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Abstract

In recent years, quantum cascade lasers have emerged as mature semiconductor
sources of light in the terahertz range, the frequency range spanning 1 to 10 THz.
Though technological development has pushed their operating temperatures up to
200 Kelvin and their power levels up to Watt-level, they have remained unsuitable
for many applications as a result of their narrow spectral coverage. In particular,
spectroscopic and tomographic applications require sources that are both powerful
and broadband. Having said that, there is no fundamental reason why quantum cas-
cade lasers should be restricted to narrowband outputs. In fact, they possess gain
spectra that are intrinsically broad, and beyond that can even be tailored to cover an
octave-spanning range.

This thesis explores the development of broadband sources of terahertz radiation
based on quantum cascade lasers (QCLs). The chief way this is done is through the
development of compact frequency combs based on THz QCLs, which are able to
continuously generate milliwatt levels of terahertz power covering a fractional band-
width of 14% of their center frequency. These devices operate on principles similar to
microresonator-based frequency combs, and make use of the quantum cascade laser’s
fundamentally large nonlinearity to phase-lock the cavity modes. These devices will
enable the development of ultra-compact dual comb spectrometers based on QCLs,
and will potentially even act as complete terahertz spectrometers on a chip.

This thesis also uses broadband terahertz time-domain spectroscopy to analyze
the behavior of THz QCLs. By using QCLs as photoconductive switches, the usual
limitations imposed by optical coupling are circumvented, and properties of the laser
previously inaccessible can be directly observed. These properties include the gain
and absorption of the laser gain medium, the populations of the laser’s subbands, and
properties of the waveguide like its loss and dispersion. Knowledge of these properties
were used to guide frequency comb design, and were also used to inform simulations
for designing better lasers.

Thesis Supervisor: Qing Hu
Title: Professor

3



4



Acknowledgments

First of all, I would like to thank my thesis advisor, Professor Qing Hu, for providing

me with the opportunity to work on this project. His enthusiasm for his research is

obvious to anyone, and the fact that his group has a core technology like terahertz

quantum cascade lasers is extremely helpful for students who want to do something

impossible in any other setting. I am especially grateful for his patience and will-

ingness to allow me to go out on a limb even when the outcome was far less than

certain.

I would also like to thank Professors Erich Ippen and Keith Nelson for taking the

time to serve on my thesis committee, and also Franz Kaertner and Noah Chang for

having valuable discussions with me that got me interested in frequency combs. I

also owe much to Professor Dayan Ban of Waterloo for initiating my terahertz-time

domain project and giving me a great starting point for my terahertz research. Special

thanks also goes to Dr. John Reno at Sandia for providing excellent MBE growth

and to Drs. Jian-Rong Gao and Darren Hayton of SRON for lending me one of their

best HEB mixers and telling me how to use it.

It almost goes without saying that I have been helped by a huge number of people

in the lab during my time here. In particular, Wilt Kao was pretty much everything

I could ask for in a peer, always willing to converse about research and life with me

and pushing me to be my best. He also fabricated nearly all of my devices, so I

owe a great deal of this thesis to him. Alan Lee is probably the most well-rounded

person I met at MIT and is pretty much great at everything. He was an excellent

role model who is always willing to do whatever it takes for his research and doesn’t

shy away from dirty work. Ningren Han impressed me with his resourcefulness and

has continued to be a great friend since leaving the lab, offering valuable advice on

many subjects. It was his intervention that netted me the journal cover I so enjoy.

My interactions with others in the lab have been similarly rewarding. Ivan Chan

is one of the most helpful people I know and was always willing to hear me out on

my various and sundry ideas about physics and about QCL design. Qi Qin showed

5



me how to work efficiently towards a goal and always had an interesting perspective

on many topics. Shengxi Huang is one of the most persistent people I’ve ever met

and seemed to know everything about everything and everyone. Allen Hsu and Sushil

Kumar were extremely helpful for teaching me lab technique early on in my graduate

career. Xiaowei Cai and Yang Yang were excellent office-mates during my last couple

years and even helped me with experiments despite their junior status. Last but

not least, I’d like to thank my other labmates Amir Tavallaee, Xinpeng Huang, In-

drasen Bhattacharya, Asaf Albo, Ali Khalatpour, and David Levonian for providing

intellectually-stimulating discussion.

Finally, I’d like to thank my parents for raising me in a household that emphasized

the importance of education. I’d also like to thank my brother, Dan, for being a terrific

lifelong friend, and my sisters, Laura, Emily, and Jenny, for always looking up to me

and giving me support.

6



Contents

1 Introduction 17

1.1 Terahertz spectroscopy and frequency combs . . . . . . . . . . . . . . 18

1.2 Quantum cascade laser basics . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Gain medium spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Thesis goals and organization . . . . . . . . . . . . . . . . . . . . . . 31

2 Terahertz time-domain spectroscopy of quantum cascade lasers 33

2.1 General principles of THz-TDS . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.3 Frequency coverage and dynamic range . . . . . . . . . . . . . 42

2.2 Time domain studies of THz QCLs using THz-TDS . . . . . . . . . . 44

2.2.1 Photoconductive antennas integrated into QCLs . . . . . . . . 46

2.2.2 Cleaved two-section devices . . . . . . . . . . . . . . . . . . . 47

2.2.3 Other experimental details . . . . . . . . . . . . . . . . . . . . 49

2.2.4 Spectroscopic reference . . . . . . . . . . . . . . . . . . . . . . 51

2.2.5 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Gain of terahertz quantum cascade lasers 57

3.1 Low frequency resonant-phonon design, FL175M-M3 . . . . . . . . . 58

3.2 Scattering-assisted design, OWI185E-M1 . . . . . . . . . . . . . . . . 61

3.3 Highly coherent resonant-phonon design, FL183S . . . . . . . . . . . 68

7



4 Terahertz quantum cascade laser frequency comb design 73

4.1 Principles of microcomb formation . . . . . . . . . . . . . . . . . . . 74

4.1.1 Nonlinear wave equation and envelopes . . . . . . . . . . . . . 75

4.1.2 Four-wave mixing . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.3 Parametric microcombs versus laser microcombs . . . . . . . . 80

4.1.4 Classical injection locking . . . . . . . . . . . . . . . . . . . . 81

4.2 Dispersion engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Actual dispersion measurement . . . . . . . . . . . . . . . . . . . . . 89

4.4 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Coherence of frequency combs 99

5.1 Mutual coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Mutual coherence of two lines . . . . . . . . . . . . . . . . . . 101

5.1.2 Mutual coherence of comb lines . . . . . . . . . . . . . . . . . 107

5.2 Beatnote measurements of mutual coherence . . . . . . . . . . . . . . 108

5.2.1 Schottky mixer comparison . . . . . . . . . . . . . . . . . . . 110

5.2.2 Hot electron bolometer . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Non-comb biases . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Shifted Wave Interference FTS (SWIFTS) . . . . . . . . . . . . . . . 117

5.3.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Key SWIFT results . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.3 Bias dependence of comb formation . . . . . . . . . . . . . . . 124

5.3.4 SWIFTS for phase retrieval . . . . . . . . . . . . . . . . . . . 126

5.4 Absolute coherence of comb . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions and future work 139

A Periodic density matrix formalism 143

A.1 Density matrices of a finite system . . . . . . . . . . . . . . . . . . . 143

A.1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.1.2 Time-evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8



A.1.3 Superoperators . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.4 Optical susceptibility of density matrices . . . . . . . . . . . . 149

A.2 Periodic density matrices . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2.1 Periodicization of operators . . . . . . . . . . . . . . . . . . . 153

A.2.2 Periodicization of superoperators . . . . . . . . . . . . . . . . 155

A.3 Basis for scattering calculations . . . . . . . . . . . . . . . . . . . . . 160

A.3.1 Computational basis . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.2 Quasi-eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3.3 Periodic eigenstates . . . . . . . . . . . . . . . . . . . . . . . . 164

A.3.4 Comparison with experimental data . . . . . . . . . . . . . . . 166

A.3.5 Unconstrained optimization by genetic algorithms . . . . . . . 167

B Electrical modulation schemes 169

B.1 Asynchronous double modulation . . . . . . . . . . . . . . . . . . . . 169

B.2 Synchronous double modulation . . . . . . . . . . . . . . . . . . . . . 170

C SWIFTS analysis 173

C.1 Definitions and conventions . . . . . . . . . . . . . . . . . . . . . . . 173

C.2 Basic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.2.1 Conventional FTS . . . . . . . . . . . . . . . . . . . . . . . . 174

C.2.2 Shifted Wave Interference FTS . . . . . . . . . . . . . . . . . 175

C.2.3 Incoherent sources . . . . . . . . . . . . . . . . . . . . . . . . 176

C.3 Generalization to non-ideal beamsplitters . . . . . . . . . . . . . . . . 177

C.4 Effect of demodulation imperfections . . . . . . . . . . . . . . . . . . 178

9



10



List of Figures

1-1 Frequency and power of various terahertz sources. From Refs. [7] and

[8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-2 Chemical structure of various explosives (from Ref. [18]), as well as

the corresponding terahertz absorption spectra (from Teraview). . . 19

1-3 Absorption of methanol at 100 Pa, measured using a THz QCL. From

Ref. [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1-4 Basic frequency comb. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1-5 Dual comb spectroscopy. Two combs with different repetition rates

generate RF beatnotes that encode the optical spectrum. . . . . . . 21

1-6 Terahertz waveguides used for THz QCLs. From Ref. [24]. . . . . . . 24

1-7 Resonant phonon QCL that operates at 186 K. From Ref [28]. . . . . 25

1-8 Summary of the published THz QCL designs’ temperature perfor-

mance. The shaded region shows designs that have were published

as of January 2011, while RT refers specifically to devices which use a

resonant-tunneling injection mechanism. From Ref. [31]. . . . . . . . 26

2-1 Typical TDS system. A sample can be placed in the THz beam path

to measure its transmission. . . . . . . . . . . . . . . . . . . . . . . . 34

2-2 Schematic of a basic photoconductive antenna based on LT-GaAs. . 36

2-3 Pulse generated by an LT-GaAs photoconductive antenna using a bowtie

geometry, along with its power spectrum. . . . . . . . . . . . . . . . 37

11



2-4 Time- and frequency-domain waveforms obtained from a photocon-

ductive antenna whose backwards-generated radiation was collected

instead of its forward-propagating radiation. From Ref. [52]. . . . . 38

2-5 Terahertz detected by a 300 µm GaP crystal and a 1 mm ZnTe crystal

under the same pump conditions, along with the corresponding noise

floors. (The dip at 3 THz is due to transmission through a QCL.) . . 42

2-6 Long-travel terahertz pulses obtained from a QCL, sampled with (a) a

300 µm [110] GaP crystal, and (b) a 300 µm [110] GaP crystal wafer-

bonded to 1.2 mm of [100] GaP. . . . . . . . . . . . . . . . . . . . . 44

2-7 Schematic of integrated emitter used to generate terahertz pulses and

QCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2-8 Schematic of two-section devices constructed by cleaving. The glue is

eventually stripped. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2-9 SEM image highlighting the shortcomings of RIE for making gaps in

two-section devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2-10 Simpler two-section device fabrication technique, in which devices are

glued and subsequently cleaved. . . . . . . . . . . . . . . . . . . . . 49

2-11 Optical path used for most time-domain measurements. . . . . . . . 50

2-12 Image of QCL as viewed through alignment microscope. . . . . . . . 51

2-13 Comparison of pulse detected with QCL off and with QCL on (biased

above threshold at 403 A/cm2). . . . . . . . . . . . . . . . . . . . . . 54

2-14 Difference in terahertz fields obtained with the laser on and off over a

long travel range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-1 Basic resonant phonon design. . . . . . . . . . . . . . . . . . . . . . 57

3-2 Band diagram of FL175M-M3 with some corresponding gain spectra.

The lasing spectrum of a similar device is shown for reference. . . . . 58

3-3 Bias dependence of FL175M-M3 gain and loss at 30 K, along with the

corresponding light output. . . . . . . . . . . . . . . . . . . . . . . . 60

12



3-4 (a) TDS spectra taken from device B, along with lasing spectra. (b)

Contour plot of gain at 35 K. . . . . . . . . . . . . . . . . . . . . . . 62

3-5 (a) Simulated transition energies superimposed on gain data. (b) Low

frequency gain and absorption near design bias. (c) Band diagram of

QCL at low bias and at high bias. . . . . . . . . . . . . . . . . . . . 64

3-6 Temperature dependence of the scattering-assisted gain. . . . . . . . 66

3-7 Band structure of highly coherent injection design. . . . . . . . . . . 69

3-8 Self-referenced TDS measurement of a single-section QCL and the cor-

responding gain profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-9 Wavefunctions of FL183S below, at, and above the design bias. Tight-

binding schematics also shown. . . . . . . . . . . . . . . . . . . . . . 71

4-1 How four-wave mixing generates microcombs. Some platforms in which

microcombs have been developed: silica microtoroids [89], silicon ni-

tride rings [90], silica rings [91]. . . . . . . . . . . . . . . . . . . . . . 75

4-2 How four-wave mixing plus injection locking forms can form a comb in

a highly nonlinear gain medium. . . . . . . . . . . . . . . . . . . . . 81

4-3 Basic laser cavity with injection locking. . . . . . . . . . . . . . . . . 82

4-4 Calculated GVD of GaAs. The Restrahlen band is shown in blue. . . 84

4-5 Artistic interpretation of double-chirped mirrors (DCMs) integrated

into QCL waveguides, along with an SEM image. . . . . . . . . . . . 84

4-6 Key parameters for designing DCMs, along with transfer matrix sim-

ulations. Detailed discussion in the text. . . . . . . . . . . . . . . . . 87

4-7 Effective mode indices for 20 µm ridge. . . . . . . . . . . . . . . . . 89

4-8 FEM simulation results for DCMs of different designs. . . . . . . . . 89

4-9 Measured GVD of a 30 µm ridge. . . . . . . . . . . . . . . . . . . . . 90

4-10 Measured GVD of an 80 µm ridge. . . . . . . . . . . . . . . . . . . . 91

4-11 High-SNR phase measurement of a 30 µm ridge at high bias, along

with the bias-dependence of measured dispersion. . . . . . . . . . . . 92

13



4-12 Above: DCM batch, along with the corresponding optical spectra. Be-

low: High-resolution CW version of the 13.3% compensated spectrum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4-13 RF beatnote power measured directly from QCL using devices of vary-

ing dispersion compensation. . . . . . . . . . . . . . . . . . . . . . . 95

4-14 RF beatnotes measured from laser bias line, for lensed devices (left)

and non-lensed devices (right). . . . . . . . . . . . . . . . . . . . . . 96

4-15 Setup used for stabilizing the repetition rate. RF lines are shown in

blue (GHz), IF lines are shown in red (MHz), and DC lines are shown

in black (kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4-16 Effect of stabilizing beatnote against external perturbations. . . . . . 98

5-1 Dual comb spectroscopy with various types of incoherence. . . . . . 100

5-2 Schematic showing the process used to measure phase noise. . . . . . 103

5-3 The power spectral densities associated with each quadrature of the

mixed signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5-4 Phasor diagram for varying levels of phase fluctuation. The average

value of 𝑆+ is marked with an x. . . . . . . . . . . . . . . . . . . . . . 106

5-5 Lasing current-voltage vs nonlasing current-voltage for a laser com-

prised of the OWI222G gain medium [28]. . . . . . . . . . . . . . . . 109

5-6 Left panel: Beatnote obtained directly from a lens-coupled QCL and

from a Schottky mixer at 45 K and a bias of .925 A. Right panel: Bias

dependence of the beatnote, as measured on a Schottky mixer and on

a QCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5-7 Left panel: HEB schematic. Right panel: HEB configuration. . . . . . 113

5-8 IV curves of HEB under various pump conditions. . . . . . . . . . . . 114

5-9 RF beatnotes measured using HEB. . . . . . . . . . . . . . . . . . . . 115

5-10 Beatnotes measured from HEB and from the QCL versus bias. . . . . 115

5-11 Top: Beatnotes measured using HEB at biases which are not combs.

Bottom: Beatnote standard deviation and center frequency versus bias. 116

14



5-12 Hypothetical setup utilizing spectral filtering to measure the coherence. 117

5-13 Convention FTS schematic. A computer records the autocorrelation

of the field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5-14 SWIFTS schematic. A computer records the quadratures of the auto-

correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5-15 Effect of finite apodization on SWIFTS measurement. . . . . . . . . . 121

5-16 Actual implementation of SWIFTS used for most of this analysis. . . 122

5-17 Key SWIFTS results for a QCL comb biased to 0.9 A at 50 K. (a) Nor-

mal, in-phase, and quadrature interferograms. (b) Frequency domain

spectrum product and coherence. . . . . . . . . . . . . . . . . . . . . 123

5-18 Consistency of SWIFT data. (a) Top panel: raw Fourier transforms

of the I and Q interferograms of the data in Fig. 5-17. Bottom panel:

calculated SWIFT coherences, with 𝑆−(𝜔) shifted by the repetition

rate of the laser. (b) The zoomed-in region is plotted on a linear scale. 125

5-19 Bias dependence of beat-note and SWIFT spectra. (a) RF power mea-

sured from a bias-tee (amplified by 66 dB, with wiring losses of 20 dB)

and calibrated terahertz power emitted by the QCL as a function of

bias at 50 K, over the dynamic range of lasing operation. (b) Standard

deviation of the RF signal emitted from the QCL as a function of bias,

as measured with a spectrum analyser. The regions of stable comb

formation are shaded and denoted I, II and III. (c) SWIFT coherence

spectra (measured with the HEB) and gain spectra (measured with

THz TDS) corresponding to each of the three regions. . . . . . . . . . 126

5-20 Group delay and coherence magnitude corresponding to the data shown

in Figure 5-17. The data from the lower lobe of the gain spectrum is

shown on the left; the data from the upper lobe is shown on the right. 127

5-21 (a) and (b): Amplitude and phase of two lobes separated by a null.

(c) Inferred time-dependent intensity assuming various relative phases.

(d) Corresponding distribution of potential values. (The shaded region

indicates a standard deviation.) . . . . . . . . . . . . . . . . . . . . . 129

15



5-22 Phasor diagram of a large SWIFTS signal and a small one. . . . . . . 130

5-23 Time-dependent intensity and frequency inferred from the previous

SWIFTS data, filtered with a 10 ps window. Shaded regions indicate

a standard deviation, and dotted lines indicate a single period (round-

trip time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5-24 Bias dependence of time-dependent intensities. Once again, red indi-

cates lower lobe frequencies while blue indicates lower lobe frequencies. 134

5-25 Setup used for measuring the heterodyne beating between a comb laser

and a DFB laser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5-26 Heterodyne beatnote between single-mode laser and comb. (a) Coher-

ence spectrum of comb at 0.9 A, spectrum of DFB laser. (b) Hetero-

dyne beating of free-running comb laser at 0.885 A with free-running

DFB laser at various biases. (c) Zoomed-in view of one of the lines,

showing a convolved FWHM of 2.5 MHz. . . . . . . . . . . . . . . . . 136

6-1 Ideal dual comb spectrometer. The sources and detector combs are

co-integrated, f-2f stabilization is done internally, and a weak coupling

element allows the source to detect the spectroscopic reference. Every-

thing is electronic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A-1 Band diagram of FL183S gain medium in the absence of bias, in both

the eigenbasis and in the layer-localized basis. . . . . . . . . . . . . . 162

A-2 Measured and simulated gain versus frequency and bias at 30 K for

the OWI185E-M1 gain medium. . . . . . . . . . . . . . . . . . . . . 166

B-1 Electrical schematic for asynchronous double modulation. . . . . . . 169

B-2 Biasing scheme and electrical schematic for synchronous double mod-

ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

16



Chapter 1

Introduction

In recent years, terahertz quantum cascade lasers (THz QCLs) have proven to be an

effective compact source of continuous-wave terahertz radiation, defined here as the

frequency range spanning 1 to 10 THz [1]. In a sense, terahertz light represents the

“final frontier” of non-ionizing radiation, given that its generation has traditionally

been inaccessible to conventional sources. Fast electronic sources such as high electron

mobility transistors [2], heterojunction bipolar transistors [3], and Gunn diodes [4] can

be used to generate radiation from DC to microwaves, but parasitic roll-offs limit their

frequency response to a few hundred gigahertz. Traditional interband semiconductor

diode lasers can operate in wavelengths ranging from as short as the UV to as long as

the mid-infrared [5], but are limited to quasi-visible wavelengths by the bandgap of

the material. Figure 1-1 shows this phenomenon, also known as the “terahertz gap”

[6].

As a result of this gap, the applications for this field are not entirely well-known

and it remains severely underdeveloped, at least in comparison with other frequency

ranges. Though many applications have been proposed in the literature, to some

extent terahertz has been oversold by researchers in the field, and there isn’t yet a

“killer app” for terahertz technology. For example, homeland security is frequently

mentioned as an application as a result of terahertz’s ability to peer through cloth-

ing while being non-ionizing [9], but millimeter-wave scanners are already in place in

most airports and are less susceptible to effects like atmospheric absorption. Like-
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Figure 1-1: Frequency and power of various terahertz sources. From Refs. [7] and
[8].

wise, non-invasive detection of explosives through clothing has to overcome many

challenges in order to be viable [10]. A better application is the use of terahertz to

non-destructively monitor industrial processes involving materials that are optically

opaque but terahertz transparent, such as pharmaceutical coatings [11] and space

shuttle foam [12]. Though these applications are certainly valuable, they are limited

in scope and fairly niche. Researchers also tout terahertz for its theoretical ability to

form high-bandwidth line-of-sight communications links [13, 14, 15], but it is hard to

see how terahertz might out-compete telecommunications wavelengths in this regard,

especially when the relative difference in technological development is considered.

