ δ is called a meridian around Z .
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The loop γ := δ ∗ γp ∗ δ is called a meridian around Z .
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Meridians

Lemma (Generation by Meridians)

If X is simply connected, then π1(U) is generated by meridians
around the irreducible components of C.
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Meridians

Lemma (Conjugation class of Meridians)

If γ1, γ2 are meridians around the same irreducible component in Z ,
then γ1 and γ2 are conjugated in π1(U).

γp1 γp2

p̃1 p̃2

p1 p2

δ

q0

δ1
δ2

Figure: Conjugate meridians
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Meridians

Lemma (Component deletion)

If γ1 meridian around the irreducible component Z1 and Z = Z1 ∪ Z2
(Z1 ̸⊂ Z2), U := X \ Z, U2 := X \ Z2, then

1 → ⟨γ1⟩ → π1(U)
j∗→ π1(U2) → 1

γ 7→

{
1 if γ meridian around Z1

γ otherwise

Exercise
If C has a locally irreducible singular point of multiplicity d − 1, then
π1(U) = Z/dZ.
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Local Fundamental Group

p ∈ C ⊂ P2.
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Local Fundamental Group

p ∈ C ⊂ P2.
Study (B4

ε, C,p)
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Local Fundamental Group

p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p), C ∩ S3
ε(p))
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p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p),K )

K

p

Figure: (C, p) at a smooth point.
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p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p),K )

p

Figure: (C, p) at a singular point of type x2 − y3 = 0
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Local Fundamental Group

p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p),K )

V (f1) V (f2)

Figure: (C, p) at a singular point of type f1f2 = (x − y)(x + y) = x2 − y2 = 0
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p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p),K ) Hence

B4
ε(p) \ (C ∩ B4

ε(p)) −→ S3
ε(p) \ K .
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Local Fundamental Group

p ∈ C ⊂ P2.
Milnor: (B4

ε(p), C ∩ B4
ε(p)) ∼= Cone(S3

ε(p),K ) Hence

B4
ε(p) \ (C ∩ B4

ε(p)) −→ S3
ε(p) \ K .

Definition

The invariant πloc
1 (C,p) := π1(S3

ε(p) \ K ) is called the local
fundamental group of C at p.
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Calculating local fundamental groups

K = S3 ∩ C
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× D2

δ2
∪T D2

δ1
× ∂D2

δ2
) ∩ C

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Homology
Milnor Fiber
General Results
Local Fundamental Group
Maximal Cuspidal Rational Curves
Zariski’s Conjecture

Calculating local fundamental groups

K = S3 ∩ C ∼= (∂D2
δ1
× D2

δ2
) ∩ C

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Homology
Milnor Fiber
General Results
Local Fundamental Group
Maximal Cuspidal Rational Curves
Zariski’s Conjecture

Calculating local fundamental groups

K = S3 ∩ C ∼= (∂D2
δ1
× D2

δ2
) ∩ C

Figure: Link of a nodal point
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π1
((
D2

δ2
\ {−ε, ε}

)
× [0,1]

/
g)
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Calculating local fundamental groups

σ(γi) =

{
γ2 if i = 1
γ2γ1γ

−1
2 if i = 2
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Figure: Link of a nodal point

π1
((
D2

δ2
\ {−ε, ε}

)
× [0,1]

/
g)

= ⟨γ1, γ2 : γi = σ2(γi)⟩
= ⟨γ1, γ2 : γ1 = γ2γ1γ

−1
2 ⟩ ∼= Z2.
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Calculating local fundamental groups

1

√
−1

γ

t = 1
q

t = 0

t = 1

Figure: Link of a singular point of type {y2 − xq = 0}
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Calculating local fundamental groups

In general,

Figure: Link of a singular point of type yp − xq , p ≤ q.

π1
((
D2

δ2
\ {εξk

p : k = 0, . . . ,p − 1}
)
× [0,1]

/
g) = ⟨γ1, . . . , γp : γi = βq(γi)⟩

for β = σ1σ2 . . . σp−1.
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Calculating local fundamental groups

Exercise
If p = 2, then

q q
π1(S3 \ K ) = ⟨ γ1, γ2 :

︷ ︸︸ ︷
γ1γ2 . . . =

︷ ︸︸ ︷
γ2γ1 . . . ⟩

Artin group A( q
) associated with a singularity of type Aq−1.
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Calculating local fundamental groups

Exercise
If p = 2, then

q q
π1(S3 \ K ) = ⟨ γ1, γ2 :

︷ ︸︸ ︷
γ1γ2 . . . =

︷ ︸︸ ︷
γ2γ1 . . . ⟩

Artin group A( q
) associated with a singularity of type Aq−1.

Corollary

Let C3 = {[x : y : z] ∈ P2 | y2z = x3} cuspidal projective cubic,
L = {z = 0}. Then

π1(P2 \ (C3 ∪ L)) ∼= ⟨γ1, γ2 : γ1γ2γ1 = γ2γ1γ2⟩.
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Calculating local fundamental groups

Exercise
If p = 2, then

q q
π1(S3 \ K ) = ⟨ γ1, γ2 :

︷ ︸︸ ︷
γ1γ2 . . . =

︷ ︸︸ ︷
γ2γ1 . . . ⟩

Artin group A( q
) associated with a singularity of type Aq−1.

