
Dispersion dynamics of quantum cascade lasers
DAVID BURGHOFF,1,* YANG YANG,1 JOHN L. RENO,2 AND QING HU1

1Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
2Center for Integrated Nanotechnology, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
*Corresponding author: burghoff@mit.edu

Received 29 August 2016; revised 21 October 2016; accepted 24 October 2016 (Doc. ID 274720); published 14 November 2016

A key parameter underlying the efficacy of any nonlinear op-
tical process is group velocity dispersion. In quantum cascade
lasers (QCLs), there have been several recent demonstrations
of devices exploiting nonlinearities in both the mid-infrared
and the terahertz. Though the gain of QCLs has been well
studied, the dispersion has been much less investigated,
and several questions remain about its dynamics and precise
origin. In this work, we use time-domain spectroscopy to
investigate the dispersion of broadband terahertz QCLs,
and demonstrate that contributions from both the material
and the intersubband transitions are relevant. We show that
in contrast to the laser gain—which is clamped to a fixed value
above lasing threshold—the dispersion changes with bias even
above threshold, which is a consequence of shifting intersub-
band populations. We also examine the role of higher-order
dispersion in QCLs and discuss the ramifications of our result
for devices utilizing nonlinear effects, such as frequency
combs. © 2016 Optical Society of America
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Group velocity dispersion is a fundamental parameter of any op-
tical system. Quantum cascade lasers (QCLs) are a semiconductor
source of coherent radiation in the mid-infrared and terahertz
(THz) [1], and their high powers and large nonlinearities have
led to several interesting devices exploiting nonlinear effects.
For example, impressive results have been obtained in generat-
ing Thz radiation from mid-infrared structures via difference-
frequency generation [2–4], active mode locking has been achieved
[5–7], and as of late there has been an explosion in research in
using QCLs to generate frequency combs [8–12]. Mid-infrared
difference-frequency generation can be used to generate continu-
ous wave THz radiation without the need for cryocoolers, and
frequency combs can be used to perform coherent broadband
spectroscopy [13–15] or to perform broadband tomography [16].
For frequency combs, it is well known that group velocity dis-
persion (GVD) plays a critical role in the formation of stable
combs: in the time domain, GVD causes temporal walk-off be-
tween light of different frequencies, and in the frequency domain,

GVD causes cavity modes to be spaced non-uniformly. It is for
this reason there has been a flurry of activity in the dispersion
engineering of QCL cavities, first in the THz [9] and more re-
cently in the mid-infrared [17]. Many dispersion compensation
schemes have now been demonstrated, including double-chirped
mirrors [9,18,19] and other geometries [17,20].

Of course, before one can effectively engineer the dispersion of
a cavity, one must first understand the various contributions to
the GVD. Although gain and dispersion are essentially two sides
to the same coin (linear susceptibility), the dispersion is in general
much more difficult to measure. Whereas the gain spectrum is
made apparent by the lasing and electroluminescence spectra,
dispersion characterization requires various types of broadband
interferometry. In the mid-infrared, this can be done by high-
resolution spontaneous emission measurements [21,22] or broad-
band transmission measurements [2,23]; in the THz, the weak
spontaneous emission necessitates the use of terahertz time-
domain spectroscopy (THz-TDS) [24–27]. Though one can of
course simulate the intersubband-induced dispersion via den-
sity-matrix-based approaches, the results are lacking when com-
pared with experiment for the same reason that intersubband gain
is often difficult to predict (e.g., uncertainty in the growth param-
eters, uncertainty in the simulation parameters). The difficulty of
dispersion measurements has hampered the understanding of the
various contributors to dispersion in QCLs, particularly those due
to the intersubband transitions. As a result, several questions re-
main unanswered about the dispersion dynamics of QCLs: How
does the dispersion of QCLs change above and below lasing
threshold? What factors contribute significantly to the dispersion?
What is the role of higher-order dispersion, if any?

For this study, we focus on the dispersion dynamics of a broad-
band THz QCL structure, whose basic properties are shown in
Fig. 1. This structure is a homogeneous resonant-phonon struc-
ture similar to the one used in Ref. [9], but with several modi-
fications that allow it to achieve continuous bandwidth coverage
of 1 THz. The thicker collector barrier reduces the splitting that
had previously been observed in similar devices, allowing for gap-
less continuous coverage. The thicker injector barrier increases the
injection selectivity but also reduces the amount of gain available
to the main lasing transition. As a result, electrons can pile up in
the second injector level (state 1 0), and fewer are injected into the
upper lasing level (state 5). The net effect of this is that the maxi-
mum operating temperature drops (from 176 to 144 K), and
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lasing between states 1 0 and 4 is enabled. Qualitatively, this gain
medium is similar to continuum-to-bound structures that have
been demonstrated in the mid-infrared [28]. The three transitions
in this system that are spectroscopically accessible are the intra-
injector absorption (1 0 → 2 0, labeled A) and the two lasing
transitions (1 0 → 4, labeled B, and 5 → 4, labeled C).