1.1 Terahertz spectroscopy and frequency combs

Out of all the potential applications, spectroscopy seems to be the most promising,

since it is the only application that can make use of the properties unique to tera-

hertz. More specifically, since many molecules have strong rotational and vibrational

resonances in the terahertz regime [16, 17], spectroscopy at these wavelengths can
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elucidate structural changes. For example, Figure 1-2 shows the structure of vari-

ous explosives, in addition to their fingerprints in the terahertz. The most common
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Figure 1-2: Chemical structure of various explosives (from Ref. [18]), as well as the
corresponding terahertz absorption spectra (from Teraview).

way of performing spectroscopy at these wavelengths is a technique known as tera-

hertz time-domain spectroscopy (THz TDS). Essentially, the output of a near-infrared

mode-locked laser is downconverted to terahertz, and the resulting field is sampled

by the same mode-locked laser. Although many people have been able to achieve

excellent results within laboratory environments using this technique, it has not been

able to achieve wide commercial viability since it requires a mode-locked laser and an

optical setup.

Another way of performing terahertz spectroscopy is in the frequency domain,

using laser spectroscopy. A narrow-linewidth laser (typically a distributed-feedback

THz QCL) is tuned across the absorption feature of interest, and the power of the

laser is measured. An example spectrum is shown in Figure 1-3. This technique is

particularly well-suited for high-resolution spectroscopy, but is limited by the tuning

range of the laser. In addition, frequency calibration is extremely challenging: without

a frequency reference, one must rely on spectral databases like HITRAN to figure out

exactly what frequency is being measured.

If compact terahertz spectrometers could be made, that would significantly im-
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Figure 1-3: Absorption of methanol at 100 Pa, measured using a THz QCL. From
Ref. [19].

prove terahertz’s ability to move out of the lab. Any spectroscopic system re-

quires three basic elements: a source, a detector, and a way of performing frequency

discrimination. Although people frequently place most of their attention on the

sources and detectors, it is often the case that frequency discrimination is what limits

the compactness of a spectrometer. This is due to the fact that the best ways of

performing frequency discrimination—grating spectrometers and Fourier Transform

Spectrometers—typically require a physical delay element to achieve optimal levels

of performance. Even at the extremely technologically well-developed visible wave-

lengths, there is no such thing as a spectrometer smaller than a few centimeters that

can achieve performance equivalent to an optical spectrum analyzer or an FTIR1 in

terms of resolution and throughput.

Optical frequency combs, on the other hand, offer a way to make compact spec-

trometers. A frequency comb—shown in Fig. 1-4—is a light source whose lines are

evenly spaced and well-defined. The lines of a frequency comb can be characterized

by two parameters: an offset 𝜔0 and a repetition rate ∆𝜔. As such, they effectively

act as a ruler for optical frequencies, and as a result have revolutionized the fields

of precision metrology and spectroscopy. At visible and near-infrared wavelengths,

1Fourier Transform Infrared Spectrometer
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the frequency comb can be used to build ultra-precise clocks, to probe the fundamen-

tal physics of atomic transitions, or even to infer the presence of extrasolar planets.

The reason frequency combs are particularly tantalizing for compact spectroscopy

is that they can be used to replace the mechanical delay element typically neces-

sary for a high-resolution spectrometer. Moreover, through a technique known as

dual-comb spectroscopy, they can actually perform better than delay elements, eas-

ily providing resolutions equivalent to delays of kilometers or better. Also known

as multi-heterodyne spectroscopy, the principle is simple and is shown in Figure 1-

5. Two combs with slightly different repetition rates are shined onto a single fast
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Figure 1-5: Dual comb spectroscopy. Two combs with different repetition rates gen-
erate RF beatnotes that encode the optical spectrum.

detector. Because the beating between adjacent lines is different for each pair, the

resulting beatnotes are unique, with their magnitudes encoding the geometric mean
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of the intensity of the two lines constituting the beatnote. If one or the other is shined

through a sample, these beatnotes uniquely encode the absorption of that spectrum.

Of course, the measured spectrum is discontinuous, but if the offset frequency of one

comb or the other can be swept then a full gapless spectrum can be measured.

It is worth mentioning that pulsed THz sources are, in fact, frequency combs.

They are pulse trains in the time-domain with well-defined phases, and are therefore

combs in the frequency domain. In fact, asynchronous optical sampling—a technique

in which two mode-locked lasers have their repetition rates detuned from each other

to perform THz TDS—is very similar to dual-comb spectroscopy [20]. However,

pulsed sources have difficulty achieving powers of more than a few microwatts and

are typically detected coherently. Moreover, they are bulky and involve expensive

mode-locked lasers. THz QCLs, on the other hand, are powerful compact sources of

such radiation capable of generating Watt-level power output. If they could be made

to generate the uniformly-spaced lines of a frequency comb, they would be ideal

candidates for making compact spectrometers. Until this work, no one had been able

to generate THz QCL combs with more than a few lines, so one of the major goals

of this thesis is to demonstrate how this can be done.

1.2 Quantum cascade laser basics

QCLs are created by periodically growing alternating layers of different materials on

a semiconductor substrate, such as GaAs and Al0.15Ga0.85As. The layers are grown

with molecular beam epitaxy (MBE), and because each layer is only a few mono-

layers thick, quantum-size effects dominate and create an artificial band structure.

Thus, the designer can tailor the wavelength of the structure to a wide range simply

by changing the growth thicknesses. As a result, QCLs have no theoretical upper

bound on the wavelengths they can generate, giving them tremendous versatility for

implementing long-wavelength oscillators. Because each QCL period (known as a

module) can be repeated hundreds of times, each electron injected into the system

can emit hundreds of photons. Moreover, since the confinement of each electron
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is one-dimensional, the conduction band splits up into a series of two-dimensional

subbands, each corresponding to an artificially-designed state. Since the dispersion

relation of each subband is approximately equal, all momentum-conserving transi-

tions will occur at the same energy. In other words, the so-called joint density of

states is a delta function, and every electron in a subband can contribute to lasing.

Again, this is in contrast to bulk semiconductor lasers, in which only a small fraction

of the electrons in the system are at the same energy and can contribute to gain [21].

Historically, the first QCL was demonstrated in 1994 in the mid-infrared at Bell

Labs [22], while the first terahertz QCL was demonstrated in 2002 at the Scuola

Normale Superiore [1]. The reason for this long delay is that there were several chal-

lenges unique to terahertz, requiring that different design methodologies be used.

First, though mid-infrared QCLs had been developed using conventional dielectric

waveguiding to confine the optical mode, this technique cannot be used in terahertz

QCLs due to the impracticality of growing a wafer whose gain medium thickness (10

µm) is on the order of a wavelength (100 µm). Therefore, sub-wavelength plasmonic

techniques are required to effectively confine the mode. This problem was essentially

solved by development of semi-insulating surface plasmon waveguides [1], which con-

fine the mode between a layer of metal and a highly-doped plasmon layer, and also

by the development of metal-metal waveguides [23], which confine the mode between

two metal layers in a method similar to microstrip lines. These waveguides are shown

in Fig. 1-6.

The second major challenge associated with terahertz QCLs is the design of the

gain medium itself. As with practically any laser, the primary goal when designing

QCL gain media is to achieve population inversion, through the selective population of

the upper laser state and the selective depopulation of the lower laser state. Selective

population is achieved in most mid-infrared and terahertz QCLs with the use of

a set of quantum wells known as an injector, which is separated from the upper

laser level through a barrier called the injector barrier. The injector barrier is thick

enough that the only way electrons can get into the next module of the system is by

resonantly tunneling through the barrier into the upper state, preventing other states
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Figure 1-6: Terahertz waveguides used for THz QCLs. From Ref. [24].

from accidentally being populated. While this works to provide selective upper state

population for both mid-infrared and terahertz designs, depopulation of the lower

laser state is unfortunately not so simple. In mid-infrared QCLs, a convenient way

to depopulate the lower state is to separate it from another state by the energy of

a longitudinal-optical (LO) phonon, about 36 meV in GaAs. [25] Because all LO

phonons have approximately the same energy in bulk material, LO phonon scattering

can be extremely fast (sub-ps), and the lower state remains depopulated. However,

for terahertz QCLs, this design is problematic. In order for the gain of the system

to be large, the spatial overlap between the upper and lower laser states should be

substantial, which means that the spatial overlap between the upper laser level and

the LO phonon-separated level will also be important. As a result, not only will

electrons be able to efficiently scatter from the lower laser level into the LO-phonon

level, but they will also be able to scatter nonradiatively from the upper laser level into

the LO-phonon level. This parasitic scattering channel reduces population inversion.

In order to get around this issue, several types of depopulation schemes have been

created, among them the chirped-superlattice [1] and bound-to-continuum designs
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[26], which utilize a miniband of tightly-coupled states coupled to the lower laser

level. The one pioneered by the MIT group is known as a resonant-phonon design

[27], and operates by resonantly coupling a state known as the collector to the lower

laser level, which is in turn separated from another state by an LO-phonon energy.

Figure 1-7 shows a prototypical resonant-phonon design. State 1’ is the injector,

state 4 is the upper laser level, state 3 is the lower laser level, state 2 is the collector,

and state 1 is another injector state. In this design, an electron in the injector first

tunnels resonantly into the upper laser state, where it emits a photon into the lower

laser state. It resonantly tunnels again into the collector state, and finally emits an

LO phonon into another injector state.

1

2
3
41’

2’
3’

Figure 1-7: Resonant phonon QCL that operates at 186 K. From Ref [28].

1.3 Gain medium spectroscopy

However, even though terahertz QCLs were demonstrated long ago, they are still

in many ways deficient compared to their mid-infrared counterparts, primarily in the

realm of temperature performance. Mid-infrared QCLs have long been able to operate

at temperatures exceeding 425 K [29], but terahertz QCLs are currently limited to a

maximum temperature of 200 K. [30] Phenomenologically speaking, one explanation

for this limitation is that when the photon energy ℎ̄𝜔 is approximately equal to kT,
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maintaining inversion will be difficult due to thermal backfilling and other effects.

Since no GaAs QCL can operate at frequencies far above 5 THz due to the strong

absorption of the LO-phonon line, this rubric would limit THz QCL operation to a

maximum temperature of about 240 K. Unfortunately, this temperature necessitates

the use of cryogenics, severely limiting potential applications and increasing costs. As

a result, one of the major goals in the field right now is to achieve room temperature

performance. Figure 1-8 shows a summary of the maximum operating temperature

of different published designs, along with a line indicating ℎ̄𝜔/𝑘𝑇 = 1.
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Figure 1-8: Summary of the published THz QCL designs’ temperature performance.
The shaded region shows designs that have were published as of January 2011, while
RT refers specifically to devices which use a resonant-tunneling injection mechanism.
From Ref. [31].

Note that while the ℎ̄𝜔 ∼ 𝑇𝑚𝑎𝑥 rule of thumb generally holds true, it is not

absolute, and the device in Ref. [31] managed to significantly exceed this limit by

utilizing a nonstandard injection mechanism. There are two major arguments for

why injection-related effects are believed to play an important role in temperature

degradation of lower-frequency QCLs. First, because low frequencies are closely-

spaced in energy, design requires that the injector barrier be made relatively thick

in order to reduce parasitic coupling of the injector to the lower state. Making the

injector barrier thicker also makes the tunneling process more incoherent, thereby

reducing the maximum current that can be pushed through the structure and reducing
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the available gain [32]. Secondly, a reduction in frequency results in a reduction of

the dynamic range of the structure, due to the formation of negative differential

resistance (NDR). NDR is a well-known phenomenon that occurs in many systems

and results from the misalignment of two subbands that are resonantly-coupled. Once

two subbands are maximally-aligned, increasing the voltage bias will cause them

to misalign, decreasing the current flow and causing NDR. In THz QCLs, this is

a problem because the NDR creates an instability in the voltage bias across the

structure which causes the bias field to break up into multiple domains, making the

device behave somewhat unpredictably. Stable device operation can therefore only

happen in the regions of positive resistance, that is, at biases where the injector state

is between the upper and lower laser levels. Since this range is proportional to the

photon energy, the dynamic range and therefore maximum temperature of operation

will be a linear function of frequency [31]. Another major factor believed to contribute

to the temperature degradation of THz QCLs is the effect of thermally-activated LO

phonon scattering. Even though the energy difference between subbands is below

ELO=36 meV for THz QCLs, electrons within the subband are thermalized at a

temperature significantly higher than the lattice temperature [33]. Sufficiently hot

electrons are separated from states of the lower subband by ELO and can therefore

emit a phonon, thereby reducing the available population inversion [6]. Note that

this process actually favors lower-frequency designs, because more thermal energy is

necessary to “activate” the LO phonon emission.

Unfortunately, despite the effort of many theorists and experimentalists, temper-

ature performance of THz QCLs seems to have stalled, and no improvement has been

made in over two years. One explanation for this is that the large number of processes

involved in QCL electron transport makes the system somewhat difficult to model.

A full simulation needs to take into account coherent transport (i.e., tunneling), pure

dephasing, LO phonon scattering, impurity scattering, electron-electron scattering,

interface roughness, and more [6]. To make matters worse, some of the properties are

MBE-growth dependent, chiefly the interface roughness. The simplest approach is to

use rate equations, calculating scattering rates from Fermi’s Golden Rule, but this
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cannot take into account the effect of coherence. For example, this approach would

predict that tunneling current through a barrier should effectively be instantaneous

and not dependent on barrier thickness, even though this is not the the case. The next

level of sophistication is to include the effects of coherence by keeping track of density

matrices, whose diagonal elements represent the populations and whose off-diagonal

elements represent coherences. Once again, the lifetimes are calculated numerically,

but here a phenomenological dephasing term is added to the time-evolution of the

density matrix that effectively “localizes” the wavefunctions. Gain can then be cal-

culated numerically, using a Monte Carlo approach [32], or semi-analytically, which

is helpful for gaining an intuitive understanding of QCL behavior [34]. The most

complete approach is to use one based on non-equilibrium Green’s functions, which

calculates electron transport essentially from first principles [35, 36, 37]. Though

this approach has become more practical in recent years with advancing computing

power, it is very complex and is usually performed by dedicated theorists. Ultimately,

the most successful approach to QCL design has been a semi-quantitative approach,

combined with a large number of design iterations.

Experimentally speaking, QCL design has been hindered by the inability to mea-

sure many of the degrees of freedom involved in electron transport. The most straight-

forward measurement—the light-voltage-current relationship—essentially tells how

well a laser performs, but not very much about the physics. Conductivity measure-

ments provide a little more information about which states are aligned, but not much

else. The “holy grail” of QCL analysis would be able to measure electron populations

in a way that allows all of the states of the system to be probed. Gain medium

spectroscopy is one way to do this: by measuring the absorption and gain of a de-

vice under bias, one can in principle extract the populations and linewidths of every

populated transition. In mid-infrared QCLs, this has been done by simply coupling

broadband radiation from an incoherent blackbody source into the facet of a QCL,

collecting the radiation emitted from the other side, and comparing the intensity of

the emitted light in each polarization [38]. Since the intersubband transitions of a

QCL only affect light polarized in the MBE growth direction, this means that an ab-
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sorption profile can be deduced. However, this is problematic in the terahertz: since

the emissivity of a blackbody scales with frequency squared at low frequencies, the

terahertz emission is weak, even at high temperatures.

An alternative technique available in the terahertz range is the use of time-domain

spectroscopy to probe THz QCLs, first demonstrated in 2007 [39]. The concept is

similar to the mid-infrared transmission experiment—sending broadband radiation

through a laser ridge in order to measure its absorption and gain—but the source

is very different. A broadband terahertz pulse is instead generated using an optical

pulse from a mode-locked laser, the resulting pulse is propagated through a QCL,

and the final pulse is sampled by a delayed version of the original optical pulse. By

scanning the delay, a temporal profile of the propagated terahertz pulse is generated,

giving access to both its amplitude and phase. When the pulse is compared to a

reference pulse obtained with the QCL off, the gain/absorption induced by bias can

be found.

This method can be used to do many types of classical laser experiments, including

showing the presence of gain clamping [39] and spatial hole burning [40]. However,

there has been to date very little quantitative information gleaned from these types

of measurements about the gain medium itself that couldn’t have been obtained from

other types of measurements. For example, the linewidth of the lasing transition can

be found by measuring electroluminescence from a device biased below threshold,

while the cavity losses can be measured by simply comparing devices of different

lengths. The core reason for this is that in all TDS experiments performed until

recently, the semi-insulating surface plasmon (SISP) waveguide has been tested rather

than the metal-metal waveguide, due to its superior in- and out-coupling efficiency.

The metal-metal waveguide tightly confines its mode to the 10 µm active region,

while the SISP waveguide allows its mode to extend significantly into the substrate.

As a result, the impedance mismatch of metal-metal waveguide modes and free space

is quite high, while the mismatch of an SISP waveguide is similar to that of bulk

GaAs. Usually, this property of metal-metal waveguides is considered advantageous,

since the high mismatch creates a high cavity mirror reflectivity (𝑅 ∼ 0.85), thereby
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reducing the mirror losses and improving the temperature performance [41]. However,

this poses a problem when the device is probed with a terahertz pulse, since a very

small fraction of the pulse will couple in and out of the waveguide. To make matters

worse, the signal will generally be swamped in stray light, light that never actually

entered the cavity but was collected because it was in proximity.

Though reasonable results can be obtained with transmission-mode SISP devices,

they are suboptimal for analyzing the physics of a gain medium. As SISP devices have

mode profiles with a relatively small overlap with their gain medium, this reduces the

gain medium’s interaction with terahertz pulses. Stray light is still a problem with

these waveguides, but its effect can be reduced by attaching a metallic aperture to

the laser ridge. Unfortunately, no aperture is perfect, and the stray light collected

reduces the magnitude of any features on the gain spectrum. Most problematic is the

fact that all of the QCLs with the best temperature performance have metal-metal

waveguides, a result of their reduced mirror losses and better mode confinement.

Practically speaking, there is very little reason to use valuable MBE growth resources

to make SISP wafers, especially when their only purpose is to be probed.

Until this work, no one had been able to perform spectroscopy on QCLs with

metal-metal waveguides. By using QCLs as photoconductive switches, the usual

limitations imposed by optical coupling were circumvented, and the highest dynamic-

range spectroscopic measurements of QCLs were performed. These techniques en-

abled direct observation of properties such as the gain and absorption of the laser

gain medium versus temperature, the populations of the laser’s subbands, and prop-

erties of the waveguide like its loss and dispersion. It was also used to study the

coherence of electron transport and the lineshapes of various designs. To our knowl-

edge, this has never been directly observed in a structure based on quantum wells

alone. Knowledge of these properties were used to guide frequency comb design,

and were also used to inform simulations used to design better lasers. These simu-

lations were used in genetic algorithms to design lasers with the goal of increasing

temperature performance.
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1.4 Thesis goals and organization

This thesis is organized in such a way that each chapter represents a major experi-

mental goal.

∙ Chapter 2 establishes how integrated emitters were used to probe THz QCLs

using terahertz time-domain spectroscopy.

∙ Chapter 3 contains the majority of the gain medium characterization that was

performed with THz-TDS.

∙ Chapter 4 discusses the key issues involved in designing THz QCL based fre-

quency combs, as well as the early results that suggested comb formation.

∙ Chapter 5 contains the coherence measurements that were used to definitively

establish that the lasers designed to be combs had the coherence properties of

combs.

There are also several appendices that discuss topics which can be decoupled from

the main text and serve as useful references.

∙ Appendix A summarizes the periodic density matrix formalism that was devel-

oped to model the bias- and frequency-dependence of QCL gain.

∙ Appendix B lists the electrical modulation schemes that were used for time-

domain measurements.

∙ Appendix C derives in more detail the underpinnings of SWIFTS, the key tech-

nique used to characterize comb coherence.
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Chapter 2

Terahertz time-domain spectroscopy

of quantum cascade lasers

Terahertz time-domain spectroscopy (THz-TDS) is the standard technique for gener-

ating and detecting broadband terahertz radiation. Although its resolution is limited

compared with laser-based spectrometers, its high signal-to-noise ratio and broadband

coverage made it superior to earlier techniques like Fourier transform spectroscopy.

Developments in the field include the creation of photoconductive switches in the

1980s [42], the development of 𝜒(2)-based techniques like optical rectification and

electro-optic sampling [43] in the 1990s, and the advancements made in air-biased co-

herent detection in the 2000s [44]. Because THz-TDS is so useful for probing samples,

it is also extremely useful for characterizing THz QCLs, both the gain media and the

waveguides. This chapter reviews the basic principles of THz-TDS and discusses how

it was used to characterize THz QCLs.

2.1 General principles of THz-TDS

Figure 2-1 shows a block diagram of a typical THz-TDS system, as well as a schematic

of how the data is recorded. THz-TDS is ultimately a pump-probe technique, and

is based on near-infrared optical pulses from a pulsed laser, typically a mode-locked

Ti:Sapphire or a fiber laser. The pump pulse is shined onto a source and generates
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Figure 2-1: Typical TDS system. A sample can be placed in the THz beam path to
measure its transmission.

broadband terahertz pulses. (The source shown here is a photoconductive antenna,

discussed further in section 2.1.1.) The terahertz light that is produced and is re-

combined with a delayed version of the probe pulse, and the two are mixed in the

detection element. (The detector shown here is electro-optic, discussed in section

2.1.2.) If the resulting signal is proportional to the product of the THz field and the

near-IR intensity, by scanning the delay stage one can measure the terahertz field on

sub-picosecond timescales, limited only by the width of the probe pulse. Since the

entire electric field waveform is obtained, Fourier transforming the result reveals both
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the amplitude and the phase of the terahertz pulse as a function of frequency.

Of course, any real system will have many important practical factors which enter

into its design. Some of these considerations are discussed in the following subsections,

but they are by no means comprehensive.

2.1.1 Sources

An interesting fact about ultrafast science is that many materials will respond to

ultrashort optical pulses by producing terahertz waves. For example, if an undoped

semiconductor is illuminated with an ultrashort pulse, its electrons will absorb the

radiation and be promoted from the valence band to the conduction band. This

temporarily increases the conductivity of the sample, and if it is biased a transient

current will be generated. This current radiates in the terahertz, and so the resulting

device is called a photoconductive switch. Similarly, for crystals that possess 𝜒(2) non-

linearity, because ultrashort pulses possess a broad banndwidth, difference frequency

generation can occur that generates broadband radiation through a process colloqui-

ally referred to as optical rectification [45]. Even unbiased semiconductor surfaces can

generate terahertz through a process known as the photo-Dember effect [46, 47], pro-

vided that the diffusion constant of electron and holes is sufficiently different to allow

for a local space charge to form upon optical excitation (as they are in light-electron

materials like InAs).

