
Generalized method for the computational phase
correction of arbitrary dual comb signals
DAVID BURGHOFF,1,* NINGREN HAN,2 AND JAE HO SHIN1

1Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
2Google LLC, Mountain View, California 94043, USA
*Corresponding author: dburghoff@nd.edu

Received 4 April 2019; revised 5 May 2019; accepted 6 May 2019; posted 9 May 2019 (Doc. ID 364262); published 4 June 2019

We demonstrate a computational phase correction algo-
rithm that is able to correct for phase and timing fluctua-
tions of arbitrary dual comb spectra. By augmenting a
Kalman filter with a global search and decoupling the in-
terferogram estimation, we show that dual comb signals
having a wide range of structures can be predicted and cor-
rected. Furthermore, we derive an upper bound for the
accuracy of any self-correction technique and show that
the augmented filter is capable of reaching this bound when
the phase and frequency noise are bandlimited. Finally, we
show how expectation maximization can be used to learn
the statistical parameters of a system without any free
parameters. This approach is hands-off, robust, and accu-
rate for a wide range of dual comb systems. Demonstration
code is provided. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.002966

Dual comb spectroscopy is a powerful technique that allows for
the collection of optical spectra using only electrical techniques,
in which a radio frequency comb is generated from the multi-
heterodyne beating of two optical combs [1,2]. Its performance
is often limited by the mutual coherence of the two combs, as
incoherence broadens the linewidth of each tooth. This distorts
the spectrum when the broadening is small and makes it unus-
able when the broadening is large. In laboratory environments,
mutual coherence can be sustained for seconds, or even hours
[3–5], but this is more difficult in chip-scale systems. Adaptive
sampling approaches can correct for incoherence by making use
of extra reference channels [6,7], but increase system complex-
ity and power consumption. One can also self-correct spectra
using only digital techniques [8–11], which is appealing for
portable applications, since it requires no additional optics.

Unfortunately, while self-correction techniques have been
shown to be effective in a particular use case, they are highly
dependent on the structure of the problem. The extended
Kalman filter (EKF) [8] and computational coherent averaging
[11] approaches track the frequencies of the RF comb’s lines
continuously in time, making them well-suited for quasi-
continuous dual comb systems that lack a center burst (e.g.,
passive quantum cascade laser [QCL] combs [12,13], electro-
optic combs [3], some microresonator combs [14], and

quantum well diode lasers [15]). Though, in principle, they can
be applied to the dual comb signal generated by pulsed lasers,
and the resulting correction may even look reasonable, upon
closer inspection one can find that the extracted amplitudes
and phases are sometimes inaccurate. By contrast, the ambigu-
ity function and cross-correlation approaches [9,10] are well-
suited for pulsed lasers, but are more difficult to apply to quasi-
continuous interferograms without clear boundaries. In low sig-
nal-to-noise ratio (SNR) conditions they will also become less
accurate, as they do not account for the statistics of the under-
lying phase noise. Here we demonstrate an algorithm that com-
bines the best features of all approaches—the accurate statistical
representation of the Kalman filter and the robustness of batch
interferogram processing—to correct all manner of comb
spectra. We also investigate the fundamental limits of self-
correction and show that this method achieves those limits.
(The demonstration code is available in Code 1, Ref. [16].)

We assume that the dual comb’s RF spectrum is represented
by a complex signal y�t� � P

nAneiϕn�t�, where An is the com-
plex amplitude of the nth comb line, and ϕn � ϕ0 � nϕr is the
corresponding phase. (ϕ0 and ϕr are the offset and repetition
rate phases of the RF comb; f0 and fr are the frequencies.) We
wish to accomplish two objectives at once:

1. For data sampled at discrete times tk, we wish to find
amplitudes and phases that best fit the data. Collecting all of
them into a state variable xk, we essentially wish to find the xk ‘s
that minimize

P
kjyk − h�xk�j2, where h�xk� �

P
nAneiϕn,k is a

nonlinear measurement function.
2. The phases at different times should be related. In the

absence of phase noise, we expect ϕ0,k�1 � ϕ0,k � ω0,kΔt and
ϕr,k�1 � ϕr,k � ωr,kΔt . Calling this relation f �xk� the process
function, we wish to minimize

P
kjf �xk� − xk�1j2.