The maximum operating bandwidth of this gain medium,
shown in Fig. 1(c), is approximately 1 THz, with the broadest
coverage being achieved at low biases, near threshold. As we will
show, the broadest emission occurs at low biases, because it is here
that states 1 0 and 5 can be simultaneously populated. (At high
biases, only state 5 is heavily populated, and the usual two-level
resonant-phonon lasing occurs.) By compensating for an optimal
second-order dispersion of 0.11 ps2∕mm using a double-chirped
mirror, we are able to achieve a comb spanning 700 GHz [shown
in Fig. 1(c)]. A grating and slit were used to verify comb
bandwidth [29].

To measure the dispersion of the structure, we use THz-TDS
in the self-referenced geometry; for additional details and density
matrix simulations refer to Supplement 1. Figure 2 shows the
round-trip phase and gain associated with pulse propagation in
a 400 μm long waveguide whose current–voltage relation is
shown in Fig. 2(c). Phase and gain are measured both below
and above threshold. Figure 2(a) shows the phase with the average
group delay removed, alongside a parabolic fit over the 2–4 THz
range. Since nonlinear phase is associated with dispersion, it is
clear that the dispersion is larger at higher biases. In addition,
the quality of the parabolic fit degrades noticeably at high biases,

indicating that higher-order dispersion becomes more relevant.
To investigate the source of this bias dependence, we fit the gain
data as a function of bias to determine the intersubband absorp-
tions associated with each of the three observed transitions (A, B,
and C). To prevent overfitting, we allow only the transition am-
plitudes to vary with bias (i.e., not the linewidths or frequencies).
Transitions A, B, and C are found to have best-fit frequencies
of 1.5, 3.1, and 3.7 THz with full width at half-maximums
(FWHMs) of 0.77, 1.58, and 0.53 THz, respectively. By compar-
ing the best-fit linewidths to the simulated oscillator strength
of each transition at design bias, indicated in Fig. 2(d), we find
that the more diagonal transitions yield broader linewidths, as
expected.

Armed with the knowledge of the relative intersubband tran-
sition strengths, we can now use the Kramers–Kronig relation
to investigate their independent contributions to dispersion.
Figure 3 shows the round-trip gain over a 1 THz interval as
a function of bias, encompassing both the laser frequency
(3–4 THz) and the intra-injector frequency (1–2 THz). As ex-
pected, the gain clamps to a value slightly below 0 cm−1 above
threshold, and the intra-injector absorption reaches its maximum
slightly above the onset of lasing. In contrast, the second-order
GVD, shown in Fig. 3(c), shows no such clamping. (For now, we

(a) (b)

(c)

Fig. 1. (a) Wavefunctions and (b) energy differences of the THz QCL
under study. Starting from the injector barrier, the layer thicknesses
in monolayers are 16/33.5/6/27.5/13/65/9.5/37 (barriers in bold).
(c) Top: broadband low-temperature emission of gain medium, showing
a 1 THz span. Bottom: spectrum of 4 mm laser operated in a 700 GHz
spanning comb regime, with second-order compensation of 0.88 ps2.
The device is operated at 12 V and 48 K, different spectra indicate
different spectral filters, and the inset shows the beatnote.

(a) (b)

(c) (d)

Fig. 2. (a) Bias dependence of the round-trip phase associated with
pulse propagation at 48 K. Parabolic fits in dashed lines. (b) Bias depend-
ence of the round-trip gain, offset by 30 cm−1. Dashed lines indicate
triple-Lorentzian fit. (c) Current-voltage of the pumped device, with the
bias points of (a) and (b) highlighted. (d) Simulated oscillator strengths at
design bias versus best fit linewidths.

Letter Vol. 3, No. 12 / December 2016 / Optica 1363

https://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-3-12-1362&seq=1


consider only the second-order GVD over the 2–4 THz interval.)
The dispersion sharply increases below laser threshold, and con-
tinues to rise above threshold, albeit at a more moderate pace. In a
simpler laser one might think that the intersubband-induced
dispersion would be clamped along with the laser gain since
the population inversion is clamped, and this is indeed what
has been found in interband semiconductor lasers [30]. Note also
that the lack of clamping cannot be explained by a simple fre-
quency shift, as the lasing frequency is always contained within
the interval of interest. By plotting the peak intersubband gain
associated with each transition [Fig. 3(b)], we can conclusively
identify the cause. Even though the total gain is clamped by
the action of lasing, the contribution due to transition B reaches
its peak around laser threshold, whereas the contribution from
transition C reaches its peak far higher. Their sum is constant,
but because B has a much broader linewidth than C, it contrib-
utes much less dispersion. This can be verified by computing
the second-order dispersion associated with the three Lorentzian
transitions [Fig. 3(d)], which additionally shows the static (non-
intersubband) contribution of dispersion computed from stan-
dard theoretical models [31]. Several features are noteworthy.
First, even though the loss due to transition A varies quite a
bit above threshold, it contributes very little GVD over the
frequency range of interest, since it is out-of-band. Likewise,
transition B contributes little GVD, on account of its broad
linewidth. It is transition C that contributes almost all of the
dynamical dispersion, due to its narrow linewidth and sharp in-
crease even above threshold. The three transitions and static con-
tributions are summed to produce a total that is also plotted in
Fig. 3(d), and agrees well with the measured GVD in Fig. 3(c).
Essentially, what this shows is that the gain measurement fully
accounts for all of the observed GVD (in accordance with