The sources used in this thesis for THz-TDS are all photoconductive in nature,

so more discussion of them is in order. A basic photoconductive antenna is shown

in Figure 2-2. Gold contacts are patterned onto an epitaxial layer of GaAs grown

at 200∘C (known as low-temperature or LT-GaAs), which is chosen for its extremely

short carrier lifetime of ∼0.4 ps that leads to a broad terahertz response [48]. The

contacts also function as an antenna for the radiation that is generated, with different

shapes providing different frequency responses. For example, the bowtie shape shown

here will be fairly broadband owing to its self-similarity, whereas a dipole-type antenna

will be enhanced at its resonant frequency.

To use the antenna, light from a Ti:Sapphire near 800 nm is shined between the
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Figure 2-2: Schematic of a basic photoconductive antenna based on LT-GaAs.

contacts, and the current transient generated by the temporarily excited free carriers

radiates in the terahertz. If the excitation is smaller than the terahertz wavelength

(which is typically the case as a diffraction-limited spot size on the order of 10 microns

will be much smaller than the wavelengths accessible to TDS), it will radiate in all

directions. However, because the substrate has a higher refractive index than air,

most of the power of the antenna radiates preferentially into the substrate, with a

ratio of 1 : 𝑛3 = 46 for GaAs [49, 50, p. 9]. Therefore, terahertz light is collected

from the substrate side, usually with the aid of a high-resistivity silicon lens. This

lens has two effects. First, it changes the geometry of the system to allow most of

the rays emanating from the antenna to hit the surface of the lens at a shallower

angle, thereby preventing the total internal reflection that would otherwise trap the

light in the substrate. Secondly, if the thickness of the substrate plus lens system is

chosen to be 𝑅 + 𝑅/𝑛 (i.e., the setback from the center of the sphere is 𝑅/𝑛), then

the system will be aplanatic and will converge the rays coming from the center of the

antenna without spherical aberration [51]. This reduces the numerical aperture that

is required of any collection mirrors and greatly increases the amount of light that
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can be out-coupled from the antenna.
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Figure 2-3: Pulse generated by an LT-GaAs photoconductive antenna using a bowtie
geometry, along with its power spectrum.

Figure 2-3 shows an example of a terahertz pulse that can be generated by a

bowtie-type PC antenna like the one in Figure 2-2, along with its power spectrum

(as measured by electro-optic detection, discussed in section 2.1.2). The dotted line

represents the noise floor of the measurement. Notice first that in the time domain, the

electric field waveform resembles a delta function which has been band-pass filtered.

This is because the radiated electric field of the antenna will be related to the temporal

derivative of the antenna current and therefore the derivative of the instantaneous

carrier density, 𝑛(𝑡):

𝐸(𝑡) ∝ 𝜕𝐽

𝜕𝑡
∝ 𝜕𝑛

𝜕𝑡
. (2.1)

If the carrier density is an ideal step-function (turning on as soon as the pulse arrives

and decaying slowly thereafter), then the electric field waveform will be a delta func-

tion. Of course, practical limitations limit the bandwidth that can be collected. The

low-frequency (<100 GHz) components have been removed because the bowtie has

a finite size and by definition cannot radiate into the far field. The high-frequency

limitations of the measurement typically limited by the width of the pump pulse, the

transit time associated with traveling the gold contacts (leading to RC roll-off), and

the absorption of the GaAs substrate and the hyperhemispherical lens. It is possible

to generate bandwidths as high as 30 THz with PC antennas (as demonstrated by
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Shen et al. and shown in Figure 2-4), but this requires that the terahertz be collected

in a reflection-type geometry. This result also necessitates the use of short optical

pulse (approximately 15 fs).
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Figure 2-4: Time- and frequency-domain waveforms obtained from a photoconductive
antenna whose backwards-generated radiation was collected instead of its forward-
propagating radiation. From Ref. [52].

For typical commercial Ti:Sapphire systems (such as the Spectra-Physics Tsunami

used for most of this work, which reliably produces 70 fs pulses at a repetition rate of

80 MHz at a wavelength of 780 nm), photoconductive antennas usually produce higher

output power than rectification-based sources, at the expense of terahertz bandwidth.

They are also fairly simple to operate, as they work at room temperature, have no

phase-matching requirements, and only require that the pump pulse be shined on

the active element. However, unlike rectification-based sources they cannot be scaled

with the intensity of the pump pulse, saturating once the optical power is high enough

to fully short the contacts.

2.1.2 Detectors

Though this thesis focuses on terahertz sources, terahertz detection is still a whole

area of study in and of itself. Terahertz time-domain pulses can naturally be directly

detected by electronic means such as Schottky diodes [53], by direct detectors such

as gallium-doped germanium detectors [54], or even by bolometric action as in a hot-

electron bolometer [55]. Having said that, such methods of detection are all poor

ways of detecting time-domain pulses, since the typical time-domain pulse has an
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extremely short duty cycle. For example, a pulse that is 1 ps long and is generated

by a laser with an 80 MHz repetition rate will have a duty cycle of less than 0.01%.

As direct detection integrates noise from all times, the signal-to-noise ratio (SNR) of

such a measurement will be unnecessarily reduced by a factor of 1/
√
DC, which is

more than 100 in the case of an 80 MHz Ti:Sapphire.

It is for this reason that practically all THz time-domain systems utilize a tech-

nique known as coherent detection. The key idea is to sample the THz electric field

by the delayed probe pulse, thereby ensuring that the system is only sensitive to

noise that occurs at the same time as the probe pulse. Coherent detection massively

increases the SNR of TDS systems, and is what makes them truly practical. Two of

the most common ways of performing coherent detection—photoconductive sampling

and electro-optic detection—are essentially the inverse processes associated with the

previously-discussed generation processes. In photoconductive sampling, the probe

pulse and terahertz radiation are both shined onto an unbiased element similar to

a photoconductive antenna. The probe pulse temporarily increases the conductivity

of the semiconductor, and the terahertz field sweeps carriers to one of the contacts.

This induces a DC current that can be detected with a lock-in amplifier. Note that

the current detected is proportional to the field “seen” by the probe pulse, that is the

instantaneous terahertz field.

Electro-optic (EO) detection, the method primarily used for coherent detection in

this thesis, is the inverse process of optical rectification [56, 57, 58, 59]. Essentially,

it works by detecting the polarization rotation induced in the probe pulse by the

terahertz field in an electro-optic crystal like ZnTe, GaP, or GaAs. What these

materials have in common is that the application of an electric field E induces an

anisotropy in their permittivity tensor, which due to their zincblende structure takes

the form

𝜖r
−1(E) =

⎛⎜⎜⎜⎝
1
𝑛2 0 0

0 1
𝑛2 0

0 0 1
𝑛2

⎞⎟⎟⎟⎠+ 𝑟41

⎛⎜⎜⎜⎝
0 𝐸𝑧 𝐸𝑦

𝐸𝑧 0 𝐸𝑥

𝐸𝑦 𝐸𝑥 0

⎞⎟⎟⎟⎠ . (2.2)

Here, 𝜖r−1 is the inverse of the permittivity tensor, 𝑛 is the material’s refractive

39



index, and 𝑟41 is a parameter referred to as the electro-optic coefficient. Note that

when no field is applied, the tensor is diagonal and is therefore isotropic, whereas the

presence of a field generates off-diagonal components and induces anisotropy. Note

also that the refractive index is effectively field-dependent, meaning that the EO effect

is basically a glorified 𝜒(2) nonlinearity. Since this 𝜒(2) nonlinearity is measurable even

at optical frequencies, this implies that the EO effect can be used to change the index

of the crystal extremely quickly, on timescales of just a few femtoseconds. Detecting

terahertz fields (on picosecond timescales) is no problem for the EO effect.

The basic idea of EO detection is to detect polarization rotation induced in the

probe pulse. This can be done quite easily with the so-called balanced detection

scheme illustrated in Figure 2-1. If the EO crystal is oriented with its [110] direction

along the direction of beam propagation, then fluctuations in the probe’s polarization

can be detected using a quarter wave-plate, a polarizing beamsplitter, and a pair of

photodiodes. The Jones matrix associated with the crystal-waveplate system is given

by

𝑀 =

⎛⎝ 1+𝑖
2

− 𝛿 1−𝑖
2

+ 𝛿

1−𝑖
2

+ 𝛿 1+𝑖
2

− 𝛿

⎞⎠ , (2.3)

where 𝛿 is the phase shift of the probe light inside the EO crystal induced by a

vertically-polarized electric field. Using elementary operations it can be found to be

𝛿 = 1
2
𝜔NIR
𝑐
𝑛3𝐸0𝑟41𝑑, where 𝑑 is the thickness of the EO crystal and 𝐸0 is the applied

electric field. If the probe pulse is initially vertically-polarized with an intensity 𝐼0,

then the intensity will be split nearly evenly into each polarization, with the vertical

polarization receiving an intensity of 𝐼𝑉 ≈ (1
2
− 𝛿)𝐼0 and the horizontal polarization

receiving a intensity of 𝐼𝐻 ≈ (1
2

+ 𝛿)𝐼0. By measuring the difference in power between

each polarization, one finds that the difference between them is 2𝛿𝐼0, or

∆𝐼

𝐼0
=
𝜔NIR
𝑐

𝑛3𝐸0𝑟41𝑑 (2.4)

It is this balanced detection measurement that represents the terahertz field. As with

the photoconductive switch measurement, the final result is field- and not power-
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sensitive, permitting the phase of the terahertz pulse to be measured.

One must consider several things when designing an EO detection system. The

first is the choice of EO material. By looking at Equation 2.4 one might assume that

the optimal crystal is a thick crystal with a high 𝑟41. In this regard, ZnTe should

outperform GaP since 𝑟41(ZnTe)=4 pm/V and 𝑟41(GaP)=1 pm/V [57]. Nevertheless,

this assumption ignores the effects of the mismatch between the phase velocity of

terahertz light in the crystal and the group velocity of the probe pulse. One can

conceptualize the two fields as co-propagating in the crystal, with the terahertz con-

tinuously rotating the polarization of the probe pulse as they interact. But because

the final measurement is field-sensitive, if the probe pulse walks sufficiently far off the

terahertz field its polarization rotation will actually reverse directions, reducing the

measured signal. This has two major consequences. The first is that crystals cannot

be made arbitrarily thick without reducing their generation bandwidth. The second

is that materials whose infrared group velocities match their terahertz phase veloci-

ties over the frequencies of interest will have better performance. Even though GaP

has a lower 𝑟41 than ZnTe, its generation bandwidth is usually better than ZnTe’s

since ZnTe has a phonon resonance at 5.3 THz that greatly reduces its group velocity

above a frequency of about 3 THz. Figure 2-5 illustrates this effect dramatically by

showing the same TDS spectrum obtained with different crystals. Even though the

ZnTe crystal has a larger peak SNR than the GaP crystal, the bandwidth of the GaP

crystal is more than 6 THz, while the ZnTe can barely achieve 3 THz.

Finally, note that as balanced detection ultimately boils down to a measurement of

the optical phase of the probe pulse, its fundamental noise limit is the probe shot noise

[60]. (This is a manifestation of the well-known energy-time uncertainty principle.)

Even though amplitude noise of the mode-locked laser is typically much higher, the

use of balanced detection removes most of this noise and allows for shot noise-limited

detection. Therefore, the noise floor of such systems is given by

𝐼RMS =
√︀

2𝑒𝜂𝐼0, (2.5)
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Figure 2-5: Terahertz detected by a 300 µm GaP crystal and a 1 mm ZnTe crystal
under the same pump conditions, along with the corresponding noise floors. (The dip
at 3 THz is due to transmission through a QCL.)

where 𝑒 is the electron charge and 𝜂 is the detector efficiency (𝜂 ∼ 0.5 for Si). For

a typical probe power of 10 mW, this leads to a noise floor on the order of 0.04

nA/
√
Hz. Even though the noise goes up with

√
𝐼0, the signal goes up faster, with

𝐼0. This means that turning up the probe power is always beneficial provided that

the detectors are not saturated.

2.1.3 Frequency coverage and dynamic range

Because THz-TDS records the Fourier transform and electric field waveform instead

of the power spectrum directly, its resolution and dynamic range will be determined

by the effective windowing of the time-domain signal. Any mechanical delay element

has a finite travel distance, and this will affect the minimum achievable resolution

of the system. From basic Fourier theory, the frequency resolution of a stage with

travel distance 𝐿 will be 𝑐/(2𝐿), which results in a resolution of 15 GHz for a stage

with 1 cm of travel. However, there are usually practical limitations that limit it

much further. The first is signal-to-noise ratio. When the signal being measured has

no high-resolution features in the frequency domain, needlessly measuring them by
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increasing the scan length reduces the SNR that can be achieved in a certain time

interval. This is because all of the pulse’s energy is concentrated within a certain

time interval, and measuring the waveform outside that interval adds no signal but

contributes noise.

The second major restriction on resolution is created by reflections in the system.

Any interface present in the beam path that causes either the terahertz or the near-

infrared light to split and return later will create satellite pulses, which leads to

frequency-domain fringes and reduces the achievable resolution. Though almost every

interface can be avoided by judicious choice of optics, there is a strong one that cannot

be avoided almost by definition: the EO sampling crystal itself. When terahertz light

exits the crystal it reflects and returns later, creating small pulses after the main one.

When probe light exits the crystal and reflects, it samples the terahertz pulse later,

making it appear as if a piece of the terahertz pulse had arrived early. This effect is

shown in Figure 2-6a, which shows that a 300 µm GaP crystal creates a secondary

reflection that occurs 2𝑛GaP𝐿/𝑐=8 ps after the initial one. (This particular pulse has

passed through a QCL, and also has a second pulse that occurs much later as a result

of intracavity reflection.) One solution to this problem is to use a thicker crystal

so that satellite pulses are pushed further out, but as discussed previously this will

reduce the terahertz bandwidth that the crystal is able to sample. A better solution

is to bond the sampling crystal to a slab of electro-optically inert crystal made from

the same material, e.g. a [100]-oriented crystal. Though the reflection is inevitable,

wafer bonding delays it substantially and greatly increases the resolution that can

be achieved. For example, Figure 2-6b shows the same pulse with a bonded crystal.

The secondary reflection from the GaP has been pushed out to 40 ps and is not even

visible over this time range.

The dynamic range of TDS measurements is affected by several factors. Naturally,

the noise floor of the measurement and the peak signal level impose one limit on the

dynamic range. The other major limitation is the shape of the window function that

is applied to the measured pulse in the time domain. Though the finite travel of the

stage suggests that a boxcar function is the maximum-resolution window, this window
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Figure 2-6: Long-travel terahertz pulses obtained from a QCL, sampled with (a) a
300 µm [110] GaP crystal, and (b) a 300 µm [110] GaP crystal wafer-bonded to 1.2
mm of [100] GaP.

has a low dynamic range, especially when the choice of limits creates a discontinuity

at the edges. Typically, a more moderate window function is used, principally cosine-

like Hamming, Hanning, or Blackman windows. Since these windows taper off at

the edges, it is important that the pulse of interest be centered in the center of the

window to prevent the signal of interest from being overly-apodized.

2.2 Time domain studies of THz QCLs using THz-

TDS

Because THz-TDS is so useful for probing samples, it is also extremely useful for

characterizing THz QCL gain media, on account of its unique ability to identify

both the amplitude and phase associated with intersubband transitions. Since these

types of measurements were first demonstrated by Kroll et al. [39], other researchers
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have used the technique to demonstrate the presence of linewidth narrowing [61],

and spatial hole burning [40]. Typically, THz radiation is generated externally with

a photoconductive antenna, focused onto one QCL facet, transmitted through the

waveguide, collected from the other facet, and detected through photoconductive

or electro-optic means. Because this process leads to low coupling efficiencies, only

QCLs with single plasmon waveguide geometries—which have large modes and a

Fresnel-like impedance mismatch to free space—were previously characterized with

this method. However, metal-metal waveguides have largely supplanted the surface

plasmon waveguide in THz QCL research, as their tighter confinement of the optical

mode leads to a near-unity overlap with the active region and reduced mirror losses

[23], resulting in much higher maximum operating temperatures [28, 30]. On the other

hand, these very properties make coupling efficiencies to and from the waveguide with

an external THz pulse emitter low, thereby making TDS difficult to perform.

Several schemes were proposed to overcome the small coupling efficiency of THz

radiation into metal-metal waveguides, including the integration of horn antennas [62]

and the affixation of hyperhemispherical lenses to the QCL facet [51]. One of the most

promising methods demonstrated earlier was the generation of terahertz pulses at the

facet itself via photoconductive means. In this scheme, femtosecond near-infrared

pulses were shined directly onto the facet of an operating laser. Terahertz pulses

are generated by the resulting current transient [63, 64]. However, since the pulse

amplitude (and possibly its frequency dependence) depends on the QCL bias, on-

facet intracavity generation fundamentally couples the generation process of the THz

pulse to the amplification process of the QCL, making it difficult to determine how

the pulse is modified by the active region. By the same token, the excitation affects

the QCL: free electrons generated by NIR excitation have been shown to increase the

loss of the waveguide [63], and voltage transients generated by instantaneous shorting

can affect the QCL bias.[65]
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2.2.1 Photoconductive antennas integrated into QCLs

Rather than use the laser itself as photoconductive switch, a better two-section scheme

was used. Essentially, a separate photoconductive emitter section was fabricated

from the QCL ridge itself, with the emitter and laser ridge separated by an air gap

on the order of a few microns wide [66]. Because the emitter is by definition well-

matched to the QCL, the generated pulse couples to the QCL with high efficiency.

Light essentially “tunnels” from one waveguide to the next. Since the emitter can be

independently biased, an unambiguous determination of the active region’s effect on

the generated pulse can be made.

THz emitter

QCL

Si lens

NIR

THz

THz emitter

QCL

80 μm 

Figure 2-7: Schematic of integrated emitter used to generate terahertz pulses and
QCL.

Figure 2-7 shows a basic diagram of typical photoconductive switches that were

fabricated from the laser gain medium for the initial batch of devices. The gap that

separates the emitter section from the laser section was defined lithographically with

the same plasma etch that creates the QCL ridge, and was 4 µm wide. The emitter

section was fabricated to be 100 µm long, but was subsequently cleaved to 15 µm

in order to reduce the effects of Fabry-Perot fringes within the emitter. Not shown

on the inset is the bonding pad used to bias the emitter, which was connected to

the emitter with a lithographically-formed 4 µm gold strip and was fabricated by

masking a QCL ridge with an insulating silicon dioxide layer before depositing the
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top metal contact. Aplanatic silicon hyperhemispherical lenses were usually affixed

to the back facet of the QCL in order to improve out-coupling of the terahertz pulse,

as described in Ref. [51]. The use of this lens, together with a proper alignment,

is critical for obtaining high signal-to-noise ratios, but comes at the cost of slightly

higher waveguide loss.

2.2.2 Cleaved two-section devices

Though QCLs with integrated emitters were initially used as photoconductive anten-

nas, it was ultimately determined that non-integrated emitters could perform even

better in some ways than their integrated counterparts [67]. These devices were

formed by micro-manipulating two QCLs with cleaved facets together; a schematic of

these devices is shown in Figure 2-8. Note that if the two pieces come from different

wafers their substrates may have differing thicknesses.

Active
region 1

Substrate 1

Glue

Substrate 2 Active
region 2

Indium Copper mount

Figure 2-8: Schematic of two-section devices constructed by cleaving. The glue is
eventually stripped.

This technique has several advantages. The first is that it greatly increased the

quality of the interface between the two sections. Because the reactive ion etch

required a deep etch (10 µm), the smallest gaps that could be achieved reliably were

about 4 µm. Moreover, the quality of the sidewalls that could be achieved with this

sort of etch was originally very poor. (Figure 2-9 shows gaps that were typical of the

RIE process.) The result of this meant that the coupling efficiency between the two

sections was quite low, estimated from its Fabry-Perot reflections to be about 50%. In
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4 μm 

Figure 2-9: SEM image highlighting the shortcomings of RIE for making gaps in
two-section devices.

contrast, cleaved facets are essentially perfectly flat—see Figure 2-7—meaning that

there was no scattering loss between the two sections. In addition, provided that the

two sections were pushed together and aligned properly, the gap size could be made

sub-micron. The second advantage of this technique (and perhaps the most helpful)

was that it could be done with lasers that were already fabricated, obviating the need

for a month-long processing run. It also meant that testing could be performed on

lasers that had been fabricated using wet-etching techniques, and on devices that

were not suitable as photoconductive emitters. To make these devices, the following

process was used:

1. The QCL emitter section and the QCL laser section were cleaved and micro-

manipulated together. Alignment was verified using microscopes placed above

and to the side of the gap.

2. The two lasers were cemented together using UV-curing Norland 81 optical glue,

placed on top of the lasers.

3. The lasers were indium-soldered to a copper mount at 155∘C. Thermal expan-

sion of the optical glue ensured that the two sections would separate by a small

amount, typically 0.5 µm. This small but finite gap ensured that the lasers

remained electrically isolated.

4. The optical glue was stripped from the lasers using acetone.
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This process could also be simplified for devices whose emitter and laser were made

from the same chip. Instead of micromanipulating two individual chips together, one

chip would be glued from the top and subsequently cleaved from the bottom. This

ensured that the two pieces remained in close proximity to each other, replacing steps

1 and 2. This process is illustrated in Figure 2-10.

substrate

glue

pre-scored

Copper mount

cleave

die bond

glue

cleaved substrate

Figure 2-10: Simpler two-section device fabrication technique, in which devices are
glued and subsequently cleaved.