Corollary

Let Cd = {[x : y : z] ∈ P2 | yd−1z = xd}, L = {z = 0}. Then

π1(P2 \ (Cd ∪ L)) ∼= A( d ).
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Maximal Cuspidal Rational Curves

Example (Zariski ’36 [85])

Cd an irreducible rational nodal Plücker curve.
By genus formula, δ = 1

2 (d − 1)(d − 2)
C∗ dual curve associated with C.
From discriminant, d∗ = d(d − 1)− 2δ = 2(d − 1).
From Plücker formula (Hessian), κ∗ = 3d(d − 2)− 6δ = 3(d − 2).
From genus formula again,
δ∗ = 1

2 (d
∗ − 1)(d∗ − 2)− κ∗ = 2(d − 2)(d − 3).

C∗ is called a maximal cuspidal rational curve (of even degree).
If t 7→ [φ0 : φ1 : φ2] is a parametrization of Cd , then
Disct(x0φ0 + x1φ1 + x2φ2) is the equation of C∗.

This is a hyperplane section of ∆ := Disct(
∑d

i=0 xi t i)!!!
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Example (Zariski ’36 [85])

Cd an irreducible rational nodal Plücker curve.
By genus formula, δ = 1

2 (d − 1)(d − 2)
C∗ dual curve associated with C.
From discriminant, d∗ = d(d − 1)− 2δ = 2(d − 1).

From Plücker formula (Hessian), κ∗ = 3d(d − 2)− 6δ = 3(d − 2).
From genus formula again,
δ∗ = 1

2 (d
∗ − 1)(d∗ − 2)− κ∗ = 2(d − 2)(d − 3).

C∗ is called a maximal cuspidal rational curve (of even degree).
If t 7→ [φ0 : φ1 : φ2] is a parametrization of Cd , then
Disct(x0φ0 + x1φ1 + x2φ2) is the equation of C∗.

This is a hyperplane section of ∆ := Disct(
∑d
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Example (Zariski ’36 [85])

Pd −→ (P1)d/Σd = X
[x0 : · · · : xd ] 7→ Roots of

∑d
i=0 xi t i

∆ 7→ ∆X
Pd \∆ 7→ X \∆X

Using Lefschetz hyperplane section (in a reverse way!)

π1(P2 \ C∗d ) ∼= π1(Pd \∆) = π1(X \∆X ) ∼= Bd (P1).

For d = 3, C∗3 is a tricuspidal quartic and

π1(P2 \ C∗3 ) = B3(P1) = ⟨x , y : xyx = yxy , xy2x = 1⟩

J.I. Cogolludo-Agustín Fundamental groups...
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Zariski’s Conjecture

Theorem (Zariski ’36 [85], Deligne ’81 [25], Fulton ’80 [34], Nori
’83 [61], Zariski–Harris ’86 [41])

The fundamental group of a nodal curve C ⊂ P2 is abelian. In
particular,

π1(P2 \ C) = H1(P2 \ C) = Zr−1 × Z/dZ.

Theorem (Nori ’83 [61])

Let C ⊂ X an irreducible curve in a smooth manifold X. Consider
π : X̂ → X a resolution of C so that C̃ ∪E is normal crossing.If, C̃2 > 0,
then

π1(X \ C)→ π1(X )

is a central extension.
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Zariski’s Conjecture

Remark
The result is also true if the hypothesis is satisfied for every
irreducible component.

If X is simply connected, then it implies Zariski’s conjecture.

Example

The projective complement of a cuspidal cubic is abelian.
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Braid Monodromy

Due to Chisini ’33 [19]

Problem (Chisini ’47 [20])

Let S be a non-singular compact complex surface, let π : S → P2 be a
finite morphism having simple branching, and let C be the branch
curve; then “to what extent does the pair (P2, C) determine π”?
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Braid Monodromy

Definition
Let π : X → B be a locally trivial fibration. We say that a morphism
s : B → X is a section if π ◦ s = 1B.

Right action of the groupoid {π1(B,p1,p2)}pi∈B on the groups
{π1(F , s(p))}p∈B, called monodromy action of B on F .

π1(B,p1,p2) × π1(F , s(p1)) → π1(F , s(p2))
(γ , α) 7→ αγ

moreover,
α(γ1γ2) = (αγ1)γ2 .
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Braid Monodromy

Definition
Let π : X → B be a locally trivial fibration. We say that a morphism
s : B → X is a section if π ◦ s = 1B.

Right action of the groupoid {π1(B,p1,p2)}pi∈B on the groups
{π1(F , s(p))}p∈B, called monodromy action of B on F .

π1(B,p1,p2) × π1(F , s(p1)) → π1(F , s(p2))
(γ , α) 7→ αγ = s(γ)−1αs(γ)

moreover,
α(γ1γ2) = (αγ1)γ2 .
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Braid Monodromy

Definition (Braid Monodromy)

If F = D2 \ {r points}, then π1(F ,q) = Fr and the monodromy action
is given by the action of the braid group Bd (D2) given by:

gσi
j =


gi+1 j = i
gi+1gig−1

i+1 j = i + 1
gi otherwise.