If the measurement is perturbed by additive white Gaussian
noise with covariance 2σ2 and process noise covariance Qk, we
can combine these by minimizing the cost: J � kx0 − xpk2P−1�P

k
1
σ2
jyk − h�xk�j2 � kf �xk� − xk�1k2Q−1

k
, where kxk2C ≡ xT Cx

weights the covariances, and where xp and P represent the prior
mean and covariance. This cost is extremely general and is implic-
itly what was minimized by all previously demonstrated methods.

Though nonlinear Kalman filters can converge to a local
minimum of the cost, they cannot guarantee convergence at
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all or to a global minimum. Solving this problem, in general, is
difficult, because the measurement component contains many
sinusoidal terms that make it highly non-convex. We make two
assumptions that greatly simplify the problem. First, we assume
that the amplitudes and phases of the N comb lines (i.e., the
interferogram) are slowly varying; they can then be determined
by demodulation. This means that we only have four state var-
iables, rather than the 2N � 4 that are needed to keep track of
all of the amplitudes and phases. Secondly, we collect all of the
process noise of a finite length of data into a single time—
making it 0 for all times in between—and divide the data into
batches of lengthM , whereMΔt ∼ 1∕fr . We then minimize a
simpler expression for each batch:

Jb�x� � kx − xpk2P−1 �
XM−1

k�0

1

σ2
jyk − hk�x�j2, (1)

where x � �ϕ0,ϕr ,ω0,ωr �T is the state of the system at the first
time in the batch, P is the prior covariance at the start of the
batch, and the measurement hk now includes phase evolution,
i.e., hk�x� �

P
nAnei�ϕ0�ω0tk�n�ϕr�ωr tk��. In other words,

Eq. (1) assumes that the phase is piecewise linear; this requires
that the phase and frequency noise be bandlimited to fr∕2.

Minimizing Jb solves a maximum a posteriori problem,
selecting the measurement component at low noise levels and
the prior at high noise levels. It is well-known that Eq. (1)
can be locally minimized using iterated EKFs [17], as the
approach essentially mimics Gauss–Newton minimization.
Unfortunately, this local minimum is frequently suboptimal,
so a global search strategy must be employed. ϕ0 represents
a global phase and can quickly be found, given the other three
parameters. The remaining parameters can be found by con-
structing a discrete grid that ranges over their possible values,
using fast Fourier transform (FFT) methods to rapidly evaluate
(1) over the grid. In addition, all sums of the form p�t� �P

nAnei2πnt can be avoided by placing the An‘s onto a grid,
using an FFT to compute p�t�, and interpolating, a process that
is significantly faster than a direct summation when N is large.
After Jb is minimized for a given batch, the state and covariance
are updated using the usual iterated EKF update relations, and
the complex amplitude of the nth line is estimated by demodu-
lation (An � hyke−iϕn,k i). Once this has been done for all
batches, the phases are resampled onto the original time grid
and filtered to remove any residual components above fr∕2.

This approach combines many of the advantages of previous
approaches. The approach in Ref. [8] can correctly reproduce
spectra, even in the case of large phase noise and low signal-to-
noise levels, but can converge to false minima (particularly at
rational number multiples of the repetition rate). Here this
problem is eliminated by the global search. The method in
Ref. [9], by contrast, works well for pulsed lasers with thou-
sands of lines, but ignores the statistics of the underlying noise.
[One can show that maximizing the ambiguity function max-
imizes the measurement term of Eq. (1) alone.] Thus, its per-
formance will suffer in high-noise conditions.

In order to assess the efficacy of this approach, we first
focus on two types of synthesized data. First, we consider a
quasi-continuous comb with relatively few lines (N l � 100)
and a repetition rate of 5 MHz, similar to multiheterodyne
signals generated by (QCLs) [12,13,18] and some microreso-
nators [14]. Next, we consider a comb with many lines

(N l � 4000) and a repetition rate of 10 kHz, similar to the
signal generated by the mode-locked lasers in Ref. [9]. Since
spectral leakage between nearby lines frequently occurs with
suboptimal techniques, we impose deep absorption features
onto the dual comb spectra to see whether leakage occurs.
The offset noise in the two cases has peak-to-peak fluctuations
of 8f r and 15f r for the continuous and pulsed signals, respec-
tively, ensuring that both spectra are fully mutually incoherent.