2.2.3 Other experimental details

All of the time-domain measurements were performed in a closed-cycle pulsed-tube

cryocooler, equipped with a Cryomech PT60 cryorefrigerator. The cooler is able

to maintain devices at a temperature of 30 K indefinitely when no heating is ap-

plied, and has a cooling power of about 1.2 K/W. This is especially advantageous for

time-domain measurements, since a full sweep of laser bias and temperature requires

approximately a week of continuous measurement. The device mount used for these

measurements is equipped with a temperature sensor and a heater that can be used

to control the device temperature by sinking up to 50 W. This would not typically

be enough power to keep the lasers at temperatures above 100 K, but this could be

accomplished by simply artificially reduced the cooling power of the cold head by

placing a sheet of plastic between the mount and cold head.

A simplified schematic of the beam path used for most of these measurements

is shown in Figure 2-11. Light from the Ti:Sapphire (a Spectra-Physics Tsunami)

propagated into a set of four mirrors designed to provide external pulse compression

(labeled as DCMs). It was then split, and the pump path was attenuated using a
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Figure 2-11: Optical path used for most time-domain measurements.

reflective neutral density filter to provide anywhere from 25 mW to 125 mW of pump

power. Note that preserving the short duration of the optical pulses required that

dispersive optical elements needed to be avoided, as their effects would be to unnec-

essarily broaden the optical pulses. This precluded the use of lenses and necessitated

the use of off-axis parabolic mirrors (OAPs) for most of the focusing optics. The

pump light was shined onto the QCL emitter using an f/1 mirror.

To ensure accurate alignment of the pump beam onto the QCL, an alignment

telescope equipped with a USB camera was built, and together with the f/1 mirror

they functioned as a microscope with which the QCL and the spot could be simul-

taneously viewed. Figure 2-12 shows one such view. While using this microscope

to view the device, it quickly became apparent that the cold head of the cryostat

was not mechanically stable, and that the position of the device varied in both the

short term—fluctuating at 2.4 Hz, the compressor’s operating frequency—and also in

the long term—contracting by several millimeters when it was cooled and whenever

the temperature was adjusted. Therefore, mechanical feedback was implemented in

the form of stepper actuators placed on the objective mirror. A software-based PID

controller kept the device in the center of the alignment microscope image, effec-

tively moving the beam in concert with the device. This feedback was critical for
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60 μm

Figure 2-12: Image of QCL as viewed through alignment microscope.

experiments lasting more than a few hours, including long temperature series.

The terahertz light that came out of the QCL was collected with an f/3 mirror,

and was refocused and combined with the probe light by means of an indium tin oxide

(ITO) dichroic mirror. As ITO is conductive at low frequencies it also reflects very ef-

fectively in the terahertz while simultaneously transmitting visible and near-infrared.

(This property is what makes it useful as a transparent electrode, for example in dis-

plays.) The two beams were made to copropagate through the electro-optic crystal,

and EO sampling was used to detect the terahertz light as a function of mechanical

delay.

2.2.4 Spectroscopic reference

One difficulty that arises from the use of photoconductive emitters inside double

metal waveguides is the issue of obtaining a clean spectroscopic reference. Measuring

the transfer function of a system requires that the signal be measured both through

the sample and without the sample. However, even though integrated emitters allow

much of the terahertz light to be collected, they do not offer a way of obtaining a

clean reference. The main issue is that the fabrication and experimental procedures

are simply not repeatable enough to allow for measurements of multiple devices to

be very consistent. This means that self-referencing must be done: that is, both the

signal and the reference must be measured with one device alone.
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Various self-referencing schemes were attempted, including collection of the backward-

generated terahertz and of the terahertz that circulated within the cavity multiple

times. However, these did not prove to be reliable, especially when dealing with

deep absorption features that required a high dynamic range. The only scheme that

produced very reliable results was a so-called double modulation scheme, in which

the emitter and the QCL were modulated at different frequencies and the resulting

signals were processed using multiple lock-in amplifiers. This technique allows the

user to determine what the terahertz signal is with the QCL on and with the QCL

off. There are several ways of accomplishing this, the details of which are provided

in Appendix B.

The most important consequence of this kind of reference is that absolute trans-

mission of a terahertz pulse through the waveguide cannot be determined: it will

always be measured relative to the device’s state when it is off. As a result, gain

measurements will often have bias-independent features that look like gain, but are

in actuality absorption features at low bias that have merely been reduced at higher

bias levels.

2.2.5 Basic results

The first QCL with a metal-metal waveguide that was successfully characterized using

THz-TDS was a four-well resonant phonon design that lases at around 2.2 THz (design

FL175M-M3, wafer EA1222). The frequency is relatively low for THz QCLs, but was

amenable to TDS since photoconductive sources are more effective at low frequencies.

Integrated emitters were used, as shown in Figure 2-7, and were excited using light

from with a duration of 80 fs, a repetition rate of 80 MHz, and a center wavelength

of 790 nm. These parameters were found to maximize the amplitude of the generated

terahertz pulse. The 125 mW pump pulse was then focused onto the emitter facet

to a spot size of about 20 µm. The choice of such a large spot size compared to the

QCL height (10 µm) helped to reduce the effect of mechanical oscillations induced

by the pulsed-tube cryostat, which cooled the QCL to 33 K. Radiation was collected

out of the device and focused onto a 1-mm thick ZnTe crystal with a pair of f/2.5 off-
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axis parabolic mirrors, and standard electro-optic sampling was performed to detect

the electric field as a function of probe delay. As in Ref. [64], the peak field scaled

approximately linearly in emitter bias, and though a reverse-biased emitter produced

a peak field similar in magnitude to a forward-biased emitter, it also minimized dark

current. This aspect of the reverse bias, together with the modest choice of pump

power, allowed similar emitters to be biased as high as -50 V before devices failed.

For this measurement, the emitter was square-wave modulated at 50 kHz from

-16 V to +1 V, and the QCL was independently modulated at 27 kHz with 10%

duty cycle. The balanced detector output was fed into a lock-in amplifier (PAR

Model 5209) tuned to the 50 kHz emitter signal, and the demodulated but unfiltered

output of this amplifier was fed into a second lock-in tuned to the 27 kHz QCL signal.

Asynchronous double modulation (see Appendix B) was used to determine what the

transmitted pulse would be if the QCL were completely on and what it would be if

it were completely off. Though this could also be done in principle by adding the

difference signal to a separate reference scan taken with the QCL simply off [68], this

method compensated for the aforementioned long-term drift of the QCL position in

the cryostat. When the emitters were cleaved to be shorter, the terahertz spectrum

obtained with the QCL off was similar to the unamplified spectra in Ref. [63], with

a signal-to-noise ratio of 50 dB at 2.2 THz and a useful bandwidth of 3 THz (limited

by the pump laser and the ZnTe sampling crystal).

Figure 2-13 shows an example result of this measurement for a device which was

1.21 mm long and 80 µm wide, biased above laser threshold. Both signals were

effectively acquired simultaneously; though 𝐸on(𝜏) shows oscillations resulting from

gain at the lasing frequency while 𝐸off(𝜏) does not. The time window shown here was

only 22 ps, a typical window used for analyzing amplitude and phase data, but one

can also extend it much further to see the effect of the laser cavity on pulse generation.

This is shown in Figure 2-14, which shows the difference in terahertz fields obtained

with the laser on and with it off. It also shows the corresponding power spectrum

and a zoomed-in view of a portion of it. (Since the delay stage used had only 25 mm

of travel corresponding to 166 ps of delay, five separate scans were stitched together.)
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Figure 2-13: Comparison of pulse detected with QCL off and with QCL on (biased
above threshold at 403 A/cm2).

Since the signal at the lasing frequency should in principle suffer zero loss while that

at nearby frequencies does not, the initial pulse generated by the emitter gives rise

to dozens of echoes that correspond to the round-trip time of the cavity, 31 ps, and

narrow to the lasing frequency as they circulate in the cavity. From this round-trip

time, the waveguide group index 𝑛𝑔 ≡ 𝑐/𝑣𝑔 = 𝑛 + 𝜔 𝜕𝑛
𝜕𝜔

can be inferred to be 3.84.

Since the power spectral density of the difference pulse shows a uniformly-spaced

comb, this indicates that only one lateral mode was excited by the THz pulse. This is

advantageous from an analysis perspective, because it helps to ensure that individual

echoes can be windowed for gain calculations. In addition, note that the pulse will

continue to decay as it circulates through the cavity, rather than growing without

bound. This is because the laser gain is clamped in such a way that the round-trip

gain is zero. Each cavity round trip effectively applies a Gaussian filter to the initial

broadband pulse, reducing its energy to a vanishingly small bandwidth. If one turns

the laser gain on after the terahertz pulse has arrived, as was eventually done in Ref.

[69], then what happens instead is that the terahertz pulse seeds the laser field and

essentially becomes the lasing field.

Lastly, note the presence of a small pulse that appears 11.2 ps before the main

pulse, which occurs as a result of a mode with a group index of 1.07. Since this group
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Figure 2-14: Difference in terahertz fields obtained with the laser on and off over a
long travel range.

velocity is so close to the speed of light in vacuum, it indicates that it is a so-called

“air-side modes.” These modes were observed in electromagnetic simulations in Ref.

[64] and correspond to a surface plasmon mode that propagates mostly at the corners

of the top metal and in air. As they travel faster than the intracavity terahertz, they

arrive first. These types of spurious modes interfere with the loss and gain analysis,

but careful alignment of the aplanatic lens helps to significantly reduce this mode

relative to the desired waveguide modes.
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Chapter 3

Gain of terahertz quantum cascade

lasers

In this chapter, the gain profile of various THz QCL design schemes are analyzed

using terahertz time-domain spectroscopy. All of these designs are variations of the

resonant-phonon design—the design providing the highest operating temperature of

THz QCLs to date [30]. They all operate on the principle of resonantly injecting

electrons into the upper laser state, resonantly collecting it from the lower laser state,

and enticing it to emit a longitudinal-optical (LO) phonon. A basic schematic is

shown in Figure 3-1. Modifications of the basic resonant-phonon design elicit different

ħω

ħωLO

upper
laser

lower
laser

collector

injector

lower
phonon

Figure 3-1: Basic resonant phonon design.

properties. The original version utilized a two-well injection scheme and was suitable

for both low-frequency and high-power lasers, owing to its intrinsic stability and

overall robustness. One-well injection schemes produced more interesting results—for
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example, producing the current operating temperature record as well as an interesting

scattering-assisted design—albeit with added cost of some unpredictability. Resonant

phonon designs are probably the most interesting from the standpoint of frequency

combs as well, as they tend to produce the broadest gain bandwidths.

3.1 Low frequency resonant-phonon design, FL175M-

M3

This active region, previously mentioned in section 2.2.5, is a two-well injector reso-

nant phonon design that lases near 2.2 THz. It is similar to the design described in

Ref. [70] and is discussed extensively in Ref. [66]. Figure 3-2 shows its band diagram,

as well as its gain spectrum measured at a few biases. Starting from the left injection
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Figure 3-2: Band diagram of FL175M-M3 with some corresponding gain spectra. The
lasing spectrum of a similar device is shown for reference.

barrier, the layer thicknesses of the gain medium in Å are 51/82/31/68/42/161/37/93,

with the bold fonts representing barriers. The 161 Å well is bulk-doped to 1.9 × 1016

cm−3, resulting in a 3× 1010 cm−2 sheet doping. In this diagram, state 5 is the upper

laser level, state 4 is the lower laser level, state 3 is the collector state, and states 1

and 2 comprise the two-well injector.
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Gain was calculated using a 13.3 ps Hamming window that excludes the air-side

mode and reflections within the ZnTe sampling crystal, according to the following

relation:

𝑔(𝜔) =
1

𝐿
ln

(︃
|𝐸on(𝜔)|2

|𝐸off(𝜔)|2

)︃
(3.1)

Note that this expression refers to power gain as this is the usual convention [22], not

amplitude gain as is sometimes used (e.g., in Ref. [39]). The only difference is a factor

of 2, but it is important when comparing different values from the literature. The gain

spectra are shown at biases of 63 A/cm2, 319 A/cm2, and 403 A/cm2, corresponding

to biases of far below threshold, near threshold, and above threshold, respectively.

At 63 A/cm2, far below the lasing threshold of 360 A/cm2, the current begins to rise

quickly with the bias voltage and an absorption at 2 THz is observed that can be

attributed to an alignment of the injector states to the lower laser level (similar to

what was seen in Ref. [65]), resulting in absorption at the lasing frequency rather than

gain. A weak absorption is also observed at 1.25 THz that is likely due to absorption

between the two injector states. The only other transition with a comparable energy is

between levels 3 and 4, but because electrons in state 3 can quickly emit an LO phonon

while the injection barrier represents a transport bottleneck, the population of state

1′ should be significantly higher than the population of state 3. At 319 A/cm2, still

below threshold, the upper laser level is being populated, and gain is observed near

2.2 THz. The absorption between the injector states has become stronger because of

a greater wavefunction overlap. Finally, at 403 A/cm2 (above threshold), the gain at

2.2 THz has become sufficient to enable lasing, and it clamps at 18 cm−1 with a full-

width half-maximum (FWHM) of approximately 0.67 THz. It is also apparent that

the gain spectrum is asymmetric, with the lower-frequency side dragged down by the

1′ → 2′ absorption. Clearly, this absorption in the injector region will become more

severe at even lower lasing frequencies, and this is the very reason that a one-well

injector scheme was developed for low-frequency resonant-phonon THz QCLs [71].

Figure 3-3a and 3-3b show the measured gain (or loss) at 2.2 THz and at 1.25 THz

as a function of voltage and as a function of current, respectively, with the overlay
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Figure 3-3: Bias dependence of FL175M-M3 gain and loss at 30 K, along with the
corresponding light output.

of current-voltage (voltage-current) and power-voltage (power-current) curves shown

for comparative analysis. Figure 3-3c shows the gain versus bias as a two-dimensional

color plot. When the structure is unbiased, there is no absorption or gain between

the lasing levels because there is no population in the lasing pair of levels 4 and 5.

However, once the structure is sufficiently voltage-biased, the injector is aligned to

the lower laser level 4 and absorption turns on. In fact, absorption turns on almost

immediately once current begins to flow, implying that conduction within the active

region at this temperature cannot occur without transport through the lasing states.

As voltage is increased further, the upper laser level is populated instead of the lower

one, and the absorption yields to gain. At the same time, the absorption at 1.25

THz drops, suggesting that the population inversion has come about through the

depopulation of injector state 1′: resonant tunneling is now occurring. Eventually,
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laser threshold is reached, and the gain clamps to the total losses of the cavity, 18

cm−1. As bias is increased to the negative differential resistance (NDR) point, the

gain slightly unclamps, as electrical instability has effectively decreased the amount

of time the laser is on. Finally, lasing is disabled once the structure is sufficiently

biased that the gain drops below threshold.

3.2 Scattering-assisted design, OWI185E-M1

An interesting design that evolved from the resonant phonon designs was the scattering-

assisted QCL [67]. The traditional means of achieving high-temperature operation

relied [30, 28] on the resonant tunneling injection scheme, in which electrons are in-

jected into the upper lasing state by resonant tunneling and leave the lower lasing

state through a combination of resonant extraction and emission of LO phonons. How-

ever, this mechanism is unsuitable for high-temperature operation of QCLs operating

below 2 THz, since the dynamic range of an injection-based QCL is approximately

proportional to its lasing frequency. To remedy this issue, THz QCLs have been re-

cently been developed that utilize scattering-assisted injection, in which electrons are

injected into the upper state by the direct emission of an LO phonon [31, 72, 73]. In

particular, the gain medium demonstrated in Ref. [31], labeled OWI185E-M1, was

able to achieve lasing at 1.8 THz up to a temperature of 163 K, which is the highest

operating temperature for a QCL operating below 2 THz to date. This gain medium

also exhibited resonant-injection based lasing at 4.0 THz up to a temperature of 151

K, making it potentially useful in broadband heterogeneous QCLs [74, 75, 76].

In order to better understand the operation of this device, THz-TDS was used

to investigate how its gain evolves with bias and temperature. Cleaved two-section

emitters were used for most of these measurements, which allowed for wet-etched

devices to be tested (which had superior temperature performance as a result of their

lower optical losses). Note because the first section is usually quite long and is often

biased below threshold, it acts as a strongly-coupled cavity and can greatly increase

the total optical losses for the laser. Although this prevents a loss measurement of the
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uncoupled cavity, lasing can be inhibited in such structures, allowing the measurement

of unclamped gain and the properties of the gain medium alone.

The data from two lasers will be presented here: Device A was 60 µm wide and

0.6 mm long, while Device B was 40 µm wide and 1.05 mm long. Both devices

were equipped with an emitter section approximately 0.5-mm long. Pulses from the

Ti:Sapphire (with a 70 fs pulse width, 785 nm center wavelength, and 100 mW power)

were focused onto the emitter sections, which were biased at -20 V with a 120 kHz

square wave. The laser sections themselves were biased at 10% duty cycle and were

triggered off of every other emitter bias pulse, so that signals obtained when the

laser was on and when it was off could be compared. Electro-optic sampling was

performed using a 300-µm GaP crystal, and a pair of lock-in amplifiers tuned to 60

kHz and 120 kHz were used to detect the terahertz field transmitted through the

device. Synchronous double modulation was used to determine the field transmitted

with the laser on and with the laser off, see B-2 for details.
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Figure 3-4: (a) TDS spectra taken from device B, along with lasing spectra. (b)
Contour plot of gain at 35 K.

Figure 3-4(a) shows the frequency content associated with pulses transmitted

through Device B at 35 K. It also shows the lasing spectra. When the laser is off,

the transmitted pulse has a broadband frequency response, with the exception of an

absorption feature at 2.7 THz. This dip corresponds to absorption from the first

excited state of the unbiased module to the second, and has an oscillator strength of
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about 0.7. This feature is relatively unimportant since it vanishes under design bias,

but matters insofar as the gain of the QCL is always measured with respect to the

gain at zero bias. Since a reduction in losses is indistinguishable from an increase in

gain, all measurements at much higher biases will therefore show a “gain” that peaks

at 2.7 THz, which is actually an artifact from the vanishing absorption. Fortunately,

its linewidth is relatively narrow (0.5 THz), and it is located away from the peak

lasing frequencies. When the device is biased to be lasing in the resonant-tunneling

and scattering-assisted regimes, peaks in the transmitted spectra appear at around 4

THz and around 2 THz, respectively, corresponding to the presence of both types of

gain. Note that the bandwidth of the generated terahertz pulse is quite high—above

5 THz—enabling THz-TDS measurements on most QCLs operating below the Rest-

strahlen band of GaAs. This is due to improvements made in the original version of

the TDS system.

Figure 3-4(b) shows a contour plot of the results of a gain measurement of Device

A at 35 K. Since Device A’s emitter section was nearly as long as its laser section,

its overall cavity losses were effectively doubled, and the device no longer lases, even

at low temperatures. Therefore, Fig. 3-4(b)) is a measure of the gain medium’s

properties without the influence of optical feedback. The I-V characteristics of this

device are not shown and are similar to the I-V characteristics of the non-lasing device

described in Ref. [31]; its major distinctive feature is the lack of any obvious negative

differential resistance (NDR). Finally, it should be noted that the aforementioned

absorption artifact at 2.7 THz was digitally removed by interpolating between the

closest frequencies unaffected by it; this region is shaded to indicate the region in

which data was altered.

Figure 3-5(a) shows the gain data alongside the frequency of the relevant transi-

tions determined by band structure simulations (whose wavefunctions are shown in

Figure 3-5(c)). For ease of interpretation, two naming schemes to track their energies:

low-bias wavefunctions are denoted by letters and are labeled according to their zero

bias (0 V) counterparts, while high-bias wavefunctions are denoted by numbers and

are labeled according to their design bias (15 V) counterparts. At low biases, there
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Figure 3-5: (a) Simulated transition energies superimposed on gain data. (b) Low
frequency gain and absorption near design bias. (c) Band diagram of QCL at low
bias and at high bias.

is a regime in which strong absorption can be observed, absorption that appears to

be dominated by the b → c transition. However, a closer examination reveals that

there are at least two features superimposed on each other, each of which contribute

to the total absorption. This could be seen directly from the anticrossings observed in

Fig. 3-5(a), but is made much clearer by Fig. 3-5(b), which shows the low-frequency

characteristics of the design at several bias points in the regime in which resonant

tunneling injection lasing occurs. At 13.7 V, the absorption profile is asymmetric

because it is comprised of multiple superimposed peaks, but they are not resolvable.

At 16.2 V, their separation is increased and they are more distinguishable, showing

64



one at 0.8 THz and another at 1.4 THz. By 18.6 V, the higher-frequency transition

has started experiencing positive net gain, while the lower frequency transition re-

mains lossy. Each feature red-shifts to a minimum value before blue-shifting, strongly

indicating that the observed behavior corresponds to anticrossings in progress. From

band structure simulations, the lower-frequency absorption can be identified as oc-

curring between states 1 and 2, while the higher-frequency transition occurs mainly

between states 5 and 4, the scattering-assisted lasing transition. It is also possible

that the 4 → 3 transition provides some gain at this temperature, but it is expected

to be weaker than the 5 → 4 transition thanks to its reduced upper state lifetime

(𝜏4(1 − 𝜏3/𝜏43) =1.41 ps, compared with 𝜏5(1 − 𝜏4/𝜏54) =2.70 ps) and its broader

linewidth (estimated to be ∆𝜈43=1.47 THz, compared with ∆𝜈54 =0.98 THz).

It is valuable to compare the dynamic range and frequency coverage of the resonant-

tunneling injection (RT) and scattering-assisted injection (SA) transitions, as they

have some interesting differences arising from their different modes of operation. RT

lasing occurs between states 1′ and 5, peaking at about 16 V, while SA lasing occurs

between states 5 and 4, peaking at about 22 V. Though the RT transition has a much

higher peak gain at this temperature, its dynamic range is considerably smaller. Re-

ferring to Fig. 3-4(b), if dynamic range is defined as the range over which the gain

exceeds 10 cm−1,the RT transition has a dynamic range of 7 V while the SA transition

has a dynamic range of nearly 10 V. This is a result of the fact that the SA injection

mechanism is only weakly dependent on subband alignments and can occur provided

that the separation between the injector and upper lasing state is near the LO phonon

separation (36 meV in GaAs). In contrast, the RT injection mechanism depends on

the injector and upper lasing state being precisely aligned to achieve efficient reso-

nant tunneling. Of course, the large dynamic range also leads the SA transition to

have broad frequency coverage, experiencing substantial gain at frequencies as low

as 1.5 THz (at 17 V) and as high as 4.0 THz (at 27 V). In principle, this type of

gain medium could be extremely useful for applications that require frequency-agile

broadband sources, such as swept-source OCT [77].