(1)
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Braid Monodromy

The morphism
π1(B,p) → Bd (D2)

γi 7→ βi

is called the braid monodromy morphism.
If γ1, . . . , γs form a geometric basis of B, then the s-uple
(β1, . . . , βs) ∈ Bs

d (D2) contains the topological information of the
pair (C 2, C) ([48, 15]).
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Zariski–Van Kampen Theorem

Theorem (Zariski–Van Kampen Theorem [81])

γs γs−1 · · · γ2 γ1

y0

x0

g1

...
g2

gd

Figure: Choices of meridians
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Zariski–Van Kampen Theorem

Theorem (Zariski–Van Kampen Theorem [81])

Consider (P2, C,L,p) such that p ∈ L ⋔ C and the projection from p is
generic. Then,

π1(U) = ⟨g1, . . . ,gd : gi = gβj
i , i = 1, . . . ,d , j = 1, . . . , s⟩,

where d := deg C and βj is the braid associated with
γj ∈ π1(C \ {s points}, x0) = Fs, j = 1, . . . , s.
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Zariski–Van Kampen Theorem

Proof.

1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.
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Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Braid Monodromy
Zariski–Van Kampen Theorem
Consequences
Generalizations

Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
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Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
3 R := {f = ∂f

dy = 0} ⊂ C finite, ∆ := f (R) = {λ1, . . . , λs} ⊂ C .
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Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
3 R := {f = ∂f

dy = 0} ⊂ C finite, ∆ := f (R) = {λ1, . . . , λs} ⊂ C .
4 L = ∪s

i=1Lλi , W = C 2 \ (C ∪ L), j |W : W → C \∆ is a locally
trivial fibration with generic fiber F = Lx0

∼= C \ {d points}.
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Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
3 R := {f = ∂f

dy = 0} ⊂ C finite, ∆ := f (R) = {λ1, . . . , λs} ⊂ C .
4 L = ∪s

i=1Lλi , W = C 2 \ (C ∪ L), j |W : W → C \∆ is a locally
trivial fibration with generic fiber F = Lx0

∼= C \ {d points}.
5 1→ π1(F ) = Fd → π1(W )→ π1(C \ {s points}) = Fs → 0.
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Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
3 R := {f = ∂f

dy = 0} ⊂ C finite, ∆ := f (R) = {λ1, . . . , λs} ⊂ C .
4 L = ∪s

i=1Lλi , W = C 2 \ (C ∪ L), j |W : W → C \∆ is a locally
trivial fibration with generic fiber F = Lx0

∼= C \ {d points}.
5 1→ π1(F ) = Fd → π1(W )→ π1(C \ {s points}) = Fs → 0.
6 Use the action of Fs on Fd to compute π1(W )

π1(W ) = ⟨γ1, . . . , γs,g1, . . . ,gd : γ−1
j giγj = gβj

i ⟩.
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Zariski–Van Kampen Theorem

Proof.
1 p = [0 : 1 : 0], L = {z = 0}, P2 \ L ≡ C 2,
C ∩ C 2 = {(x , y) ∈ C 2 | f (x , y) = 0}.

2 Projection from p becomes j(x , y) = x . Define Lλ := j−1({λ}).
3 R := {f = ∂f

dy = 0} ⊂ C finite, ∆ := f (R) = {λ1, . . . , λs} ⊂ C .
4 L = ∪s

i=1Lλi , W = C 2 \ (C ∪ L), j |W : W → C \∆ is a locally
trivial fibration with generic fiber F = Lx0

∼= C \ {d points}.
5 1→ π1(F ) = Fd → π1(W )→ π1(C \ {s points}) = Fs → 0.
6 Use the action of Fs on Fd to compute π1(W )

7 Use Lemma 4 to obtain

π1(U) = ⟨g1, . . . ,gd : gi = gβj
i , i = 1, . . . ,d , j = 1, . . . , s⟩.

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Braid Monodromy
Zariski–Van Kampen Theorem
Consequences
Generalizations

Consequences

Remark

Since (gdgd−1 . . . g1)
β = gdgd−1 . . . g1, one of the relations of

type gi = gβi
i is redundant.

Consider βj = µ(γj) at xj ∈ ∆ and Pj = (xj , yj) above xj . If βj
involves only branches involving meridians gi , with
i ∈ Ij = {i0, . . . , in} (multPj C = #Ij ), then gβj

i = gi is a trivial
relation unless i ∈ Ij . Denote by I∗j = {i1, . . . , in}.

Hence a simpler presentation called Zariski’s presentation.

Theorem (Zariski’s Presentation)

π1(C 2 \ C) = ⟨g1, . . . ,gd : gi = gβj
i , i ∈ I∗j , j = 1, . . . , s⟩.
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i is redundant.

Consider βj = µ(γj) at xj ∈ ∆ and Pj = (xj , yj) above xj . If βj
involves only branches involving meridians gi , with
i ∈ Ij = {i0, . . . , in} (multPj C = #Ij ), then gβj

i = gi is a trivial
relation unless i ∈ Ij . Denote by I∗j = {i1, . . . , in}.

Hence a simpler presentation called Zariski’s presentation.

Theorem (Zariski’s Presentation)
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Theorem

π1(P2 \ C) = ⟨g1, . . . ,gd : gi = gβj
i , i = 1, . . . ,d , j = 1, . . . , s,

∏
i gi = 1⟩.

Exercise

Show that π1(P2 \ C) = Z/dZ for C = {xd + yd − zd = 0}.

One can use the exercise above together with

Lemma
If two curves C1, C2 are in a connected family of equisingular curves,
then (P2, C1) ∼= (P2, C2).

to show that π1(P2 \ C) = Z/dZ for ANY smooth curve C.
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π1(P2 \ C) = ⟨g1, . . . ,gd : gi = gβj
i , i = 1, . . . ,d , j = 1, . . . , s,

∏
i gi = 1⟩.