Figure 1(a) shows the result of this correction for the case of
a quasi-continuous comb. The raw data are shown in red, the
corrected data are shown in blue, and the actual amplitudes are
shown in orange. Note that the correction is essentially perfect
and practically the comb’s entire spectrum is captured by the
correction. As a result, the agreement between the true ampli-
tudes and the corrected amplitudes is excellent. This is also evi-
dent in the time domain, which is shown in Fig. 1(b). The
extracted frequency noise and the actual frequency noise agree
extremely well, a consequence of the fact that Kalman filters
can nearly perfectly estimate signals when the linearization is
adequate. Figure 2 shows the same results for the case of
the mode-locked laser. The RF comb is significantly denser
and contains many more lines, but the correction nonetheless
remains accurate. In terms of the computation time, on a
typical computer, Fig. 1 requires 10 s to process 100 μs of
data, while Fig. 2 requires 30 s to process 70 ms of data.

(a)

(b) (c)

Fig. 1. (a) Frequency-domain correction of a quasi-continuous sig-
nal using an augmented Kalman filter. The accuracy is limited only by
measurement noise [residuals plotted in Fig. 3(a)]. (b) Extracted
frequencies in the time domain. (c) Power spectral densities of f0
and fr .
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(The calculation time is dominated by the grid search; in prin-
ciple this can be parallelized by GPU processing.)

Of course, for spectroscopy, the ultimate test is not whether
or not these methods can reproduce the underlying frequency
noise, but whether or not they can correctly reproduce the under-
lying spectra. In fact, there is a fundamental limit to how accu-
rately any data can be used to phase-correct itself. Consider the
case of a single line with phase noise. If the phase noise is known,
its power can be estimated by using simple demodulation and
taking the magnitude squared of the result (i.e., homodyne detec-
tion). This is the coherent power estimate. When the phase noise is
not known, one must estimate the power by integrating the power
spectrum over its bandwidth. This is the incoherent estimate, and
is equivalent to taking the phase of the signal and using that to
perform self-correction. One can show that in the presence of
additive white Gaussian measurement noise with covariance
2σ2, the variance of the power estimate of a line with power P
using N samples will be given by

σ2coherent �
4σ2

N

�
P � σ2

N

�
, σ2incoherent �

4σ2

N
�P � σ2�: (2)

When N is large, the coherent power estimate has a SNR that is a
factor of 1� σ2

P larger. This increase of σ2

P is exactly the variance
associated with the estimate of the phase of a signal given noisy
measurements, because the increase in the SNR in the coherent
case can be interpreted as coming from the fact that we are
supplied with the phase and do not need to estimate it. For
weak signals (P ≪ σ2), the increase is dramatic, explaining

why homodyne detection is generally needed to recover them.
For strong signals, this gain is small, and coherent integration
is not much better than incoherent integration.

What limit should apply in the multiheterodyne case?
Despite the fact that we do not have a clean phase reference,
we are using all of the comb’s lines to estimate the phase and
timing signal. In other words, the power that goes into the
phase and timing estimation is effectively the power of the
whole comb, not just the power of a single line (i.e., P is large).
Therefore, we can expect to obtain results that are close to the
coherent estimate. This is confirmed in Figs. 3(a) and 3(b),
which plots the residual of our corrected power estimates for
the spectra shown above. Note that in both cases we are able
to reach the coherent limit, even though there is no coherent
reference; the phase reference is derived from the other lines.
Even weak lines originally below the noise floor will reappear
once corrected, similar to what happens in the homodyne mea-
surements of weak signals. The correction is optimal, provided
that we satisfy the constraint that the underlying phase
and frequency noise are bandlimited. Only noise outside
f r∕2 deg rades the correction [Figs. 3(c) and 3(d)].