To glean more information about this design, the temperature dependence of its
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Figure 3-6: Temperature dependence of the scattering-assisted gain.

gain was analyzed. Device B was tested at temperatures ranging from 35 K to 200 K

(well beyond the point at which both transitions stop lasing), and Figure 3-6(a) shows

the resulting gain at the two main frequencies of interest and at fixed bias. First,

consider the RT transition, shown in blue. Because the emitter section of Device B is

only half the length of the laser section, this device actually lased in the RT mode at

temperatures below 90 K. Therefore, gain clamping is observed at 24 cm−1, a value

that is approximately 50% larger than the losses expected from an uncoupled laser.

This can be confirmed by considering the gain for the RT injection at Tmax=151

K, 17 cm−1, which in an uncoupled cavity would be the threshold gain. The SA

transition is shown in red and shows a very distinct non-monotonic behavior: as

temperature is increased, its gain increases, reaching a peak value at 110 K before it

begins to decay. However, this result was somewhat unexpected since the peak light

output observed from a device lasing in the SA mode actually decays monotonically

with increasing temperature. This discrepancy is actually due to the spectral shift

of the low-frequency lasing: at low temperatures, the low-frequency lasing occurs at

frequencies as high as 2.4 THz, but at high temperatures, it occurs only at 1.8 THz.

Though the gain at 1.8 THz may increase, the peak optical power is determined

by the gain at higher frequencies, which does decrease monotonically. The 1.8 THz

gain only becomes relevant once the higher frequency components have completely
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subsided; for most devices, this occurs at temperatures above 100 K.

In principle, this effect could be investigated by simply plotting the gain spectra

at elevated temperatures, but in practice this is difficult since the artifact at 2.7 THz

merges with the SA peak at high temperatures for frequencies above 2 THz, as the

b→c transition is thermally activated and affects a larger frequency range due to its

increased magnitude. It may be tempting to argue that the increase in gain with

temperature at 1.8 THz is a result of similar artifact, but there are several reasons

why this cannot be the case, chief of which is the fact that the measured gain at the

SA Tmax (163 K) is 19 cm−1, a value which is close to the waveguide losses of 18 cm−1

measured in other devices with similar waveguides [66]. If flat-band absorption at

2.7 THz were significantly boosting the gain normalized to this absorption, then this

value (19 cm−1) would be artificially boosted. Moreover, a hallmark of such behavior

is that the measured gain would not return to zero far past the design bias, but this

is not the case (see Fig. 3-4(b)). In order to explain the origin of the spectral shift,

plotted in Fig. 3-6(b) is the 1.8 THz gain of Device A at 35 K, 110 K, 150 K, and

180 K, swept across the SA design bias range. The peak gain at 110 K is the highest

of the four curves shown, and also shows two peaks, one at 20.7 V and at 22.7 V.

At higher temperatures, only one peak is clearly resolved, and the voltage at which

the peak gain is observed shows a slight upward shift. Since the subband alignments

in the system should be relatively independent of temperature (for constant voltage

bias), this suggests that there are multiple transitions contributing to the total gain of

the SA transition at elevated temperatures. Therefore, there must be an additional

contribution to the gain arising from the 2′ → 1′ transition. This contribution is

of lower frequency than the 5→4 transition, and reaches 1.8 THz at a higher bias,

when 𝐸1′5 approaches 36 meV and state 1′ is efficiently depopulated by LO phonons.

This explains the dual-peaked behavior of moderate temperatures: both transitions

contribute to gain at 1.8 THz, but do so at different biases. This interpretation also

explains the peculiar non-monotonic behavior seen at 1.8 THz, since the depopula-

tion of state 1′ becomes more efficient at elevated temperatures due to increased LO

phonon emission, which of course comes at the expense of gain in the RT lasing mode.
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Because the linewidths at high temperatures are fairly broad, both transitions can

contribute to the total lasing action near Tmax, although the 5→4 transition becomes

less effective.

3.3 Highly coherent resonant-phonon design, FL183S

A detailed look at Figure 3-5(a) will show that the resonant-phonon transition in the

scattering-assisted design has been labeled as being from the result of two transitions,

1 → 5 and 2 → 5. This was no accident, and is a consequence of the fact that the

two injector states, 1 and 2, are highly anticrossed and effectively form a doublet.

In other words, when calculating the gain profile it doesn’t make sense to talk about

them in a tight-binding basis, and a delocalized basis must be used [34]. Theoretically,

this should result in a gain spectrum that is split. If analyzed within the framework

of density matrices, this means that the system is effectively a three-level system.

An alternative framework is to consider the system as two two-level systems with

phenomenological Lorentzian broadening, in which case the two upper states are

separated in energy and superimpose to obtain a split gain profile.

Though this had been previously observed via the lasing spectra in various de-

signs with large injector anticrossings, it had never been directly observed via gain

measurements. Therefore, the gain spectrum of a design with a highly coherent in-

jection scheme, FL183S, was analyzed. This design also happens to be one of the

best-performing resonant-phonon QCLs in existence, producing large amounts of op-

tical power at frequencies spanning the 3 to 4 THz range. Its bandstructure at design

bias is shown in Figure 3-7. The design is a four-well design with a two-well injec-

tor, and is conceptually very similar to FL175M-M3, except it is designed for higher

frequencies. Starting from the injection barrier, the layer thicknesses in Angstroms

are 40/162/32/92/48/76/23/73, with bold fonts representing barriers. The average

doping is 5.6×1015 cm−3. States 1 and 2 are the injector states, state 3 is the collector

state, state 4 is the lower laser level, and state 5 is the upper laser level. Of note is

that at design bias, the injector and upper laser level anticross by 2.4 meV, which
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Figure 3-7: Band structure of highly coherent injection design.

should in theory lead to a splitting of the gain spectrum by 580 GHz.

However, no splitting was immediately obvious from the normal on- and off- TDS

gain spectra, presumably because absorption at zero bias was causing any splitting to

wash out. Therefore, an alternative self-referencing scheme had to be developed, one

that utilized multiple intracavity bounces in order to provide a high-resolution profile

of the gain spectrum. Figure 3-8 shows the result of this measurement, in which a

single-section laser 774 µm long and 30 µm long was biased above threshold, and in

which the facet was excited by 25 mW of Ti:Sapphire power. The figure shows two

pulse: one that has traversed the cavity once and another that has traversed it three

times. The pulses are windowed individually (using Hamming windows), with the

different colors indicating the two windows. Gain was then calculated according to

𝑔(𝜔) =
1

2𝐿
ln

(︃
|𝑝3(𝜔)|2

|𝑝1(𝜔)|2

)︃
. (3.2)

Note that the reduction in pump power was reduced compared to earlier measure-

ments because a single-section cavity was used. The effect of this pump was to

increase the waveguide losses and cause the round-trip gain to be less than zero, and

larger pumps were found to worsen this effect. The choice of a 25 mW pump proved
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Figure 3-8: Self-referenced TDS measurement of a single-section QCL and the corre-
sponding gain profiles.

to mitigate this effect without severely reducing the signal-to-noise ratio.

Several features are evident in the reflected pulse, which is also shown with a

zoomed view. The first is that it has been substantially chirped in the time-domain.

Long wavelengths are detected first, followed by short wavelengths. This is a very real

representation of dispersion, and is the subject of much discussion in the following

chapters. One side effect of dispersion is that time effectively becomes a measurement

of frequency, which manifests very dramatically in the appearance of a “hole” in the

time domain pulse at around the 21.5 ps mark. This hole effectively corresponds to

a drop-off in the gain spectrum, and is a direct consequence of gain splitting.

Figure 3-9 shows the measured gain spectrum at several biases above threshold.

Splitting of about 500 GHz is evident. Note that in all cases the round-trip gain peaks

below zero, indicating net loss. The corresponding band stuctures are as shown, in

addition to a schematic showing a tight-binding pictures of the same thing. At low

biases, electrons pile up in the injector state because it is misaligned with the upper

laser level. Since the injector is at lower energy, the low-frequency lobe of the gain

spectrum dominates. Near design bias, the injector state and the upper laser level

are maximally anticrossed, and the gain is evenly split between the two lobes. Above
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Figure 3-9: Wavefunctions of FL183S below, at, and above the design bias. Tight-
binding schematics also shown.

design bias, electrons begin to pile up in the injector once again, but this time it is

the higher energy configuration of the doublet and as a result the higher-frequency

lobe dominates. Because the first batch of THz QCL frequency combs were based

on this gain medium, the effects of this peculiar gain profile will be apparent on the

comb spectra.
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Chapter 4

Terahertz quantum cascade laser

frequency comb design

As previously discussed, compact terahertz frequency combs would be ideal candi-

dates for making compact spectrometers. Many ways exist for generating optical

frequency combs, including intra-cavity phase modulation [78], downconversion of a

higher-frequency comb [45], and upconversion of a lower-frequency source [79, 80].

However, the most powerful sources of frequency combs are generally mode-locked

lasers, which in the time domain create a train of pulses and in the frequency do-

main create uniformly-spaced lines. Mode-locked lasers can be classified into two

varieties: actively mode-locked lasers, in which pulses are generated by an external

modulation of the laser gain at the round-trip frequency, and passively mode-locked

lasers, in which pulses generate their own modulation with the aid of saturable ab-

sorbers. Unfortunately, because external modulation is never as short as the pulse

itself, actively mode-locked lasers cannot produce pulses as short as passively mode-

locked lasers. More specifically, if 𝜔𝑔 represents the gain-bandwidth of a laser, the

best pulse width achievable by active mode-locking is proportional to 1/
√
𝜔𝑔, while

the best pulse width achievable by passive mode-locking is proportional to 1/𝜔𝑔 [81].

In the frequency domain, the spectral bandwidths of actively mode-locked lasers are

therefore much narrower than those of passive ones.

In quantum cascade lasers, mode-locking is difficult to achieve as the picosec-

73



ond gain recovery time of the laser prevents stable pulse formation [82]. Though

active mode-locking of mid-infrared QCLs [83] and terahertz QCLs [84] was eventu-

ally achieved, they were unable to exploit the full gain bandwidth available to the

laser. On the other hand, recent work by Hugi et al. demonstrated that when the

group velocity dispersion (GVD) of a mid-IR QCL is made sufficiently low by using

a broadband heterogeneous gain medium, such devices can passively form frequency

combs based on four-wave mixing (FWM) [85]. Using this approach, the authors in-

creased the bandwidth of mid-IR QCL combs from the 15 cm−1 achieved using active

mode-locking to over 60 cm−1 (at 7 µm). This mechanism is in principle very similar

to microresonator-based frequency combs, which were originally formed by pumping

microresonators with high-intensity radiation [86]. (These combs are also called mi-

crocombs or Kerr combs.) Though this mechanism does not produce time-domain

pulses with high peak intensities, the frequency comb produced is suitable for linear

applications such as dual-comb spectroscopy [87, 88] and optical coherence tomogra-

phy [77]. This chapter describes some of the general principles, and also how such

combs can be generated in THz QCLs.

4.1 Principles of microcomb formation

Figure 4-1 shows a schematic of how microcombs are formed. A high-Q resonator is

pumped with narrowband radiation at one of its cavity modes. Initially, degenerate

four-wave mixing (created by the 𝜒(3) nonlinearity) causes the pump to split into

sidebands that are on either side of the pump wavelength. After this has occurred,

non-degenerate four-wave mixing allows for more frequencies to be generated, pro-

vided that the energy is conserved. This energy conservation is what ensures that

the frequencies are all evenly-spaced and that a comb is formed. Mathematically, this

can be treated simply using an envelope equation-type formalism such as that used

in Boyd [92]. First, an equation that describes evolution of an EM wave in a general

nonlinear wave is developed. Then, this relation is applied to the case of four-wave

mixing.
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4.1.1 Nonlinear wave equation and envelopes

Maxwell’s equations in a source-free region are

∇ ·D = 0 ∇× E = −𝜕B
𝜕𝑡

∇ ·B = 0 ∇×H =
𝜕D

𝜕𝑡
+ J

To deal with nonlinear field evolution, the constitutive relations B = 𝜇0H and D =

𝜖0E + P are assumed. Here P is the polarizability of the material. Under the usual

assumption of plane waves (which have ∇ ·E = 0), one can then derive the following

wave equation:

∇2E =
1

𝜖0𝑐2
𝜕2D

𝜕𝑡2

Next, the polarizability is assumed to be comprised of a linear part and a nonlinear

part; that is P ≡ 𝜖0𝜒
(1)E+PNL. (Generally the linear part will be much larger than
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the nonlinear components.) With this assumption, the constitutive relation becomes

D = 𝜖0(1 + 𝜒(1))E+PNL = 𝜖0𝑛
2E+PNL

where 𝑛 is the usual linear refractive index of the material. Inserting this into the

wave equation, one finds that

∇2E−
(︁𝑛
𝑐

)︁2 𝜕2E
𝜕𝑡2

=
1

𝜖0𝑐2
𝜕2PNL

𝜕𝑡2
(4.1)

This modified version of the classical wave equation of course reduces to it in the

absence of non-linearity, and is well-suited for treating all sorts of nonlinear processes

(e.g., second harmonic generation, difference frequency generation, four-wave mixing,

etc.).

Lastly, note that unless very short optical pulses are being considered, the non-

linear evolution of fields will be slow, and a good approach is to use an envelope

formalism, in which one assumes that a field propagating in the z-direction with a

frequency 𝜔 and wavevector 𝑘 = 𝜔
𝑐
𝑛 has a spatial dependence of

𝐸𝑖(𝑧, 𝑡) = 𝐴𝑖(𝑧)𝑒𝑖(𝑘𝑧−𝜔𝑡)

Here 𝐴𝑖(𝑧) is the envelope associated with the field. The advantage of this assumption

is clear when one calculates the left-hand side of the nonlinear wave equation (4.1):

∇2E−
(︁𝑛
𝑐

)︁2 𝜕2E
𝜕𝑡2

=

(︂
𝜕2𝐴𝑖

𝜕𝑧2
+ 2𝑖𝑘

𝜕𝐴𝑖

𝜕𝑧
+ (𝑖𝑘)2𝐴𝑖 − (𝑖𝜔)2

(︁𝑛
𝑐

)︁2
𝐴𝑖

)︂
𝑒𝑖(𝑘𝑧−𝜔𝑡)

=

(︂
𝜕2𝐴𝑖

𝜕𝑧2
+ 2𝑖𝑘

𝜕𝐴𝑖

𝜕𝑧

)︂
𝑒𝑖(𝑘𝑧−𝜔𝑡)

Under the slowly-varying approximation 𝜕2𝐴𝑖

𝜕𝑧2
≪ 𝑘 𝜕𝐴𝑖

𝜕𝑧
, and one can write that

∇2E−
(︁𝑛
𝑐

)︁2 𝜕2E
𝜕𝑡2

= 2𝑖𝑘
𝜕𝐴𝑖

𝜕𝑧
𝑒𝑖(𝑘𝑧−𝜔𝑡) (4.2)

When nonlinearity generates frequencies of 𝜔 on the right-hand side of the nonlinear
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wave equation, the exponentials cancel and finding the envelope functions becomes

an exercise in solving a system of coupled first-order differential equations.

4.1.2 Four-wave mixing

Four-wave mixing is generated by the 𝜒(3) nonlinearity, which is defined in the 1D

case as

𝑃NL = 𝜖0𝜒
(3)𝐸3. (4.3)

A general field comprised of frequencies 𝜔𝑖 with phasors 𝐸𝑖 can be expressed as

𝐸(𝑡) =
∑︁
𝑖

𝐸𝑖𝑒
−𝑖𝜔𝑖𝑡 + 𝑐.𝑐. (4.4)

As shorthand, let 𝐸+ denote the first term and 𝐸− denote the second (its conjugate).

Then the polarizability can be expressed as

𝑃NL = 𝜖0𝜒
(3)(𝐸+ + 𝐸−)3 (4.5)

= 𝜖0𝜒
(3)(𝐸3

+ + 3𝐸2
+𝐸− + 3𝐸+𝐸

2
− + 𝐸3

−) (4.6)

The 𝐸3
+ and 𝐸3

− terms correspond to sum-frequency generation and are ignored. This

leaves

𝑃NL = 3𝜖0𝜒
(3)
∑︁
𝑖𝑗𝑘

𝐸𝑖𝐸𝑗𝐸
*
𝑘𝑒

−𝑖(𝜔𝑖+𝜔𝑗−𝜔𝑘)𝑡 + 𝑐.𝑐. (4.7)

In other words, four-wave mixing is a process by which fields at frequencies 𝜔𝑖, 𝜔𝑗, and

𝜔𝑘 generate a nonlinear polarization at a frequency 𝜔𝑖 + 𝜔𝑗 − 𝜔𝑘. Next, the envelope

formalism is used by assuming that 𝐸𝑖 = 𝐴𝑖(𝑧)𝑒𝑖𝑘𝑖𝑧. Placing this in the wave equation

and using the envelope approximation yields

∇2E−
(︁𝑛
𝑐

)︁2 𝜕2E
𝜕𝑡2

=
∑︁
𝑖

2𝑖𝑘𝑖
𝜕𝐴𝑖

𝜕𝑧
𝑒𝑖(𝑘𝑖𝑧−𝜔𝑖𝑡) + 𝑐.𝑐.

77



for the left-hand side, and

1

𝜖0𝑐2
𝜕2PNL

𝜕𝑡2
=

3𝜒(3)

𝑐2
𝜕2

𝜕𝑡2

∑︁
𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴
*
𝑘𝑒

𝑖(𝑘𝑖+𝑘𝑗−𝑘𝑘)𝑧𝑒−𝑖(𝜔𝑖+𝜔𝑗−𝜔𝑘)𝑡 + 𝑐.𝑐.

= −3𝜒(3)

𝑐2

∑︁
𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴
*
𝑘(𝜔𝑖 + 𝜔𝑗 − 𝜔𝑘)2𝑒𝑖(𝑘𝑖+𝑘𝑗−𝑘𝑘)𝑧𝑒−𝑖(𝜔𝑖+𝜔𝑗−𝜔𝑘)𝑡 + 𝑐.𝑐.

for the right hand side. Proceeding further usually requires that some assumptions

be made about the fields present.

Non-degenerate four-wave mixing

First, consider non-degenerate four-wave mixing, in which case fields at frequencies

𝜔1, 𝜔2, 𝜔3, and 𝜔4 are present with 𝜔1 + 𝜔2 = 𝜔3 + 𝜔4 and 𝜔1 ̸= 𝜔2. Consider the

components of the wave equation oscillating at 𝑒−𝑖𝜔4𝑡. Only the 𝑖 = 4 component

contributes on the left-hand side, whereas on the right-hand side the (𝑖𝑗𝑘) = (1, 2, 3),

(𝑖𝑗𝑘) = (2, 1, 3), and (𝑖𝑗𝑘) = (4, 4, 4) components all contribute. This results in

2𝑖𝑘4
𝜕𝐴4

𝜕𝑧
𝑒𝑖𝑘4𝑧 = −3𝜒(3)

𝑐2
𝜔2
4(2𝐴1𝐴2𝐴

*
3𝑒

𝑖(𝑘1+𝑘2−𝑘3)𝑧 + 𝐴4𝐴4𝐴
*
4𝑒

𝑖(𝑘4+𝑘4−𝑘4)𝑧)

𝜕𝐴4

𝜕𝑧
= 𝑖

3𝜒(3)𝜔2
4

2𝑐2𝑘4
(2𝐴1𝐴2𝐴

*
3𝑒

𝑖(𝑘1+𝑘2−𝑘3−𝑘4)𝑧 + 𝐴4|𝐴4|2),

or more simply,

𝜕𝐴4

𝜕𝑧
= 𝑖

3𝜒(3)𝜔4

2𝑛𝑐
(2𝐴1𝐴2𝐴

*
3𝑒

𝑖(𝑘1+𝑘2−𝑘3−𝑘4)𝑧 + 𝐴4|𝐴4|2) . (4.8)

The first term in equation (4.8), the FWM term, is what allows for three frequencies

to generate a fourth component even if it was not originally present. The second term

is referred to as self-phase modulation (SPM), as it is independent of the other three

waves and looks like an intensity-dependent refractive index.

Perhaps the most important aspect of equation (4.8) is the presence of a term

oscillating with 𝑒𝑖(𝑘1+𝑘2−𝑘3−𝑘4)𝑧. It states that if the total momentum is not conserved,

that is if 𝑘1 + 𝑘2 ̸= 𝑘3 + 𝑘4, then four-wave mixing will not be efficient and will
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eventually be self-defeating. When the momentum is linear in 𝜔, this term will

automatically be phase-matched since energy was assumed to have been conserved.

However, if 𝜕2𝑘
𝜕𝜔2 ̸= 0, then this is no longer the case and the generation suffers.

Essentially, this is equivalent to saying that the material is dispersive.