Exercise

Show that π1(P2 \ C) = Z/dZ for C = {xd + yd − zd = 0}.

One can use the exercise above together with

Lemma
If two curves C1, C2 are in a connected family of equisingular curves,
then (P2, C1) ∼= (P2, C2).
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Degeneration Theorem

Exercise

Assume C ⊂ P2 has a maximal order inflection point, that is, P ∈ C
regular point such that (C · TP) = d = deg C, for TP the tangent line of
C at P. Then π1(P2 \ C) = Z/dZ.
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Degeneration Theorem

Theorem (Dimca ’92 [26])

Let {Ct}t∈(0,ε]) a continuous equisingular family of curves converging
to a reduced curve C0. Then,

π1(U0) ↠ π1(Ut).
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Oka’s transversality Theorem

Theorem (Oka ’74 [65])

Let C1 and C2 plane curves in C 2 intersecting transversally in d1d2
points, then

π1(U) = π1(U1)× π1(U2).

Corollary

π1(C 2 \ C) is abelian if π1(C 2 \ Ci) are abelian for all Ci irreducible
component of C and Ci ⋔ Cj , i ̸= j .
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Oka’s transversality Theorem

Theorem (Oka ’74 [65])

Let C1 and C2 plane curves in C 2 intersecting transversally in d1d2
points, then

π1(U) = π1(U1)× π1(U2).

Corollary

π1(C 2 \ C) is abelian if π1(C 2 \ Ci) are abelian for all Ci irreducible
component of C and Ci ⋔ Cj , i ̸= j .
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Generalizations

Some of the genericity conditions in Zariski–Van Kampen
Theorem 3.1 are not necessary.
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Generalizations

Some of the genericity conditions in Zariski–Van Kampen
Theorem 3.1 are not necessary.

Figure: Non-generic projections
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Example

Figure: Projective curve C = {F = 0}

C = {F (x , y , x) = xyz(x2 + y2 + z2 − 2(xy + xz + yz)) = 0}.

π1(P2 \ C) = A(
4 4

) = T (4,4,2).
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Generalizations

Example

C3 = {y2 = x3}, L = {x = 0}.

π1(C 2 \ (C3 ∪ L)) =
⟨x , y , z : z−1xz = xyxy−1x−1, z−1yz = yxyxy−1x−1y−1⟩ =

⟨x , y , z : xzxy = zxyx , yzyxy = zyxyx⟩.
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Generalizations

Example

C3 = {y2 = x3}, L = {x = 0}.

π1(C 2 \ (C3 ∪ L)) =
⟨x , y , z : z−1xz = xyxy−1x−1, z−1yz = yxyxy−1x−1y−1⟩ =

⟨x , y , z : xzxy = zxyx , yzyxy = zyxyx⟩.
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Meridians and blow-ups

x = uv
y = v
←−

E
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Meridians and blow-ups
(p, q)-torus type curves
Zariski Pairs

Meridians and blow-ups

x = uv
y = v
←−

E

γ(t) = (0,e2πit)←− γ̃(t) = (0,e2πit).

Hence, γ̃ is a meridian of the exceptional divisor v = 0.

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Meridians and blow-ups
(p, q)-torus type curves
Zariski Pairs

Meridians and blow-ups

x = u
y = uv
←−

E

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Meridians and blow-ups
(p, q)-torus type curves
Zariski Pairs

Meridians and blow-ups

x = u
y = uv
←−

E

γ(t) = (0,e2πit) ∼= (εe2πit ,e2πit)←− γ̃(t) = (εe2πit , ε−1).
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Note that γ ∼=
∏

i gi and [γ,gi ] = 1 for all i ∈ IP .
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Meridians and blow-ups

Note that γ ∼=
∏

i gi and [γ,gi ] = 1 for all i ∈ IP .

Exercise
Check fundamental group of tricuspidal quartic using Cremona
transformation of the tritangent conic.
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(p,q)-torus type curves

Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.
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(p,q)-torus type curves

Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.
(Originally proved by Oka [62]. We will find an alternative proof.)
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(p, q)-torus type curves
Zariski Pairs

(p,q)-torus type curves

Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.

P = [0 : 0 : 1] ∈ C, Lt =

{
{y = tx} if t ∈ C
{x = 0} if t =∞

L0 ∩ C = {P} = L∞ ∩ C
multP C = 2md = (N − 1)d .

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Meridians and blow-ups
(p, q)-torus type curves
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(p,q)-torus type curves

Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.

P = [0 : 0 : 1] ∈ C, Lt =

{
{y = tx} if t ∈ C
{x = 0} if t =∞

L0 ∩ C = {P} = L∞ ∩ C
multP C = (N − 1)d ⇒ Lt ∩ C = {P} ∪ {d points} if t ∈ C ∗.
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Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.

Lemma

(C,P) has two branches:
δ0 tangent to L0 and singular type (aN + md ,aN + (m + 1)d),
δ∞ tangent to L∞ and singular type (bN + (m + 1)d ,bN + md).

Moreover, Lt ∩ C = {P} ∪ {d different points} for t ∈ C ∗.
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(p,q)-torus type curves

Purpose: study the fundamental group of the complement of
C = V (F )

F = xaNybN + (xN + yN + xmymz)d ,

where d = a + b, N = 2m + 1, and gcd(a,b) = gcd(N,d) = 1.