Lastly, we examine the issue of hyperparameters. Until now,
we have made a critical assumption about the system being cor-
rected: that its noise statisticsQ and σ2 are known and correctly
modeled. However, for most real data, we do not have these
parameters. The measurement noise can be quickly ascertained
by examining the white noise level of the signal, but the process
noise Q can be much more elusive, since it reflects the phase
noise statistics of the signal we are trying to estimate. Not only
can phase noise have components of different color (for exam-
ple, due to a mixture of white and Brownian frequency noise),
but it can also be strongly correlated. For example, in semicon-
ductor lasers, both offset and repetition rate fluctuations can be

(b)

(a)

(c)

Fig. 2. (a) Frequency-domain correction of a pulsed signal using an
interferogram-augmented Kalman filter [residuals plotted in Fig. 3(b)].
(b) Extracted frequency fluctuations in the time domain. (c) Power
spectral densities of f0 and fr .

(d)

(b)(a)

(c)

Fig. 3. (a), (b) Fractional error corresponding to the spectra in
Figs. 1 and 2, respectively, along with σcoherent and σincoherent. In both
cases, the residuals closely match the coherent estimate’s standard
deviation, so the augmented filter achieves the best possible SNR.
(c), (d) Residuals of the previous cases with extra white frequency noise
(20 MHz and 400 kHz, respectively, causing phase walk of variance
�π∕2�2 per 1∕fr ). The correction suffers, but remains informative.
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generated by current fluctuations, changing both the refractive
index and the intracavity power [19]. Ideally, we would like to
estimate Q from our data, but this amounts to an intractable
maximum likelihood estimation problem. Instead, we solve it
iteratively by employing the well-known expectation maximiza-
tion (EM) algorithm [20]. In essence, we alternate between two
steps: expectation—running the augmented Kalman filter
using a given Q �i�—and maximization—choosing Q �i�1� by
maximizing the log-likelihood of the filter output, finding

argmin
Q

X
b

TrQ−1h�xb�1 − f �xb���xb�1 − f �xb��T i − ln jQ−1j

� 1

Nb − 1

X
b

h�xb�1 − f �xb���xb�1 − f �xb��T i:

An initial guess of Q �1� must be provided, but for all systems
tested it is extremely well-behaved and practically always con-
verges, even when initialized many orders of magnitude away
from the underlying statistics. A similar expression can be de-
rived for the measurement noise, allowing the EM algorithm to
efficiently learn all of the relevant statistics—σ2 and the 10
components of Q. Figure 4(a) shows the result of this process
for the quasi-continuous data with wildly different initial con-
ditions (Q and σ2 ranging across six orders of magnitude). In
each case, the EM algorithm converges to the same optimal
value in just a few iterations. Because EM is iterative, it requires
that the filter be run several times, a process which can be time-
consuming. Fortunately, provided the noise is stationary, it
does not need to be performed frequently, or even for an
entire set of data. It need only be performed on a small subset
of the data collected and can be subsequently reused.

Figure 4(b) shows the result of correction during the EM
process. When Q �1� is poorly chosen, the resulting correction
is inaccurate, and the residual is far from the white noise level.

However, by running EM, all the correct parameters are found,
and the spectrum is well-corrected. Figure 4(c) shows the result
of running EM on terahertz QCL dual comb data [8]. With a
poor choice of Q �1� one still obtains a correction that looks
reasonable but, upon closer inspection, it is actually smeared
out: different lines leak into their neighbors. The lines indicated
by arrows are initially thought to differ by only 11 dB, but sub-
sequent iterations show them to be 28 dB apart. Convergence
occurs rapidly, and iterations 2 and 3 are practically identical.
Interestingly, the final value of Q has a Pearson correlation co-
efficient of ρf 0f r � 0.6, indicating a strong correlation between
f0 and fr noise.

In conclusion, we have demonstrated a method by which
the phase and timing noise of an arbitrary mutually incoherent
comb can be computationally corrected. By augmenting a
Kalman filter with a global search, we have shown that both
quasi-continuous and pulsed dual comb signals can be accu-
rately corrected. We showed that power estimates derived from
this method can approach the estimates of a mutually coherent
comb—limited only by the SNR of the underlying signal—and
demonstrated how EM could be used to learn the statistics of a
system without any free parameters [16].
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Fig. 4. (a) Expectation maximization convergence on continuous
data with widely varying initial conditions. (b) Correction results after
the first and last iteration. (c) First three iterations of EM running on
real dual comb data, with poor initialization of Q.
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