Kramers–Kronig), and that the only relevant out-of-band absorp-
tion features contributing to dispersion are the standard material
contributions. Of course, it is worth pointing out that the static
contribution to GVD is not small, accounting for approximately
half of the total dispersion even at high biases.

Next, we turn to the issue of higher-order dispersion. As
previously mentioned, at high biases, higher-order dispersion
becomes more relevant, creating a non-parabolic phase profile,
and may need to be compensated for with appropriate dispersion
engineering. To avoid overfitting to various TDS artifacts, we con-
sider only dispersion up to fourth order. First, we plot in Fig. 4(a)
the second-order GVD (D2, where Dn ≡ 1

2L
∂nϕ
∂ωn ) as a function of

frequency. At 2.5 THz, far from the peak frequencies of any in-
tersubband transition, the GVD remains small and is essentially
fully accounted for by the static GVD. At 3 THz, near the
peak of transition B, the dispersion changes non-monotonically,
roughly in accordance with transition B’s strength. At 3.5 THz,
near the peak of transition C, the dispersion changes quite
drastically, reaching a peak value of 0.35 ps2∕mm. Once again,
this is concordant with the observed strength of transition C.
In Fig. 4(b), we plot the higher-order dispersion coefficients at
3.5 THz. It is interesting to note that both D3 and D4 change
non-monotonically, peaking at low biases and again at high biases
(even as D2 continues to rise). The lowest high-order dispersion
occurs at a bias just above threshold where transitions B and C
are well balanced, and starts to rise once B begins to weaken.

These results have several implications on the development of
QCL-based frequency combs. Clearly, a strong bias dependence
of the laser dispersion above threshold is problematic from
the standpoint of dispersion engineering, since the dispersion
can be compensated effectively at only a single bias point.
Particularly in THz QCLs, it has been noted that even with care-
fully implemented dispersion compensation, the laser can operate
in several different comb regimes whose time-domain dynamics
are completely different [32]. To our knowledge, no measure-
ment of the dispersion in mid-infrared QCLs has been reported
above threshold [17,33], but, even so, the issue may not be as
severe since mid-infrared gain lineshapes are typically less bias de-
pendent. One strategy that may be able to remedy these effects is
the incorporation of multi-section cavities, which could be used
to balance this bias dependence. We have also shown that the
higher-order contribution to dispersion is relevant, and since
the broadest combs were achieved at moderate biases, it is likely
the case that higher-order dispersion still limits the bandwidth.
Even though this gain medium is THz-spanning, the maximum
comb bandwidth is only 70% of its gain bandwidth, as we have

(a) (b)

(c) (d)

Fig. 3. (a) Overall intra-injector absorption and laser gain as a function
of bias, averaged over a 1 THz interval. Vertical dashed line indicates laser
threshold, above which gain clamps. (b) Peak intersubband gain of the
three transitions, extracted from the TDS data. (c) Second-order GVD
computed over the 2–4 THz interval. Gain is clamped, but dispersion
increases above threshold. (d) Contributions of each transition to the
second-order GVD, along with the static contribution.

(a) (b)

Fig. 4. (a) Frequency-dependent GVD, obtained using a fourth-order
fitting over the 2–4 THz interval. (b) Corresponding higher-order
dispersion coefficients, specified at 3.5 THz.
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only compensated D2. Similarly, in dispersion-compensated
mid-infrared gain media [17], the comb bandwidth was 77%
of the gain bandwidth, and in uncompensated broadband
THz heterogeneous gain media [11,34], the comb bandwidth
was 36% of the gain bandwidth. Forunately, the remedy here
is straightforward: higher-order dispersion compensation [35]
has been used successfully in microresonators to achieve larger
bandwidths, and it is likely that such a strategy will also be suc-
cessful in QCLs.

In conclusion, we have used THz-TDS to probe the dispersion
dynamics of THz QCLs. We have shown that both the static and
intersubband contributions play critical roles in determining the
dispersion of the QCL cavity, and have identified the role of the
relevant intersubband transitions. We showed that even when the
laser gain is clamped, the intersubband contribution of the GVD
has no such constraint, a consequence of the changing lineshape
of the gain peak. We showed that higher-order dispersion may
play a key role in determining the bandwidth available for comb
formation, and discussed several strategies for mitigating these
effects in combs.
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