Lemma

(C,P) has two branches:
δ0 tangent to L0 and singular type (aN + md ,aN + (m + 1)d),
δ∞ tangent to L∞ and singular type (bN + (m + 1)d ,bN + md).

Moreover, Lt ∩ C = {P} ∪ {d different points} for t ∈ C ∗.

Perform Nagata transformation to obtain ΣN .
P2 \ (C ∪ L0 ∪ L∞) ∼= ΣN \ (C ∪ E ∪ Em

0 ∪ Em
∞)

A meridian around L0 (reps. L∞) is conjugated to a meridian
around Em

0 (resp. Em
∞).
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(p,q)-torus type curves

Theorem

π1(P2 \ C) ∼= Z/dZ ∗ Z/NZ.

Proof.

π1(ΣN \ (C ∪ E)) = ⟨g1, . . . ,gd : gi = gβ0
i ,gi = gβ∞

i ⟩.
β0 = βa, β∞ = βb, β = (σ1 . . . σd−1)

N .

Since gcd(a,b) = 1, gβ0
i = gβ∞

i = gβ
i .

Since gcd(d ,N) = 1, relations become αd
1 = αN

2
(α2 = g1 . . . gd−1).
A meridian around E is (g1 . . . gd−1)

N .
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(p,q)-torus type curves

Definition

A (p,q)-torus type curve (gcd(p,q) = 1) is a curve C that admits an
equation of type F = f q

p + f p
q = 0 (fm a homogenous polynomial of

degree m in three variables). Moreover, we call C generic if
Cp = {fp = 0}, Cq = {fq = 0} are both smooth and intersect
transversally (that is, at pq different points).

Lemma

If C0 and C1 are (p,q)-torus type curves and C1 is generic, then there
is an equisingular deformation {Ct}t , t ∈ (0, ε] such that Ct is generic.

Lemma

Under the previous conditions, any generic (p,q)-torus type curve C
admits an epimorphism Z/pZ ∗ Z/qZ ↠ π1(P2 \ C).
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(p,q)-torus type curves

Definition
An orbifold curve is a quasi-projective Riemann surface X together
with a map φ : X → Z>0 such that φ(x) > 1 only for a finite number of
points Σ = {p1, . . . ,ps}.
Define mi := φ(pi) and πorb

1 (X \Σ)/⟨gmj
j = 1⟩. A (dominant, algebraic)

morphism f : Y → X is called an orbifold morphism if for all x ∈ X ,
f ∗(x) is a φ(x)-multiple.

Lemma

If f : Y → Xφ is an orbifold morphism, then f induces a
homomorphism

f∗ : π1(Y )→ πorb
1 (Xφ).

Moreover, if the generic fiber is connected, then f∗ is surjective.
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(p,q)-torus type curves

Theorem

If C is a generic (p,q)-torus type curve, then
π1(P2 \ C) = Z/pZ ∗ Z/qZ.

Proof.
By Lemmas 10 and 11 once has

Z/pZ ∗ Z/qZ ↠ π1(P2 \ C) ↠ Z/pZ ∗ Z/qZ.

Since Z/pZ ∗ Z/qZ is a Hopfian group, then
π1(P2 \ C) ∼= Z/pZ ∗ Z/qZ.

J.I. Cogolludo-Agustín Fundamental groups...



Settings and Motivations
First Properties and Examples
Zariski-Van Kampen Theorem

Other techniques
Braid Monodromy

Geometric Morphism Problem

Meridians and blow-ups
(p, q)-torus type curves
Zariski Pairs

Zariski Pairs

Example

The case p = 2, q = 3 was shown by Zariski [83].

C2,3 is a sextic with six cusps on a conic and

π1(P2 \ C2,3) = Z/2Z ∗ Z/3Z.

He also claimed the existence of a sextic C6 with six cusps NOT on a
conic whose fundamental group is abelian, that is,

π1(P2 \ C6) = Z/6Z.

Both C2,3 and C6 can be constructed using Kummer covers.
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Zariski Pairs

Definition

A pair of curves C1, C2 ⊂ P2 with the same number of irreducible
components, with the same degrees, types of singularities, and
intersections are called a Zariski Pair if the pairs (P2, C1) and (P2, C2)
are not homeomorphic.

Remark
The curves C2,3, C6 form a Zariski Pair of sextics with six (ordinary)
cusps (type A2).
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Braid Monodromy

Choose a generic point P /∈ C and a transversal line P ∈ L ⋔ C.

Projection from P, j : P2 \ L→ C .
Define discriminant ∆ = {x1, . . . , xs} such that
j |W : (W ,WC)→ C \∆, W := P2 \ (L ∪ j−1(∆)), WC := W ∩ C, is
a locally trivial fibration.
Choose a geometric basis γ1, . . . , γs in π1(C \∆, x0) and define
βi := µ(γi) the braid associated with the monodromy around γi .
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Remark
All braids are quasi-positive and algebraic.
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Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Remark
All braids are quasi-positive and algebraic.
Choice of a different geometric basis produces an action of Bs.
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Remark
All braids are quasi-positive and algebraic.
Choice of a different geometric basis produces an action of Bs.
Choice of a different section and base point on the generic fiber
produces an action of Bd .
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Remark
All braids are quasi-positive and algebraic.
Choice of a different geometric basis produces an action of Bs.
Choice of a different section and base point on the generic fiber
produces an action of Bd .
Both actions commute. The action of Bs × Bd on each BM
produces the Hurwitz class of (C,L,P).
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Theorem
There is a one-to-one correspondence between braid monodromy
representations and Hurwitz classes of (C,L,P).
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Braid Monodromy

Definition

The s-tuple BM := (β1, . . . , βs) ∈ Bs
d is the braid monodromy

representation associated with (C,L,P, x0).