Degenerate four-wave mixing

In degenerate four-wave mixing, three waves of frequencies 𝜔1, 𝜔2, and 𝜔3 are present,

with 2𝜔2 = 𝜔1 + 𝜔3. Consider the components of the wave equation oscillating at

𝑒−𝑖𝜔3𝑡. On the left-hand side 𝑖 = 3 contributes, and on the right-hand side (𝑖𝑗𝑘) =

(2, 2, 1) and (𝑖𝑗𝑘) = (3, 3, 3) contribute. This leaves

2𝑖𝑘3
𝜕𝐴3

𝜕𝑧
𝑒𝑖𝑘3𝑧 = −3𝜒(3)

𝑐2
𝜔2
3(𝐴2𝐴2𝐴

*
1𝑒

𝑖(𝑘2+𝑘2−𝑘1)𝑧 + 𝐴3𝐴3𝐴
*
3𝑒

𝑖(𝑘3+𝑘3−𝑘3)𝑧),

or just
𝜕𝐴3

𝜕𝑧
= 𝑖

3𝜒(3)𝜔3

2𝑛𝑐
(𝐴2𝐴2𝐴

*
1𝑒

𝑖(2𝑘2−𝑘1−𝑘3)𝑧 + 𝐴3|𝐴3|2). (4.9)

Once again, there is a FWM term and a SPM term, and momentum must be conserved

in order for the conversion to be efficient. Since degenerate FWM generates the first

few lines of a microcomb, consider a situation in which no fields other than the pump

(𝜔2) are present. In the absence of phase-mismatch and SPM, degenerate four-wave

mixing leads to the following coupled system for the fields 𝐴1 and 𝐴3:

𝜕𝐴3

𝜕𝑧
= 𝑖

3𝜒(3)𝜔3

2𝑛𝑐
𝐴2

2𝐴
*
1

𝜕𝐴1

𝜕𝑧
= 𝑖

3𝜒(3)𝜔1

2𝑛𝑐
𝐴2

2𝐴
*
3.

If the pump remains undepleted (𝜕𝐴2

𝜕𝑧
= 0), then by conjugating one of these equations,

differentiating, and inserting it into the other, one can show that 𝐴1 and 𝐴3 experience

a type of parametric gain, obeying

𝜕2𝐴1/3

𝜕𝑧2
=

(︂
3𝜒(3)

2𝑛𝑐

√
𝜔1𝜔3|𝐴2|2

)︂2

𝐴1/3. (4.10)
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As the quantity in parenthesis is strictly positive, the solution to this differential

equation is evidently a growing exponential. The corresponding power gain is

𝑔 =
3𝜒(3)

𝑛𝑐

√
𝜔1𝜔3|𝐴2|2. (4.11)

Even if no photons of 𝜔1 or 𝜔3 are originally present, spontaneously-emitted photons

will exponentially grow until they begin depleting the pump.

4.1.3 Parametric microcombs versus laser microcombs

In traditional microcombs, a single-frequency pump initiates the comb formation and

the resulting parametric gain sustains it at other frequencies. As in a laser, the gain

must overcome the cavity losses for this process to occur. However, in QCLs this

interpretation is not as physical, as parametric gain alone will not be sufficient for

the laser to overcome its comparatively higher losses. In fact, it is the gain of the

QCL that is allowing the system to oscillate, gain that is essentially provided by the

imaginary part of 𝜒(1) and not by 𝜒(3). A laser with sufficient hole burning will be

able to lase at a lot of different frequencies without forming a frequency comb [75],

so how might FWM generate a comb in QCLs?

The answer is provided by the concept of injection locking. When energy is

injected into an oscillator with an frequency close to the oscillation frequency, the

system can oscillate at the injected frequency instead of the natural one. Because

four-wave mixing requires energy conservation, a pair of lines separated by some

spacing ∆𝜔 will only interact with a pair of lines of exactly the same spacing. If

this process is robust enough to occur over the laser’s bandwidth, a comb will form.

Figure 4-2 shows how this might happen. An initially unevenly-spaced multi-mode

laser begins generating sidebands via four-wave mixing, sidebands which are not in

the center of the cavity modes but are close enough. (The exact condition will be

discussed in the following section.) The laser injection locks off-resonance, and this

process continues until either the FWM is too weak because the intensity is too low,

or because the spacing is too far off. Eventually a state is reached in which many of
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Figure 4-2: How four-wave mixing plus injection locking forms can form a comb in a
highly nonlinear gain medium.

the modes have phase-locked. This process is somewhat mutually competitive, with

different parts of the laser preferring different mode spacings and attempting to force

this spacing on their neighbors. Only the strongest spacing survives. If a QCL gain

medium has multiple lobes that prefer different mode spacings, one would expect that

at different biases the mode spacing might abruptly switch depending on which lobe

possessed the most optical intensity.

4.1.4 Classical injection locking

Injection locking of lasers has been around almost as long as the laser itself, and is

treated in classical texts such as Siegman’s [93]. Essentially, the principle (reviewed
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here) is that sufficiently large injected power overcomes the losses associated with

being off-resonance. Imagine that the laser cavity shown in Figure 4-3 is lasing at a

frequency 𝜔0 with an intracavity intensity 𝐼𝐿, and that it has field reflectivity, gain,

and loss of 𝑟, 𝑔, and 𝛼 respectively. A field of intensity 𝐼 and frequency 𝜔 ̸= 𝜔0 is

injected: under what conditions will the laser lase at 𝜔 instead of 𝜔0?

gain g, loss α

r
0I  ,ωL

source: I, ω 

Figure 4-3: Basic laser cavity with injection locking.

Every round trip, a field inside the cavity acquires a factor of

𝐴𝑟𝑡(𝜔) = 𝑒𝑖
𝜔
𝑐
𝑛(2𝐿)𝑟2𝑒(𝑔−𝛼)(2𝐿)

= 𝑒𝑖(𝜔−𝜔0)
2𝑛𝐿
𝑐

[︁
𝑒𝑖𝜔0

2𝑛𝐿
𝑐 𝑟2𝑒(𝑔−𝛼)(2𝐿)

]︁
.

Because the system is lasing at 𝜔0, the quantity in brackets is known to be 1 and can

be ignored. When multiple reflections are considered, the field at 𝜔 obtains a total

transfer function of 𝐴(𝜔) = 1 + 𝐴𝑟𝑡(𝜔) + 𝐴2
𝑟𝑡(𝜔) + . . . = 1/(1 − 𝐴𝑟𝑡(𝜔)), or

𝐴(𝜔) =
1

1 − 𝑒𝑖(𝜔−𝜔0)
2𝑛𝐿
𝑐

≈ 1

−𝑖(𝜔 − 𝜔0)
2𝑛𝐿
𝑐

= 𝑖
𝑐

2𝑛𝐿

1

𝜔 − 𝜔0

. (4.12)

In terms of the free spectral range ∆𝜔 = 2𝜋𝑐/(2𝑛𝐿),

𝐴(𝜔) =
𝑖

2𝜋

∆𝜔

𝜔 − 𝜔0

. (4.13)

Light that is injected sufficiently close to the lasing frequency will experience a gain

of |𝐴(𝜔)|2. If one imagines a weak hypothetical source of radiation at 𝜔0 (say spon-

taneous emission) with an intensity 𝐼0, then the light at 𝜔 will dominate light at 𝜔0
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whenever |𝐴(𝜔)|2𝐼 > |𝐴(𝜔0)|2𝐼0 = 𝐼𝐿, that is whenever

𝐼 > 𝐼𝐿

(︂
2𝜋
𝜔 − 𝜔0

∆𝜔

)︂2

(4.14)

or ⃒⃒⃒⃒
𝜔 − 𝜔0

∆𝜔

⃒⃒⃒⃒
<

1

2𝜋

√︂
𝐼

𝐼𝐿
. (4.15)

This suggests two strategies for forming injection-locked microcombs: one can either

increase the power generated by FWM or decrease the injected frequency’s offset.1 In

fact, reducing the dispersion of the gain medium actually accomplishes both of these

things: four-wave mixing is enhanced because better phase-matching can be achieved,

and the frequency offset is decreased because dispersion is effectively the uniformity

of the mode spacing.

4.2 Dispersion engineering

Clearly, dispersion is important in both traditional microcombs and laser microcombs.

Unfortunately, a straightforward implementation of the approach taken in mid-IR

QCLs is unlikely to scale well to THz frequencies, because terahertz electromagnetic

waves strongly couple with the crystalline lattice and are thus orders of magnitude

more dispersive than mid-IR waves. The coupling of EM waves to the lattice can be

modeled as a simple polariton dispersion relation, which yields [94]

𝜖(𝜔) = 𝜖∞ +
𝜖∞ − 𝜖0

1 − 𝜔2/𝜔2
𝑇

. (4.16)

Here, 𝜖∞ is the high-frequency dielectric constant, 𝜖0 is the low-frequency dielectric

constant, and 𝜔𝑇 is the transverse optical phonon frequency. Figure 4-4 shows the

calculated GVD of gallium arsenide (GaAs) at 40 K, using parameters obtained from

Blakemore et al. [95]. Because 𝜔𝑇=8 THz in GaAs, at 3.5 THz the GVD is 87,400

1The cold cavity Q does not appear here since laser gain compensates loss.

83



5 10 15 20 25 30 35 40 45 50

10
3

10
4

10
5

10
6

Frequency (THz)

G
ro

up
 v

el
oc

ity
 d

is
pe

rs
io

n 
(f

s2 /m
m

)

Figure 4-4: Calculated GVD of GaAs. The Restrahlen band is shown in blue.

fs2/mm, which is 250 times greater than the GVD at 7 µm of 320 fs2/mm. Simply

using a broadband gain medium is not sufficient to overcome the dispersion of the

material itself and permit comb formation.

To overcome this problem, dispersion compensation was integrated into QCL

waveguides to deliberately cancel the cavity dispersion. The basic idea, illustrated in

Fig. 4-5, is that a chirped distributed Bragg reflector (DBR) corrugation is etched

10 μm

Figure 4-5: Artistic interpretation of double-chirped mirrors (DCMs) integrated into
QCL waveguides, along with an SEM image.

into the facet of the laser whose period tapers from a short one to a long one as
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its amplitude increases. Long-wavelength waves (which have higher group velocities)

travel to the end of the cavity before reflecting, while short-wavelength waves re-

flect earlier, thereby compensating dispersion. Essentially, this corrugation mimics

the double-chirped mirrors (DCMs) used to generate octave-spanning spectra in the

near-infrared and visible range [96], but instead of being made of discrete compo-

nents, the mirrors are integrated into the lasers themselves. The key advantage of

this method of dispersion compensation is that it gives precise control over the group

delay dispersion (GDD) of the cavity.

In order to design the corrugations used for dispersion compensation, one-dimensional

simulations were first performed that captured the essential behavior of the structures

by modeling the metal-metal waveguide as an infinite parallel-plate waveguide. This

transfer matrix formalism is useful for capturing the essential principles of design,

but is not especially accurate since it implicitly assumes a perfect magnetic conduc-

tor (PMC) at the waveguide edges. Specifically, it assumes that the impedance of a

waveguide of width 𝑤, thickness 𝑡, and index 𝑛 is

𝑍𝑖 =
𝜂0
𝑛𝑖

𝑡

𝑤
(4.17)

Because the model effectively over-confines the optical mode in the lateral direction,

it over-predicts the extent to which the impedance of a waveguide can be increased

by making it narrower. Still, it is a useful tool for guiding the more complete finite

element (FEM) simulations that were eventually performed, as it can be performed

in seconds instead of hours. Essentially, it functions by finding the reflectivity as a

function of frequency, Γ(𝜔). Then, group delay is determined according to

𝜏𝑔(𝜔) =
𝜕

𝜕𝜔
arg(Γ(𝜔)) (4.18)

As dispersion is fully characterized by 𝜏𝑔, this expression can be used to determine

dispersion at every order. The second-order group-delay dispersion, called 𝐷2, is
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defined by

𝐷2 ≡
𝜕𝜏𝑔
𝜕𝜔

. (4.19)

Note that the units of group delay dispersion are ps2, whereas the units of group

velocity dispersion (𝐷2 ≡ 𝜕
𝜕𝜔

1
𝑣𝑔

) is scaled by the propagation length and has units of

ps2/mm.

The key parameters, shown in Figure 4-6, are the corrugation length, its start and

stop period, its stop period, how quickly its amplitude tapers on (e.g., linearly), its

largest amplitude (minimum width), and end phase. Below this diagram are transfer

matrix simulations showing the effect of changing these parameters on group delay.

Note that in all cases the start and stop period of the DBR essentially determine the

frequency range over which dispersion can be compensated. For reference, the DBR

reflectivity (|Γ(𝜔)|) is also shown.

The first simulation shows the effect of changing the length of the DCM while

keeping everything else constant. Unsurprisingly, this effectively scales the amount

of dispersion compensation (i.e., the slope of each line). This is because to first

order, the corrugation length should determine the amount of compensation. The

second diagram shows the effect of tapering on the amplitude with different orders.

Here the amplitude as a function of position is assumed to scale in a polynomial

way, i.e. 𝐴(𝑧) ∼ 𝑧𝛼. Note that how quickly the amplitude tapers on determines

how strong ripples in the final group delay are: when 𝛼 = 0 and the corrugation

turns on instantaneously, large oscillations are evident. This is because the instan-

taneously turned-on cavity behaves like a Gires-Tournois interferometer, with the

large impedance mismatch at the DCM boundary causing a substantial portion of

the light to reflect immediately upon encountering the DCM. When the transmitted

light eventually does reflect, it interferes with the original reflected light, creating un-

desirable interference fringes. While this is obviously a bad thing from the standpoint

of compensating linear dispersion, it may be useful in future work if non-monotonic

dispersion is to be compensated.

The third simulation shows the effect of changing the largest amplitude of the
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Figure 4-6: Key parameters for designing DCMs, along with transfer matrix simula-
tions. Detailed discussion in the text.
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corrugation. To a leading degree, this effect determines the bandwidth over which

dispersion can effectively be compensated. When the amplitude is large (i.e., the

waveguide was tapered to a narrow ridge), the range over which the dispersion remains

linear increases. In contrast, when the corrugation is weaker, the range decreases. The

last simulation shows the effect of changing the final phase of the sinusoid before the

waveguide was terminated. (A phase of 0 is defined to be the corrugation shown, with

the waveguide terminating when the ridge is halfway through shrinking. A phase of

𝜋/2 is defined as the waveguide terminating at its minimum width, etc.) Only phases

of 0 were ultimately fabricated since it resulted in the cleanest GDD plot, but in the

future it may be more desirable to choose a phase of 3𝜋/2 if larger bandwidths are

to be compensated since it enhances the GDD at low frequencies.

Eventually, full-wave finite element (FEM) simulations were performed using COM-

SOL to verify design efficacy. The principle is the same as the transfer matrix

simulations—group delay is found by differentiating the phase of the reflection coefficient—

but the implementation is obviously different since the 3D simulations can take into

account higher-order lateral modes. First, the lateral modes of the waveguide were

found by performing a boundary mode analysis at the entrance of the corrugation.

Since only narrow ridges 20 µm wide were fabricated, this structure could only sup-

port two lateral modes at the largest frequency of interest, 4.2 THz. Their effecive

indices are plotted in Figure 4-7. Next, the S-parameters of the 3D structure were

determined as a function of frequency. For a narrow ridge with two modes, symmetry

and parity ensure that 𝑆21 = 0, and since a DBR has high reflectivity |𝑆11| ≈ 1 and

|𝑆22| ≈ 1. Only the lowest order (TEM-like) mode was considered, and its reflection

coefficient could therefore be taken to be 𝑆11. Group delay was calculated in the same

manner as before.

Figure 4-8 shows the group delay versus frequencies calculated for two well-

designed DCMs, compensating dispersion of 0.215 ps2 and 1.53 ps2, respectively.

Even though they differ in their compensation by nearly an order of magnitude,

linearity is maintained over the whole design range of 3 THz to 4 THz. Though

sidewall-based corrugations were used here, any perturbation that introduces a re-
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3 3.5 4

3

3.5

4

Frequency (THz)

G
ro

up
 d

el
ay

 (
ps

)

3 3.5 4
10

15

20

Frequency (THz)
G

ro
up

 d
el

ay
 (

ps
)

0.215 ps2 1.53 ps2

Figure 4-8: FEM simulation results for DCMs of different designs.

fractive index change into the waveguide (such as an etched trench or a region of

removed metal) can also be used to construct compensators.

4.3 Actual dispersion measurement

Even though the dispersion of GaAs is known and is easily measured at low temper-

atures, the situation is actually somewhat worse in THz QCLs. The gain medium

and waveguides also introduce dispersion into the QCL, making the dispersion un-

known and possibly even frequency dependent. In order to design DCMs, an accurate
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measurement of the dispersion of a real laser waveguide is essential. For this, single-

section THz-TDS was performed on the FL183S gain medium, previously discussed

within the context of its double-peaked gain (see section 3.3). This time, the use of

a single-section waveguide allows for a cleaner measurement of the round-trip phase

since the terahertz pulse does not encounter gaps that could distort the transmitted

pulse. Figure 4-9 illustrates the steps involved in performing this phase measurement.

6. 7. 8. 9. /..
−4

−I

−C

−/

.

/

C

I

4
xn/.

−5 Measurednpulse

Timen[ps]

E
le

ct
ric

nfi
el

d

6. 7. 8. 9. /..
−4

−I

−C

−/

.

/

C

I

4
xn/.

−5 Windowednpulses

Timen[ps]

E
le

ct
ric

nfi
el

d

. / C I 4 5 6
/.
−/4

/.
−/C

/.
−/.

/.
−8

/.
−6

Amplitudenofnechosn/nandnC

Frequencyn[THz]

E
ne

rg
yn

sp
ec

tr
al

nd
en

si
ty

. / C I 4 5 6
−C.

−/5

−/.

−5

.

5
Phasenofnechosn/nandnC

Frequencyn[THz]

P
ha

se
n[r

ad
]

. / C I 4 5 6
−46.

−45.

−44.

−4I.

−4C.

−4/.

GVDn=n.D.648psC=mm

Phasendifferencenandnquadraticnfit

Frequencyn[THz]

P
ha

se
n[r

ad
]

. 5 /. /5 C.
.

.D.5

.D/

.D/5

.DC

.DC5

.DI

Voltagen[V]

C
ur

re
nt

n[A
]

.

.D./

.D.C

.D.I

.D.4

.D.5

.D.6

.D.7

IVnandnGVDs

G
V

D
sn

[p
sC =m

m
]

Figure 4-9: Measured GVD of a 30 µm ridge.

First, the TDS pulse, shown in red, is acquired. Next, the pulses that were measured

are windowed separately using Hanning windows, and the results are shown in blue

and in green. Then, the amplitudes of each pulse are plotted; the amplitude of the
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blue pulse is more broadband since it has not been spectrally filtered by the laser

gain. The phases are plotted by first removing their linear part (which correpsponds

to trivial group delay), and then by only plotting them in regions where their SNR

is large. Here, SNR is indicated by the intensity of the line. Lastly, their phase

difference is plotted, and low-order polynomial fit is used to determine their total

dispersion. The value of 𝐷2 is normalized to the length of the cavity, and is plotted

vs bias. Note that dispersion in the lasing regime is generally seen to be an increasing

function of bias.
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Figure 4-10: Measured GVD of an 80 µm ridge.

A key danger associated with this type of measurement is over-interpretation
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of multi-mode data. Figure 4-10 shows the dispersion data measured using an 80

µm ridge instead of a 30 µm one. Even though the time-domain signal actually

appears somewhat cleaner, the frequency-domain data possesses several nodes in both

amplitude and phase. This is because the photoconductive generation process excites

all modes which have even parity, i.e. the modes with a maximum in the center

of the ridge, where the pump is shined. In this case, it is likely the n=1 and n=3

modes being excited. If two modes possess slightly different group velocities, then

they will arrive at different times and produce fringing inversely proportional to their

relative group delay. This effect is barely noticeable on the first pulse that exits the

waveguide since the fringing is about 1 THz, but is very noticeable on the second

since the fringing is three times less, about 0.33 THz.
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Figure 4-11: High-SNR phase measurement of a 30 µm ridge at high bias, along with
the bias-dependence of measured dispersion.

Figure 4-11 shows the phase acquired by a pulse after traveling through a 775 µm

long laser twice; the highly nonlinear phase-frequency relation indicates a GVD of

𝐷2 = 111, 000 fs2/mm, which is substantially higher than what would be expected

from GaAs alone. This value is taken to be the nominal value of 𝐷2 at the bi-

ases of interest. The figure also shows the bias-dependence of dispersion, using both

a second-order polynomial fit and a third-order fit (at 3.5 THz). In order to ac-

count for uncertainties in the measurement and in device fabrication, seven different
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compensators were designed, which compensated the measured 𝐷2 adjusted by 0%,

±6.6%, ±13.3%, and ±20%. In subsequent measurements, only the +13.3% device

was found to be interesting, whereas the rest just lased at a few modes in stable

bias regimes. This coresponds to a GVD of about 125,000 fs2/mm. The other major

variation between devices was that some devices had all of their compensation on one

facet (a single compensator), whereas others had their compensation split between

both facets (a split compensator).

4.4 Basic results
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Figure 4-12: Above: DCM batch, along with the corresponding optical spectra. Be-
low: High-resolution CW version of the 13.3% compensated spectrum.

Figure 4-12 shows the pulsed-mode spectra of a few lasers from the same batch,
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with varying amounts of dispersion compensation. The lasers all have their compen-

sations split over both facets, and the devices are all biased to 14 V at a temperature

of 30 K in pulsed mode (10% duty cycle). Each laser is 5 mm long, and the spectrum

was measured with a home-built Fourier Transform Spectrometer. Only the device

with the 13.3% overcompensation produces an especially broad spectrum, with the

+7% producing an almost single-mode output and the +20% producing a few-mode

output. (More importantly, the 20% overcorrected sample does not produce a sta-

ble narrow beatnote, as will be discussed in the forthcoming chapter.) This type of

behavior was seen in multiple devices of the same length, although it was eventually

determined that shorter devices were more insensitive to dispersion compensation.

To further investigate the spectral properties of the 13% overcorrected devices, a

hyperhemispherical lens was attached to a 5 mm device with all of its compensation on

one facet. The laser is continuous-wave biased to 0.9 A, requiring that the temperature

of the cryocooler be increased to 50 K to accommodate the extra heating power. The

result is shown in the lower panel of 4-12, along with the calculated absorption due

to atmospheric humidity. (The system was of course purged with dry nitrogen gas,

but some of the spectral features are especially deep and are essentially impossible

to remove without a system fully in vacuum.) As previously discussed, this gain

medium has a strong injector anticrossing and possesses two peaks, one near 3.3 THz

and one near 3.8 THz. These peaks are clearly visible in the optical spectra. The

lines are spaced by about 6.8 GHz, roughly corresponding to the mode spacing of the

cavity, although precisely determining the spacing is difficult since FTS has a limited

precision. At 45 K, the lowest temperature the device could be biased at, it produced

more than 5 mW of optical power, as measured with a calibrated Thomas-Keating

power meter.

An interesting side effect of the broadband terahertz generation is that this same

design generates a strong RF beatnote at the round-trip frequency of the laser (6.8

GHz) when DC-biased. Even without taking into account RF losses from the bond

wire, as much as -33 dBm of power has been observed leaking out of the 5-mm QCLs,

as measured using a bias tee. Though similar beatnotes have previously been observed
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on the bias lines of metal-metal waveguides [97], at -65 dBm they were three orders of

magnitude weaker. This strong RF signal implies that the beatnotes generated from

all the pairs in the spectra are adding up coherently, although it is not definitive by

itself. Also of note is the fact that for longer devices, only the 13.3% overcompensated

devices actually produce this beatnote; see Figure 4-13 for the bias dependence of the

RF power of this beatnote for several devices. Note that the “wrong” dispersion
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Figure 4-13: RF beatnote power measured directly from QCL using devices of varying
dispersion compensation.

compensation produces no detectable beatnote. It is possible that such a beatnote is

actually present, but is just too weak or too broad to be directly measured. As will be

shown in the following chapter, this narrow beatnote is a signature of comb formation,

as it essentially contains the optical beating between all modes in the cavity.

Figure 4-14 shows the beatnotes measured directly from 5 mm QCLs with and

without lenses attached, offset relative to their carrier. The lensed devices produce

beatnotes with a FWHM of about 100 kHz, while the non-lensed devices produce

beatnotes whose widths are on the order of kHz. In any event, one can compare

the width of these beatnotes to the expected deviation in line spacing over some

bandwidth for a dispersive cavity. Suppose that two pairs of lines are separated by a

frequency ∆𝑠, and that a cavity has a length L. The difference in round trip group de-
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Figure 4-14: RF beatnotes measured from laser bias line, for lensed devices (left) and
non-lensed devices (right).

lays for these lines can be estimated using 𝐷2 ≈ 1
2𝐿

1
2𝜋

Δ𝜏𝑔
Δ𝑠

, or ∆𝜏𝑔 ≈ 4𝜋𝐿𝐷2∆𝑠. If the

pair has spacings ∆𝜈1 and ∆𝜈2, then the difference in these spacings is approximately

|∆𝜈1 − ∆𝜈2| ≈ ∆𝜏𝑔∆𝜈
2, or

|∆𝜈1 − ∆𝜈2| ≈ 4𝜋𝐿𝐷2∆𝜈
2∆𝑠 (4.20)

For 𝐷2 = 0.1 ps2/mm, a repetition rate ∆𝜈 = 6.8 GHz, and a 5 mm cavity, one

finds that two line pairs separated by ∆𝑠 = 100 GHz will have differences in their

repetition rates of about 29 MHz. Clearly, this is much broader than any of the

observed beatnotes, so what is happening? Why are kilohertz fluctuations in the

beatnote frequencies still present?

The answer is that the QCLs are in fact acting as frequency combs and that

the beatnote indicates this, but they’re being broadening by environmental factors,

particularly feedback. Because the devices are mounted in a pulsed-tube cryocooler,

mechanical vibrations cause the optical feedback to be unstable and impart low-

frequency fluctuations on the beatnote. Even when the feedback is blocked by cov-

ering the window with an absorptive material, fluctuations remain in the beatnote

frequencies, likely because some light reflects off the window itself. Fortunately, by

slowly applying a sub-mA modulation to the bias of the laser, most of the phase noise

associated with the feedback can be removed and the output can be stabilized. Figure
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Figure 4-15: Setup used for stabilizing the repetition rate. RF lines are shown in blue
(GHz), IF lines are shown in red (MHz), and DC lines are shown in black (kHz).

4-15 shows the setup used for stabilizing the QCL’s repetition rate against mechanical

vibration. For repetition rate stabilization, the free-running beatnote emanating from

the QCL is first observed on a spectrum analyzer, which is typically near 6.8 GHz.

An external frequency synthesizer (HP 8673E) is tuned to be 10 MHz away from the

free-running signal. The QCL beatnote is then downconverted twice, first to 10 MHz

and then to DC, and is used as the error signal for a PI controller. The output of

the PI controller is added to the QCL bias with a 3 kΩ resistor, and since the QCL’s

bias affects the refractive index and therefore repetition rate, this locks the QCL’s

repetition rate to the frequency of the synthesizer plus 10 MHz. Note that this is not

injection locking, and that the added current only has frequency components up to

about 100 kHz, and has an amplitude of less than a milliamp (much smaller than the

DC bias of about an amp).

Figure 4-16 shows the effect of this stabilization procedure on the beatnote, as

measured by downconverting the beatnote with the RF and IF local oscillators and

recording the beating on an oscilloscope, and Fourier Transforming to get the power

spectrum. (Above 40 MHz the signal is measured with an RF spectrum analyzer

instead, and so the signal is discontinuous at 40 MHz.) 99.92% of the beatnote’s

free-running phase noise is removed, and no major sidebands are visible other than

the one at 350 kHz created by the phase-locked loop.
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Figure 4-16: Effect of stabilizing beatnote against external perturbations.

Of course, the existence of a broad spectrum does not prove that the QCL is be-

having as a frequency comb, merely as an interesting multi-mode laser. Even relying

on the beatnote’s linewidth and phase noise is questionable, as QCLs are frequently

prone to microwave oscillation as a consequence of their negative differential resis-

tance. (Negative differential resistance is even used to construct oscillators, such as in

resonant-tunneling diodes.) The following chapter establishes the principles necessary

for describing such a laser’s coherence, and shows that this device is truly a comb.
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Chapter 5

Coherence of frequency combs

Why was the laser fundamentally different from all earlier light sources? There are

many ways to answer this question, but perhaps the most succinct is that it is co-

herent. The word "coherent" is ambiguous and generally depends on the context,

but the simplest way to define a coherent system is as something that can be char-

acterized by a single number. For example, a light source is temporally coherent if

its time-dependence is completely described by a single frequency. Similarly, a light

source is spatially coherent if it emits completely into a single mode, in which case

only one phasor quantity is needed to describe its amplitude and phase.

It should therefore be no surprise that if one wants to use a frequency comb for

spectroscopic and metrological applications, coherence is probably the most important

parameter that needs to be characterized. For frequency combs, there are two types of

coherence that can be discussed, corresponding to the two frequencies that describe it.

The first is itsmutual coherence, which describes the relative phase stability of any two

lines of the comb. Because phase-locking in laser microcombs is accomplished through

four-wave mixing, which in return requires a uniformity in difference frequencies, this

is effectively equivalent to the constraint that the lines be evenly spaced. In other

words, mutual coherence is related to the uniformity of the comb’s repetition rate.

The other type of coherence is its absolute coherence, which describes the global phase

stability of all the lines. Absolute coherence is related to the comb’s offset frequency.

Why are these two properties important? Consider the application of dual-comb
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Figure 5-1: Dual comb spectroscopy with various types of incoherence.

spectroscopy, a schematic of which is shown in Figure 5-1. Suppose that the 𝑖th pair

of comb lines is located at a frequency 𝜈𝑖. If ideal frequency combs were used to detect

the absorption of a gas by shining them through it, then the beating between those

lines would be located at the radio frequency ∆𝑖. By measuring all of the beatnotes

between each pair of lines, one could reconstruct the original sample’s absorption
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profile.

Next, consider the effect of mutual incoherence on the measured absorption. This

could manifest as a line which is detuned from the rest of the lines in the comb; here

one line is slightly red-shifted compared to the rest. The result of this red-shifting

is that the beatnote frequency ∆𝑖 is increased, causing the resulting RF spectrum

to be comb-like no longer. This severely complicates an analysis of the resulting

data: though one could still conceivably extract the absorption profile from this

measurement, doing so would require precise knowledge of both combs’ frequencies,

a nontrivial task.

Finally, consider the effect of absolute incoherence on the absorption profile. Even

though all of the lines are uniformly-spaced, because each line has a finite linewidth

and the absolute frequencies of each comb are uncorrelated, the resulting beatnotes

will also broaden. If this broadening is too severe, then the beatnotes will overlap

and produce uninterpretable data.

5.1 Mutual coherence

5.1.1 Mutual coherence of two lines

To discuss the different types of coherence used in frequency combs, one must math-

ematically clarify what is meant by each type. It is therefore easier to start with the

case of two lines. If an ideal oscillator of frequency 𝜔 has an amplitude 𝐴 and a phase

𝜑, then the field associated with that oscillator would be 𝐸(𝑡) = Re (𝐸𝑒𝑖𝜔𝑡), where

the quantity 𝐸 ≡ 𝐴𝑒𝑖𝜑 is referred to as its phasor. However, this time-dependence

presupposes that the oscillator is completely stable and unchanging with time. In

reality, if the oscillator’s amplitude and phase were free to drift around, the phasor

would acquire an explicit time-dependence. Instead, the electric field should be ex-

pressed in the form 𝐸(𝑡) = Re
[︀
𝐴(𝑡)𝑒𝑖(𝜔𝑡+𝜑(𝑡))

]︀
. Note that if the amplitude of the

oscillator were fixed, then the linewidth of the oscillator will be wholly determined

by fluctuations in its phase.
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As previously mentioned, mutual coherence is defined in this thesis as the relative

phase stability of two lines. In other words, if two lines have negligible amplitude

fluctuations and have respective phases of 𝜑1(𝑡) and 𝜑2(𝑡), then their relative phase

difference 𝜑21 ≡ 𝜑2−𝜑1 will be a metric for how phase-coherent they are. More specif-

ically, when 𝜑21 is constant in time, then the oscillators will be considered completely

coherent (even if that phase difference is non-zero). This can be further quantified by

use of the phase noise power spectral density 𝑆𝜑21(𝜔), which is defined as the power

spectrum of the phase fluctuations per unit bandwidth (and has units of rad2/Hz):

𝑆𝜑21(𝜔) ≡

⟨
1

𝑇

⃒⃒⃒⃒∫︁ 𝑇

0

𝜑21(𝑡)𝑒
𝑖𝜔𝑡𝑑𝑡

⃒⃒⃒⃒2⟩
(5.1)

In the previous expression, it is assumed that the measurement is repeated many times

to get a statistical average, and that the phase noise is recorded over some long interval

𝑇 , referred to as the measurement time. (One can alternatively conceive of this as an

ensemble average over many systems.) Also note that the above quantity is defined

over positive 𝜔 and is therefore considered a single-sideband measurement. Since the

Fourier transform of a real quantity is symmetric, without loss of generality one can

alternatively consider only positive frequencies as long as the corresponding phase

noise is doubled. Physically, this is a consequence of the fact that both quadratures

of a sinusoid are free to carry noise. In addition, it is usually more convenient to deal

with linear frequencies rather than angular frequencies, and so the convention used

here is that the phase noise plotted is always 𝑆𝐷𝑆𝐵(𝜈) ≡ 2𝑆𝜑21(2𝜋𝜈).

How can the relative phase be measured? The most straightforward method is

simple photodetection. When lines of frequency 𝜔1 and 𝜔2 and phase 𝜑1 and 𝜑2

are shined on a sufficiently fast photodetector, they will beat together to form an

electronic frequency at 𝜔2−𝜔1 with a phase given by 𝜑2−𝜑1. Once again, fluctuations

in the relative phase will translate into a non-zero difference-frequency linewidth.

Next, if an electronic local oscillator is used to further downconvert the difference

frequency, then the phase can directly be measured down at sub-MHz frequencies.

Figure 5-2 shows the steps of this process.
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Figure 5-2: Schematic showing the process used to measure phase noise.

More rigorously, suppose that the oscillators have fields Re [𝐸1(𝑡)𝑒
𝑖𝜔1𝑡] and Re [𝐸2(𝑡)𝑒

𝑖𝜔2𝑡].

The power measured by the photodetector, 𝑃 (𝑡) ∼ 𝐸2(𝑡), will effectively be low-pass

filtered since no photodetector can respond to optical fluctuations in its signal, leaving

𝑃 (𝑡) =
1

2

(︀
|𝐸1|2 + |𝐸2|2 + 𝐸*

1𝐸2𝑒
𝑖(𝜔2−𝜔1)𝑡 + 𝐸1𝐸

*
2𝑒

𝑖(𝜔1−𝜔2)𝑡
)︀
. (5.2)

The first two terms correspond to usual power detection and are phase-insensitive,

while the second two terms are sensitive to the optical fields’ phase differences. Next,

suppose an electronic local oscillator (LO) with a well-defined amplitude and phase is

tuned near the beat frequency 𝜔21 ≡ 𝜔2 − 𝜔1. If the LO’s time dependence takes the

form Re [𝑉0𝑒
𝑖𝜔0𝑡], then the resulting mixed product will be 𝑆(𝑡) = 𝑃 (𝑡) ×Re [𝑉0𝑒

𝑖𝜔0𝑡],

once again low-pass filtered:

𝑆(𝑡) =
1

2
Re
[︀
𝑉0𝐸1(𝑡)𝐸

*
2(𝑡)𝑒𝑖(𝜔0−𝜔21)𝑡

]︀
(5.3)

Rewriting this result in terms of amplitudes and phases, one finds that the mixed
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product is proportional to

𝑆(𝑡) = 𝐴1𝐴2 cos
(︁

(𝜔0 − 𝜔21)𝑡+ (𝜑0 − 𝜑21)
)︁
. (5.4)

In other words, by detecting the beatnote and mixing the result on a local oscillator,

we have obtained a slowly-varying electronic sinusoid whose phase is related to the

optical phase noise 𝜑21(𝑡). But how can this be used to get the phase noise directly?

One approach is to tune 𝜔0 to be exactly equal to 𝜔21 and to choose 𝜑0 = 𝜋/2, in

which case the resulting signal would be 𝑀(𝑡) = 𝐴1𝐴2 sin(𝜑21) ≈ 𝐴1𝐴2𝜑21(𝑡). If this

could be done, the phase noise spectral density could be found by simply recording

𝑆(𝑡) and performing a fast Fourier transform (FFT).

Unfortunately, in reality it doesn’t matter how closely the local oscillator’s fre-

quency is tuned to the beat frequency, since independent oscillators will eventually

drift off of each other. Luckily, feedback can be used to remedy this problem. If the

phase error 𝜑21 is not too large and the detuning frequency is sufficiently small, then

the total electronic phase will change slowly and negative feedback can be used to en-

sure that the local oscillator and the beat frequency remain in phase with each other.

Suppose that the frequency of the local oscillator can be adjusted by the application

of a voltage. At some point, the total electronic phase will evolve to the point where

Φ(𝑡) ∼ 𝜋/2, at which point the mixing product will be linear in the phase. At this

point, if sufficient negative feedback is applied it will “lock” the frequency of the local

oscillator to the beat frequency. If the lock is sufficiently robust, it will ensure that

the phase error is massively reduced.

Next, suppose that the local oscillator is now used to measure both quadratures

of the beating between lines 1 and 2. For example, this could be accomplished by

phase-shifting the local oscillator by 90∘ and producing a second mixing product.

Ignoring the local oscillator’s amplitude, and shifting the time origin so that the LO’s
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phase is 0∘, the two mixed signals are proportional to

𝑆𝐼(𝑡) = Re
[︀
𝐸1(𝑡)𝐸

*
2(𝑡)𝑒𝑖(𝜔0−𝜔21)𝑡

]︀
(5.5)

𝑆𝑄(𝑡) = Im
[︀
𝐸1(𝑡)𝐸

*
2(𝑡)𝑒𝑖(𝜔0−𝜔21)𝑡

]︀
(5.6)

where 𝑆𝐼(𝑡) is used to refer to the “in-phase” signal and 𝑆𝑄(𝑡) is used to refer to

the “in-quadrature” signal. Even if one of the quadratures is locked by feedback

to zero, the other one will by necessity be non-zero, since the two signals are out

of phase with each other (i.e., one or both will acquire a D.C. value). Essentially,

one of the quadratures is cosine-like and the other is sine-like. Figure 5-3 shows a

schematic of the power spectral densities associated with each quadrature, in both

the locked and unlocked states. Note first that locking does not completely eliminate

Locked I

νAudio

M
ix

er
 p

ro
du

ct
P

ow
er

 s
pe

ct
ra

l d
e

ns
iti

es Unlocked I/Q

Locked Q

residual
phase noise

free-running
phase noise

Figure 5-3: The power spectral densities associated with each quadrature of the mixed
signals.

the phase noise, as there will always be residual phase noise that can’t be elimnated

by feedback (although it can be greatly suppressed). Note secondly that the power

spectral density of one of the quadratures—in this case the Q channel—contains a

delta function at zero frequency, by virtue of its DC term. Moreover, note that the

DC term will essentially vanish in the unlocked state, since sufficiently large phase

fluctuations will ensure that the long-term average of both quadratures is zero.

A mathematically cleaner way of describing the two quadratures is to combine

them into a single signal that is complex, 𝑆+. While this can’t be done physically, it
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can be done in a computer provided both quadratures are simultaneously recorded.

In other words, the following definitions are made:

𝑆±(𝑡) ≡ 𝑆𝐼(𝑡) ∓ 𝑖𝑆𝑄(𝑡)

𝑆+(𝑡) = 𝐸*
1(𝑡)𝐸2(𝑡)𝑒

𝑖(𝜔21−𝜔0)𝑡 (5.7)

𝑆−(𝑡) = 𝐸1(𝑡)𝐸
*
2(𝑡)𝑒−𝑖(𝜔21−𝜔0)𝑡 = 𝑆*

+(𝑡)

Note that the quantity 𝑆− has also been defined, representing 𝑆+’s conjugate. When

the beatnote between the lines has been locked to 𝜔0 using feedback, 𝑆+ ideally

becomes constant in time. Moreover, the phase of 𝑆+ is then nothing more than the

relative phase of the two lines. As a result, fluctuations in the relative phase manifest

as fluctuations in 𝑆+.

Next, consider the average value of the complex signal, ⟨𝑆+(𝑡)⟩. Here, angle

brackets refer to a time average over long-term (millisecond or longer) time scales.

To see how this quantity is affected by phase fluctuations, it is useful to plot the

complex beating on a phasor diagram, as shown in Figure 5-4. On these diagrams,

SI
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Figure 5-4: Phasor diagram for varying levels of phase fluctuation. The average value
of 𝑆+ is marked with an x.

𝑆+(𝑡) has been drawn with a blue line, its mean value has been marked with an ×,

and the circle representing |𝑆+| = |𝐸1||𝐸2| has been drawn for reference. Ignoring

amplitude fluctuations, if the beat signal between the lasers is completely phase-

stable, as shown in the left-most case, then the mean value of 𝑆+(𝑡) lies on the circle.

If the phase fluctuations are only minor, as shown in the middle case, then the mean
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value will lie on the circle’s interior. However, if the phase fluctuations are major,

as shown in the right-most case, the mean value will be close to the origin. As the

magnitude of the fluctuations approach 2𝜋, the magnitude of the mean essentially

vanishes.

It is with this picture in mind that mutual coherence is defined. Normalizing

⟨𝑆+(𝑡)⟩ to the amplitudes of lines 1 and 2, the mutual coherence is defined to be

𝑔+(𝜔21) ≡
⃒⃒⟨︀
𝐸*

1(𝑡)𝐸2(𝑡)𝑒
𝑖(𝜔21−𝜔0)𝑡

⟩︀⃒⃒√︀
⟨|𝐸1(𝑡)|2⟩ ⟨|𝐸2(𝑡)|2⟩

(5.8)

This definition of coherence is convenient because it can be directly measured: mix-

ing can be used to measure the numerator, and power measurements can be used to

measure the denominator. This definition has also been used by many groups devel-

oping microcombs, since notions of timing jitter that work well for mode-locked lasers

are not as relevant for microcombs.[98] Note that this coherence metric is dependent

on the choice of offset frequency 𝜔0: when 𝜔21 ̸= 𝜔0, this coherence will vanish and

𝑔21 = 0. When there are no long-term phase fluctuations between the two lines and

the frequencies are spaced by 𝜔0, they will be completely coherent and 𝑔21 = 1.

5.1.2 Mutual coherence of comb lines

The generalization of this definition to the multiple lines of a frequency comb is

straightforward. One can say that the coherence with respect to the offset 𝜔0 between

lines 𝑖 and 𝑗 is

𝑔+(𝜔𝑗𝑖) ≡
⃒⃒⟨︀
𝐸*

𝑖 (𝑡)𝐸𝑗(𝑡)𝑒
𝑖(𝜔𝑗𝑖−𝜔0)𝑡

⟩︀⃒⃒√︀
⟨|𝐸𝑖(𝑡)|2⟩ ⟨|𝐸𝑗(𝑡)|2⟩

(5.9)

Though writing this definition down is easy, actually measuring 𝑔 is challenging.

While it is possible in principle to perform a mixing experiment similar to the one

previously described, one would have to measure the coherence for each pair of lines.

In practice, not only would this be extremely difficult (requiring 𝑁2 measurements for

N lines), but also effectively impossible since the largest difference frequency involved

in the spectra previously shown is about 800 GHz, which would require a terahertz
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detector with a bandwidth of 800 GHz. Even if such a detector and IF circuitry could

be found, each line would have to be isolated, requiring optical bandpass filters with

a bandwidth much less than the repetition rate, 6.8 GHz.

Of course, proving the existence of a frequency comb whose lines are evenly spaced

does not actually require that every value of 𝑔+(𝜔𝑗𝑖) be measured. In fact, one only

needs to show that every line is separated from its neighbors by the same frequency,

the repetition rate ∆𝜔. For an ideal frequency comb, the coherence between lines 𝑛

and 𝑛+ 1 with respect to the repetition rate, ∆𝜔, should be equal to 1 for all 𝑛. This

motivates an alternative definition for the coherence of a comb:

𝑔+(𝜔) ≡ |⟨𝐸*(𝜔)𝐸(𝜔 + ∆𝜔)⟩|√︀
⟨|𝐸(𝜔)|2⟩ ⟨|𝐸(𝜔 + ∆𝜔)|2⟩

, (5.10)

This definition plays loose with the admixture of time and frequency, but it can be

made rigorous by using short-time Fourier Transforms and taking an average over

macroscopic timescales. In this definition, the frequency detuning factor 𝑒𝑖(𝜔0−𝜔𝑖𝑗)𝑡

has effectively been wrapped into the frequency-shifting factor 𝜔+ ∆𝜔. If a line at 𝜔

has no line next to it at exactly 𝜔 + ∆𝜔, the coherence will vanish.