Theorem
There is a one-to-one correspondence between braid monodromy
representations and Hurwitz classes of (C,L,P).

Definition
The orbit of a braid monodromy representation by the action of
Hurwitz moves is called the braid monodromy class of C.
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Monodromy Factorization

Since the line L intersects transversally, the product

βsβs−1 · · ·β2β1 =
s∏

i=1

µ(γs−i+1) = µ∂D = ∆2
d = (σ1 · · ·σd−1)

d ,

the Garside element of Bd .

Definition

A factorization of ∆2
d by quasi-positive braids is called a braid

monodromy factorization.

Open Problem

Which (algebraic) factorizations are realizable in the algebraic
category? (Moishezon [56])
Problem solved for smooth curves (Itzhak-Teicher [11])
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Monodromy Factorization

Theorem (Carmona [15])

The braid monodromy class of C fully determines the topology of the
pair (P2, C). In other words, if two curves C1 and C2 have the same
braid monodromy class, then there is a homeomorphism φ : P2 → P2

such that φ(C1) = C2.
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Monodromy Factorization

Theorem (Carmona [15])

The braid monodromy class of C fully determines the topology of the
pair (P2, C). In other words, if two curves C1 and C2 have the same
braid monodromy class, then there is a homeomorphism φ : P2 → P2

such that φ(C1) = C2.

Proof.

Retraction to a tubular neighborhood of C ∪ (L ∪ j−1(∆)) and
reconstruct this tubular neighborhood using the braid monodromy.
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Monodromy Factorization

Theorem (Carmona [15])

The braid monodromy class of C fully determines the topology of the
pair (P2, C). In other words, if two curves C1 and C2 have the same
braid monodromy class, then there is a homeomorphism φ : P2 → P2

such that φ(C1) = C2.

Theorem (Libgober [50])

The 2-dimensional complex associated with the Zariski presentation
has the homotopy type of C 2 \ C.
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Monodromy Factorization

Theorem (Carmona [15])

The braid monodromy class of C fully determines the topology of the
pair (P2, C). In other words, if two curves C1 and C2 have the same
braid monodromy class, then there is a homeomorphism φ : P2 → P2

such that φ(C1) = C2.

Theorem (Libgober [50])

The 2-dimensional complex associated with the Zariski presentation
has the homotopy type of C 2 \ C.

Proof.
The 2-dimensional complex associated with the Artin presentation of
a link K ⊂ S3 has the homotopy type of S3 \ K .
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Monodromy Factorization: a non-trivial example

Example

Consider the following quartic:

(1)
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Monodromy Factorization: a non-trivial example

Example

Projecting from [0 : 1 : 0]:

(1)
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Monodromy Factorization: a non-trivial example

Example

Computing the braid monodromy:

Geometric basis: γ5γ4γ3γ1γ2 = ∂D.

(1)
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Monodromy Factorization: a non-trivial example

Example

Braids β2 and β3 look like local braids:

β2 = σ2 and β3 = σ8
1 .

(1)
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However, the remaining braids β4 and β5 depend on global
monodromy:

here β1 = σ−1
3 σ−1

1 σ2σ1σ3.

(1)
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Example

There is a half-turn around the tacnode affecting the second
tangency. The braid becomes β4 = σ4

1 · σ2 · σ−4
1 , and hence

β5 = (γ4γ3γ1γ2)
−1∆2

4.

(1)
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Hence the braid monodromy factorization is

(β5, σ
4
1σ2σ

−4
1 , σ8

1 , σ
−1
3 σ−1

1 σ2σ1σ3, σ2),

where β5 = σ−1
2 · σ−1

3 σ−1
1 σ−1

2 σ1σ3 · σ−8
1 · σ4

1σ2σ
−4
1 · (σ1σ2σ3)

4.

(1)
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(r1) g1 = gσ8
1

1 = (g2g1)
4g1(g2g1)

−4 ⇒ [(g2g1)
4,g1] = 1

g2 = gσ8
1

2 = (g2g1)
4g2(g2g1)

−4 ⇒ [(g2g1)
4,g2] = 1

g3 = gσ8
1

3 = g3

g4 = gσ8
1

4 = g4 (1)
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(r2) g1 = gσ2
1 = g1

g2 = gσ2
2 = g3 ⇒ g2 = g3

g3 = gσ2
3 = g3g2g−1

3 ⇒ g2 = g3
g4 = gσ2

4 = g4
(1)
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(r3) g1 = g(σ−1
3 σ−1

1 σ2σ1σ3)

1 = g−1
2 g4g2 ⇒ g4 = g2g1g−1

2

g2 = g(σ−1
3 σ−1

1 σ2σ1σ3)

2 = g2

g3 = g(σ−1
3 σ−1

1 σ2σ1σ3)

3 = g3

g4 = g(σ−1
3 σ−1

1 σ2σ1σ3)

4 = g4g2g1g−1
2 g−1

4 ⇒ g4 = g2g1g−1
2

(1)
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(r5) g1 = g(σ4
1σ2σ

−4
1 )

1 = (g3(g2g1)
−2(g1g2)

2g1g3(g2g1)
−2) ∗ g1

(r6) g2 = g(σ4
1σ2σ

−4
1 )

2 = (g3(g2g1)
−2(g1g2)

2g1g3(g2g1)
−2(g1g2)

2g1) ∗ g3

(r7) g3 = g(σ4
1σ2σ

−4
1 )

3 = g−1
1 g−1

2 g−1
1 g2g1g2g1

g4 = gσ4
1σ2σ

−4
1

4 = g4,

(r8) g4g3g2g1 = 1 ≡ (g2g1g−1
2 )g2g2g1 = (g2g1)

2 = 1
(1)
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π1(C 2 \ C) = ⟨g1,g2 : [(g2g1)
4,g1] = 1⟩.
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Example

π1(C 2 \ C) = ⟨g1,g2 : [(g2g1)
4,g1] = 1⟩.

Adding the relation g4g3g2g1 = 1 one obtains

π1(P2 \ C) = ⟨g1,g2 : (g2g1)
2 = 1⟩ = Z ∗ Z/2Z.
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The homotopy type of C 2 \ C is given by the 2-complex associated
with a Zariski’s Presentation 3.3

⟨g1,g2,g3,g4 :

[(g2g1)
4,g1] = 1,

g2 = g3,

g4 = g2g1g−1
2 ,

g2 = g3,

g4 = g2g1g−1
2

⟩
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The homotopy type of C 2 \ C is given by the 2-complex associated
with a Zariski’s Presentation 3.3

⟨g1,g2,g3,g4 :

[(g2g1)
4,g1] = 1,

g2 = g3,

g4 = g2g1g−1
2 ,

g2 = g3,

g4 = g2g1g−1
2

⟩

≡ ⟨g1,g2 : [(g2g1)
4,g1] = 1,1 = 1,1 = 1⟩
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The homotopy type of C 2 \ C is given by the 2-complex associated
with a Zariski’s Presentation 3.3

⟨g1,g2,g3,g4 :

[(g2g1)
4,g1] = 1,

g2 = g3,

g4 = g2g1g−1
2 ,

g2 = g3,

g4 = g2g1g−1
2

⟩

≡ ⟨g1,g2 : [(g2g1)
4,g1] = 1,1 = 1,1 = 1⟩

Hence by Libgober’s Theorem 46 on homotopy type

C 2 \ C
h.t.∼= (S3 \ K2,8) ∨ S2 ∨ S2.
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Open Problem

If U = C 2 \ C. Is it true that

π1(U) + χ(C)⇒ homotopy type?
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Open Problem

If U = C 2 \ C. Is it true that

π1(U) + χ(C)⇒ homotopy type?

That is, given two affine curves C1 and C2

π1(U1) ∼= π1(U2)
χ(C1) = χ(C2)

}
⇒ U1

h.t.∼= U2?
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Open Problem

If U = C 2 \ C. Is it true that

π1(U) + χ(C)⇒ homotopy type?

That is, given two affine curves C1 and C2

π1(U1) ∼= π1(U2)
χ(C1) = χ(C2)

}
⇒ U1

h.t.∼= U2?

(Note that this problem has a negative answer in the general
case of 2-dimensional complexes, Dunwoody [29]).
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Homotopy Type

Open Problem

If U = C 2 \ C. Is it true that

π1(U) + χ(C)⇒ homotopy type?

That is, given two affine curves C1 and C2

π1(U1) ∼= π1(U2)
χ(C1) = χ(C2)

}
⇒ U1

h.t.∼= U2?

(Note that this problem has a negative answer in the general
case of 2-dimensional complexes, Dunwoody [29]).
Does Libgober’s Theorem 46 on homotopy type also hold for
projective curves for some preferred presentation?
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Problem

Let U ⊂ X compact Kähler manifold, ψ : π1(U)→→G f.g. kernel,
G ∼= π1(C).
Determine if/when there exists an admissible map F : U → C to a
smooth complex algebraic curve C realizing ψ, that is, such that ψ
and

F∗ : π1(U,u)→ π1(C,F (u))

coincide up to isomorphism in the target.
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Geometric Morphism Problem

Theorem

Let U be a compact Kähler manifold (resp. a proper Zariski open set
in a compact Kähler manifold) and let ψ : π1(U)→ G an epimorphism
with finitely generated kernel, where G is the fundamental group of a
smooth compact complex curve of genus g ≥ 2 (resp. a free group Fs
with s ≥ 2). Then there exists an admissible map F : U → Cg , where
Cg is a smooth compact complex curve of genus g (resp.
F : U → Cg,r , where Cg,r is a smooth compact complex curve of
genus g with r = s + 1− 2g points removed) with no multiple fibers
such that ψ coincides with F∗ up to isomorphism in the target.
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Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve Sm̄ is a Riemann surface S with a function
m̄ : S → N whose value is 1 outside a finite number of points. A point
P ∈ S for which m̄(P) > 1 is called an orbifold point .

Definition (Orbifold Fundamental Group)

For an orbifold Sm̄, let P1, . . . ,Pn be the orbifold points,
mj := m̄(Pj) > 1. Then, the orbifold fundamental group of Sm̄ is

πorb
1 (Sm̄) := π1(S \ {P1, . . . ,Pn})/⟨µ

mj
j = 1⟩,

where µj is a meridian of Pj . We will denote Sm̄ simply by Sm1,...,mn .
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Definition (Orbifold)

An orbifold curve Sm̄ is a Riemann surface S with a function
m̄ : S → N whose value is 1 outside a finite number of points. A point
P ∈ S for which m̄(P) > 1 is called an orbifold point .

Definition (Orbifold Fundamental Group)

For an orbifold Sm̄, let P1, . . . ,Pn be the orbifold points,
mj := m̄(Pj) > 1. Then, the orbifold fundamental group of Sm̄ is

πorb
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Orbifold Morphisms

Definition
A dominant algebraic morphism φ : X → S defines an orbifold
morphism X → Sm̄ if for all P ∈ S, the divisor φ∗(P) is a
m̄(P)-multiple.

Proposition ([5, Proposition 1.5])

Let ρ : X → S define an orbifold morphism X → Sm̄. Then φ induces
a morphism φ∗ : π1(X )→ πorb

1 (Sm̄).
Moreover, if the generic fiber is connected, then φ∗ is surjective.
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Applications

Example

Consider F equation of C2,3 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (2)
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Applications

Example

Consider F equation of C2,3 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (2)

Then (2) induces a rational map

φ : P2 99K P1

[x : y : z] 7→ [h3
2 : h2

3]
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Applications

Example

Consider F equation of C2,3 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (2)

Then (2) induces a morphism

φ̂ : P̂2 → P1

such that φ̂ = φ ◦ ε.
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Applications

Example

Consider F equation of C2,3 in Zariski’s Example. Since F fits in a
functional equation of type

h2
3 + h3

2 + F = 0, (2)

φ̂|P2\C has two multiple fibers (over [0 : 1], [1 : 0]).
m̄([0 : 1]) = 2, m̄([1 : 0]) = 3
φ̂2,3 : P2 \ C → P1

2,3 \ {[1 : −1]} orbifold morphism.
Since the pencil is primitive, there is an epimorphism

φ̂2,3 : π1(P2 \ C)→ πorb
1 (P1

2,3 \ {[1 : −1]}) = Z2 ∗ Z3.
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P1

2
3
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Applications

Example

In general, suppose F fits in a functional equation of type

F1hp
1 + F2hq

2 + F3hr
3 = 0, (3)

Then (3) induces a morphism φ̂ : P̂2 → P1 given by
φ([x : y : z]) = [F1hp

1 : F2hq
2 ].

φ̂|P2\C has three multiple fibers (over [0 : 1], [1 : 0], and [1 : −1]).
m̄([0 : 1]) = p, m̄([1 : 0]) = q, and m̄([1 : −1]) = r .
φ̂p,q,r : P2 \ C → P1

p,q,r \ φ̂({F1F2F3 = 0}) orbifold morphism.
If the pencil is primitive, there is an epimorphism

φ̂p,q,r : π1(P2 \ C)→ πorb
1 (P1

p,q,r \ φ̂({F1F2F3 = 0})) =
αZp ∗ βZq

(αβ)r .
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Another Application

Corollary

The number of multiple members in a (primitive) pencil of plane
curves (with no base components) is at most two.
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Geometric Orbifold Morphism Problem

Problem

Let U ⊂ X open in a compact Kähler manifold and let ψ : π1(U)→→G
with f.g. kernel where G ∼= πorb

1 (C), C smooth complex algebraic
curve with an extra orbifold structure.
Determine if/when there exists an admissible map F : U → C to a
smooth complex curve C realizing ψ, that is, such that, if C is
endowed with its maximal orbifold structure with respect to F , ψ and
F∗ : π1(U)→ G = πorb

1 (C) coincide up to isomorphism in the target.
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Curve orbifold group

Definition (Curve orbifold group)

A curve orbifold group is a group which admits a presentation of the
form

Gg,(r ,m̄) :=

〈
ai ,bi , xj , yk ,

i = 1, ..., g
j = 1, .., s

k = 1, ..., r

∣∣∣∣ ∏
[ai ,bi ] =

∏
xj
∏

yk ,
xm1

1 = . . . = xms
n = 1

〉
(4)

for some g, s, r ≥ 0 and m1, . . . ,ms ≥ 2.

χg,(r ,m̄) := 2− 2g − r −
n∑

i=1

(
1− 1

mi

)
.
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A curve orbifold group is a group which admits a presentation of the
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Geometric Orbifold Morphism Theorem

Theorem

Let U ⊂ X open in a compact Kähler manifold, ψ : π1(U)→→Gg,(r ,m̄)

with f.g. kernel K , and χg,(r ,m̄) < 0. Then, ∃ sm. qproj. curve C and
an admissible map F : U → C such that:

1 F induces an orbifold morphism F : U → Cm̄, where Cm̄ is
maximal with respect to F .

2 F∗ : π1(U)→ πorb
1 (Cm̄) coincides with ψ up to isomorphism in the

target.
3 C is projective if and only if r = 0.
4 If r = 0, C has genus g. If r ≥ 1, C is a genus g′ curve with

r ′ ≥ 1 points removed, where 2g′ + r ′ = 2g + r .
Moreover, one such F is unique up to isomorphism of algebraic
varieties in the target.
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Examples

if π1(P2 \ Cp,q) ∼= Zp ∗ Zq , then Cp,q = {f q
p + f p

q = 0}

What if χg,(r ,m̄) ≥ 0?
Case χg,(r ,m̄) = 0

Euclidean Compact groups: G0,(2,3,6), G0,(2,4,4), G0,(3,3,3), G0,(2,2,2,2),
and G1 = Z2,
Z
Z2 ∗ Z2.

Case χg,(r ,m̄) > 0 with finite kernel also true.
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