5.2 Beatnote measurements of mutual coherence

Unfortunately, reducing the number of beatnotes that need to be measured does not

really solve the problem of how 𝑔+(𝜔) can be measured, because spectral filtering

would still be necessary to obtain its frequency dependence. One could shine all

of the modes onto a single detector without prefiltering, and this would give some

information about the individual beatnotes since they would all appear on the RF

spectrum analyzer, but such a measurement is incoherent and gives limited informa-

tion about g. The narrowness of the beatnote is only a necessary condition to show

that a laser is acting as a comb, but it is not a sufficient one. Still, such measurements

provide a useful check and are performed here.

As mentioned earlier, an interesting side effect of the broadband terahertz gener-
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ation in properly-compensated frequency comb devices is that they generate a strong

RF beatnote at the round-trip frequency of the laser when DC-biased. Moreover, this

beatnote is narrowband (with a full-width half maximum of about 100 kHz) when

compared with its center frequency (6.8 GHz), suggesting that it is extremely coher-

ent. But what does it represent, and is it physical? One possibility is that the QCL is

acting as a mixer of sorts for the light circulating inside the cavity. This intracavity

light is spaced by the mode spacing of the cavity and therefore generates beating

much like a mixer does.

There are several ways for this to happen, which are mathematically indistinguish-

able and yet physically very different. The first way is essentially direct detection.

It is known that the current drawn by a QCL is a relatively strong function of the

circulating power, since the upper state lifetime of a laser is sharply reduced by stim-

ulated emission. This can be seen by comparing the lasing IV of a laser with the

non-lasing IV of the same laser, an example of which is shown in Figure 5-5. (Lasing
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Figure 5-5: Lasing current-voltage vs nonlasing current-voltage for a laser comprised
of the OWI222G gain medium [28].

in this structure was inhibited by the application of Stycase 2850FT, an epoxy which

is very lossy in the terahertz.) Notice that the presence of a strong optical field inside

the cavity increases the current density through the laser by almost a factor of 2.
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Fundamentally speaking, this means that the QCL is essentially a detector, albeit

one with a relatively low responsivity. How fast is it as a detector (i.e., how quickly

does it respond to changes in its input)? If treated as a traveling-wave detector,

it should be as fast as its gain recovery time, on the order of tens of picoseconds

for terahertz QCLs. [99] Since the metal-metal waveguide is essentially a microstrip

line that supports microwave frequencies in addition to terhertz ones, it would be

no surprise if the gain medium were able to transmit local fluctuations in intensity

into fluctuations in the local bias of the waveguide that would be measurable with an

external microwave spectrum analyzer.

Another possibility that would explain the generation of difference frequencies

inside the waveguide is the possibility of Schottky mixing on the contacts of the

structure. Because the highly-doped layer needed to form an ohmic contact between

the gain medium and its metallic contact is moderately lossy in the terahertz, it is

often the case that the contact layer is removed and a Schottky contact remains. As

Schottky diodes can be used as terahertz detectors [53] by virtue of their high-speed

electronic nonlinearity, Schottky mixing can be used to detect intracavity difference

frequency mixing. For example, such behavior has been observed in structures that

were deliberately engineered to act as Schottky mixers by Wanke et al. [100]. The

last possibility is simple difference frequency generation by means of optical rectifi-

cation (i.e., by 𝜒(2) second-order nonlinearity). As intersubband structures can have

extremely large nonlinearities [101], frequency mixing can act to form the difference

frequency. But whatever the mechanism, be it direct detection, photonic, or elec-

tronic, all produce signals at the difference frequencies inside the cavity, which can

be measured outside the laser using a bias tee and an RF spectrum analyzer.

5.2.1 Schottky mixer comparison

In order to check how representative this measurement is of the “real” beatnote that

would be observable on an external detector, we compared the QCL beatnote to the

beatnote measured on a fast THz detector—initially, a horn-coupled Schottky mixer

from Virginia Diodes (VDI). The VDI Schottky mixer can respond to terahertz signals
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more or less instantaneously in a compact room-temperature form factor (meaning

that their effective IF bandwidth is whatever frequency they’re operated at), but

do so at the expense of a relatively low sensitivity. Figure 5-6 shows a comparison
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Figure 5-6: Left panel: Beatnote obtained directly from a lens-coupled QCL and from
a Schottky mixer at 45 K and a bias of .925 A. Right panel: Bias dependence of the
beatnote, as measured on a Schottky mixer and on a QCL.

between the RF beatnotes from a lens-coupled QCL comb (FL183S-FC-6-m6) and

from a Schottky mixer used to detect the comb. (Note that in the left panel the

measurements were not taken with the same resolution bandwidth and the linewidth

of each beatnote is determined by the instrument.) The signal-to-noise ratio of the

QCL-generated beatnote is extremely high—over 50 dB—and is in fact determined

by the dynamic range of the spectrum analyzer. However, the signal-to-noise ratio

of the Schottky-detected beatnote is only about 10 dB (even though the laser is a

powerful 5 mW laser), owing to the diode’s relatively low sensitivity and the fact that

the QCL measurement is a measure of the intracavity power and should be much

higher than emanated power (which suffers coupling losses upon exiting the cavity,

passing through free space, and going into the Schottky mixer’s horn). Also note that

the two beatnotes have a similar bias dependence and are probably actually identical,

differing only because only one spectrum analyzer channel was available and the two

signals had to be switched manually, causing the environment to drift slightly between

the two measurements.
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5.2.2 Hot electron bolometer

Another detector that can be used to measure terahertz beatnotes is a hot electron

bolometer. Like all bolometers, it detects light by detecting the temperature change

in a thermal reservoir induced by incident radiation. Bolometers are particularly well-

suited for terahertz detection since they have no intrinsic frequency cutoff that would

limit operation at terahertz frequencies (e.g., nothing equivalent to the bandgap of a

photodiode). Though bolometers can be quite sensitive, they are also usually quite

slow since they are based on thermal effects. Very few types of bolometers can achieve

gigahertz speeds. Hot electron bolometers (HEBs), on the other hand, function by

coupling light into a superconducting bridge using an antenna. If the bridge’s elec-

trons heat to above the critical temperature of the material, superconductivity is lost

and the bolometer becomes a resistor. This change in resistivity is very dramatic and

allow for very sensitive detectors to be made (NEP∼ 10−14 W/
√
Hz). In addition,

because in HEBs it is only the bridge’s electrons that are heating up, the system

has a very low heat capacity. As the electron-phonon interaction efficiently transfers

energy into the lattice, the electronic system has a very short thermal time constant

(sub-ns). This endows the HEB with an excellent combination of both sensitivity and

speed at a wavelength where both are usually lacking. Their main tradeoff is that

they usually require cooling to liquid helium temperatures.

For these measurements, a superconducting NbN HEB mixer obtained from col-

laborators at TU Delft and at SRON in the Netherlands was used. This device in

particular is known for its extreme sensitivity [55] and response beyond 7 GHz [102],

and has proven to be a very useful tool for performing experiments with THz QCLs.

Figure 5-7 shows a schematic of this HEB, as well as a picture of how it was mounted

in a helium dewar. The cryostat was constructed to have high-density polyethylene

(HDPE) windows, and a metal mesh low pass filter was used to block unwanted

far-infrared radiation from saturating the instrument. The HEB mixer block was

mounted close to the window, and an RF bias tee was placed inside the cryostat

along with a SiGe cryogenic low-noise amplifier (LNA) that provided 27 dB of gain at
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Figure 5-7: Left panel: HEB schematic. Right panel: HEB configuration.

4 K. Stainless steel coaxial cable was used to collect the amplified RF from the LNA,

and a custom-built bias box was used to generate the mV-level bias for the HEB as

well as measure its DC current. Figure 5-8 shows the DC IVs for the HEB under

various pump states. When the HEB is unpumped, the conductivity of the HEB is

effectively infinite (for small biases). As more teraherz power is put into the element,

the IV curve becomes more and more linear until it effectively becomes resistive.

Although this makes the HEB very sensitive, it also makes it prone to saturation.

Frequently, a screen had to be used for the HEB to produce meaningful data.

As previously discussed, a straightforward way to test whether a laser is operating

as a frequency comb is to shine its light onto a fast detector and to examine the

resulting optical beating between all the laser modes. If only one narrow beatnote

was observed, that would indicate that all of the detected modes were evenly spaced.

Conversely, a non-comb would have multiple beatnotes; e.g, two frequencies separated

by 100 GHz would have mode spacings differing by 29 MHz as calculated before.

Figure 5-9 shows various RF beatnotes measured using the HEB, offset from the

repetition rate of 6.8 GHz. All beatnotes were measured by attenuating the light from

the QCL by 16 dB to prevent saturation (a 40× reduction), amplifying the RF signal

with the 27 dB gain cryogenic LNA, and amplifying the RF further with a 31 dB room-

temperature LNA. In all cases, the SNR of the beating seen is far better than the SNR
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Figure 5-8: IV curves of HEB under various pump conditions.

of the beating seen on the Schottky mixer, and is in excess of 50 dB. The leftmost

panel shows the kind of HEB beatnote achievable from a QCL with a lens whose

QCL beatnote is unstabilized: the short-term FWHM is comparable to the FWHM

of the unstabilized QCL beatnote. The second panel shows the effect of stabilizing

the QCL beatnote on the HEB beatnote. Even though feedback is being used to lock

the QCL beatnote, the HEB beatnote also shows a collapse in its linewidth. In this

case, it collapses to the spectrum analyzer’s minimum resolution, showing that the

RF beating coming out of the QCL—generated by whatever mechanism—is a fair

representation of the beatnote on the QCL. As a sanity check for this, Figure 5-10

plots the beatnotes from the QCL and from the HEB. Once again, they agree very

well, with the differences only being accounted for drift in the meausrement. Lastly,

in the last panel of Figure 5-9 the HEB beatnote is downconverted and measured

with an FFT spectrum analyzer to get around the spectrum analyzer’s minimum

resolution. When not limited by the instrument, the beating is only broadened by Hz

levels. Though there are sidebands at 60 Hz, these are due to power line fluctuations.
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This implies that the modes contained within the beatnote are coherent over 109

round-trips through the laser cavity [103].

5.2.3 Non-comb biases

It is worth noting that not all biases of the laser form a narrow beatnote, and the

output cannot be considered a comb at these biases. Figure 5-11 shows some of these,

along with the beatnote standard deviation versus bias in the lasing regime. The bias

dependence of the beatnote linewidth shows several regions where the linewidth drops

to the resolution bandwidth of the spectrum analyzer (potentially frequency combs),

as well as several regions where the linewidth is quite broad (not frequency combs).

The leftmost beatnote, indicated by the blue dot on the lower plot, is an example of a

“clean” beatnote, exhibiting no sidebands and only possessing a single stable line. The

115



yq75 yq8 yq85 yq9 yq95

6q65 6q7 6q75 6q8 6q85 6q9 6q95
−7y

−65

−6y

−55

−5y

−45

−4y

−35

−3y

H
E

B
zp

o
w

er
zU

d
B

m
Pz

6q65 6q7 6q75 6q8 6q85 6q9 6q95
−7y

−65

−6y

−55

−5y

−45

−4y

−35

H
E

B
zp

o
w

er
zU

d
B

m
Pz

6q65 6q7 6q75 6q8 6q85 6q9 6q95
−7y

−65

−6y

−55

−5y

−45

−4y

−35

H
E

B
zp

o
w

er
zU

d
B

m
Pz

yq25

G

2

4

B
ea

tn
ot

ez
lin

ew
id

th
zU

M
H

zP

CurrentzUAPz

Cleanzbeatnote Multifmodezlasing Unstablezbeatnote

yq76 yq78 yq8 yq82 yq84 yq86 yq88 yq9 yq92

6q7

6q75

6q8

6q85

CurrentzUAP
P

ea
kz

R
F

zfr
e

qu
en

cy
zU

G
H

zP

FrequencyzUGHzP FrequencyzUGHzP FrequencyzUGHzP

yq8436zAyq8y58zAyq935GzA

Figure 5-11: Top: Beatnotes measured using HEB at biases which are not combs.
Bottom: Beatnote standard deviation and center frequency versus bias.

middle beatnote, denoted by the red dot, is narrow, but also has discrete sidebands

which are approximately evenly spaced. The spacing of these lines was found to be

bias-dependent, and they are attributed to the laser entering a multi-mode regime in

which several lines are lasing, but the four-wave mixing process is not sufficient to

phase-lock them and no comb is formed. The last beatnote, denoted by the purple

dot, is possesses two peaks and is very broad (10s of MHz). This beatnote is chaotic

and is attributed to the competitive nature of the four-wave mixing process. Since the

gain spectrum possess two lobes, in the absence of perfect dispersion compensation

they will each prefer to form combs at different repetition rates. In stable regions one

repetition rate is dominant and wins out, but in unstable regions they continuously

fight each other, leading to a broad beating. Note that essentially all of the instability

arises in regions where the beatnote frequency is changing quickly with bias.
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5.3 Shifted Wave Interference FTS (SWIFTS)

5.3.1 Basic principles

A narrow beatnote is a necessary but not a sufficient condition to prove that a source

is a coherent comb. For example, even if a beatnote was narrow it might be the

case that a strong pair of lines simply dominate it. It could be the case that some

of the lines aren’t being detected for some reason, or that their beatnote is so broad

that they are buried in the noise floor of the spectrum analyzer. A hypothetical way

around this problem would be to use a narrow spectral filter (like a diffraction grating

plus a slit) to measure the beatnote as a function of wavelength. Such a scheme is

shown in Figure 5-12.

slit

RF spectrum
analyzer

detector

diffraction
grating

QCL

Figure 5-12: Hypothetical setup utilizing spectral filtering to measure the coherence.

Nevertheless, this type of setup is problematic for several reasons. For one, the

QCL was found to be very sensitive to optical feedback, and changing the orienta-

tion of a nearby grating could change the feedback as well as the laser’s spectrum.

Especially problematic is that changes in feedback often accompany changes in the

repetition rate, which would completely defeat the purpose of this type of measure-

ment (since we would like to see whether the repetition rate is a function of frequency).

Another problem is that measuring the coherence 𝑔+(𝜔) of the comb requires that
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all of the lines be individually resolved by the grating. This would require a narrow

slit with a limited etendue and would severely impact the signal-to-noise ratio of the

measurement. In fact, this is the very reason Fourier Transform Spectroscopy (FTS)

is typically used at long wavelengths instead of grating spectrometers.

Up until now the issue of the terahertz spectrometer has been largely ignored.

The THz QCL spectra shown in the previous chapters were all measured using FTS,

which is essentially the standard way of measuring the spectrum of non-TDS THz

sources. FT spectrometers operate on the classical principle that Michelson interfer-

source

detector

delay τ

FFTADC
Records S0(τ)

S0(τ)=<E(t)E(t-τ)>

E(t) <|E(ω)|2>

Figure 5-13: Convention FTS schematic. A computer records the autocorrelation of
the field.

ometers with variable delays essentially map out the autocorrelation of the electric

field, 𝑆0(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏)⟩. This is illustrated in Figure 5-13. By recording this

signal, known as an interferogram, and Fourier Transforming the result, one obtains

the optical spectrum, 𝑆0(𝜔) = |𝐸(𝜔)|2. Because FT spectrometers measure all of the

power in a beam at once, they can provide better signal-to-noise ratios than grating

spectrometers at high resolutions. This is the so-called multiplex advantage. It is

important to stress that by themselves, conventional spectroscopic techniques like

FTS cannot be used to determine the presence of a comb, because their resolution is

limited by the physical travel of the mechanical delay element and can only measure

spectra to a resolution of about a GHz.1 In short, while beatnote measurements have

1Technically, one can zero-pad the interferogram and achieve better frequency accuracy than the
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excellent resolution when it comes to measuring difference frequencies, they lack the

ability to tell what those frequencies are. FTS can tell you what frequencies you

have, but cannot tell you with great accuracy what their differences are. This raises

an interesting question: is it possible to construct a measurement that combines the

high-resolution and throughput of FTS with the precision of beatnote measurements

in a single experiment?

The answer is yes, and the result is something the author calls Shifted Wave

Interference FTS, or SWIFT spectroscopy [104]. The repetition rate of the QCL is

stabilized to a synthesizer as previously described, and the light is passed through

a Michelson interferometer as in FTS. Instead of only recording the intensity of the

light through the interferometer or of the beatnote, the average value of the in-phase

and in-quadrature components of the intensity at the repetition rate are recorded.

Figure 5-14 illustrates this. Physically, SWIFTS constitutes a measurement of

QCL

HEB

delay<τ

RF<IQ
data

X∓iY FFTADC
Records<SI/Q(τ)

E(t)

SI(τ)=<E(t)E(t-τ)<cos(Δω<t)>
SQ(τ)=<E(t)E(t-τ)<sin(Δω<t)>

<E*(ω)E(ω±Δω)>

Figure 5-14: SWIFTS schematic. A computer records the quadratures of the auto-
correlation.

𝑆𝐼(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) cos(∆𝜔𝑡)⟩ (5.11)

𝑆𝑄(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) sin(∆𝜔𝑡)⟩ (5.12)

resolution. However, this requires that the position of the delay stage be very well-calibrated, and

since most commercial FTSs use an unstabilized HeNe laser as their position reference, the resulting

precision is not typically much better than the resolution.
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As usual, it is more convenient to deal with the complex version of these quantities,

𝑆±(𝜏) = 𝑆𝐼(𝜏) ∓ 𝑖𝑆𝑄(𝜏) (5.13)

The key advantage of SWIFTS is that the Fourier Transform of the analytic functions

are almost exactly the quantity previously defined as the coherence:

𝑆±(𝜔) = ⟨𝐸*(𝜔)𝐸(𝜔 ± ∆𝜔)⟩ . (5.14)

Here, angle brackets are used to represent both an average over laboratory timescales

(seconds) and also a convolution with the instrument’s apodization function. This

can be easily shown using elementary Fourier theory; for more details, see Appendix

C. With this notation, conventional FTS measures 𝑆0(𝜔) = ⟨𝐸*(𝜔)𝐸(𝜔)⟩.

There are some key differences between conventional FTS and SWIFTS. For inco-

herent light sources, the SWIFT spectrum |⟨𝐸*(𝜔)𝐸(𝜔 + ∆𝜔)⟩| vanishes altogether,

since the long-term phase incoherence between 𝐸(𝜔) and 𝐸(𝜔 + ∆𝜔) causes their

product to integrate to zero over lab time scales of seconds. Likewise, for a source

consisting of two laser lines separated by 𝜔21, the SWIFT spectrum is zero if |𝜔21−∆𝜔|

is larger than the integration bandwidth (Hz). One could use a normal FT spectrum

to define a “spectrum product” as 𝑆𝑠𝑝(𝜔) ≡
√︁⟨︀

|𝐸(𝜔)|2
⟩︀√︁⟨︀

|𝐸(𝜔 + ∆𝜔)|2
⟩︀
, and while

this product is superficially similar to |⟨𝐸*(𝜔)𝐸(𝜔 + ∆𝜔)⟩|, it is actually very differ-

ent. In fact, it will be non-zero as long as |𝜔21 − ∆𝜔| is within the spectrometer’s

resolution (GHz). We can therefore compare |𝑆+(𝜔)| and 𝑆𝑠𝑝(𝜔) to reveal how comb-

like a given laser spectrum is. Indeed, the definition of mutual coherence offered in

equation 5.10 is simply

𝑔+(𝜔) ≡ |⟨𝐸*(𝜔)𝐸(𝜔 + ∆𝜔)⟩|√︀
⟨|𝐸(𝜔)|2⟩ ⟨|𝐸(𝜔 + ∆𝜔)|2⟩

=
|𝑆+(𝜔)|
𝑆𝑠𝑝(𝜔)

, (5.15)

SWIFTS therefore provides a direct measurement of the coherence of a source, to

Hz levels. It is worth stressing that SWIFTS does not actually improve the spectral

resolution of the measurement beyond what FTS can normally achieve, since the final
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signal is still apodized by the finite delay of the stage. This is illustrated in Figure

5-15, in which two pairs of lines are shown, a red pair and a blue pair. Suppose that
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Figure 5-15: Effect of finite apodization on SWIFTS measurement.

the spacing of each pair is very small, say 1 MHz. Because this is far closer than the

instrument can resolve, as far as both conventional FTS and SWIFTS are concerned

each pair looks like one line. First, consider the case in which the red and blue pairs

are exactly ∆𝜔 apart, as shown on the top. In this case, the spectrum product and

the SWIFTS magnitude produce the same result, and 𝑔 = 1. However, note that

each spectrum still look likes a single line. Next, consider the case in which one of the

blue lines is slightly detuned from ∆𝜔 from its corresponding red line. The spectrum

product would be the same as before, but the SWIFTS magnitude will be reduced

since the dotted lines no longer contribute to SWIFTS. In this case, 𝑔 < 1.

5.3.2 Key SWIFT results

Figure 5-16 shows the actual system used for most of this analysis. Light from the lens-

coupled THz QCL comb was collimated by an f/2 off-axis parabolic mirror (OAP),
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Figure 5-16: Actual implementation of SWIFTS used for most of this analysis.

attenuated by a factor of 40 using a screen to prevent HEB saturation, and passed

through an optical chopper. It was then passed through a custom-built nitrogen-

purged FTS containing roof mirrors, thereby minimizing retroreflection into the QCL.

Lastly, light was focused onto the HEB using an f/3 OAP. Electronically, the HEB

was biased to 1 mV using a custom bias box, and the current monitor was passed

into a lock-in amplifier to measure the normal interferogram. The RF signal from the

HEB was amplified, downconverted to 10 MHz,2 demodulated with a 10 MHz I/Q

demodulator, and passed into lock-in amplifiers. Note that the I/Q demodulation can

be performed at 10 MHz rather than near 6.8 GHz since the action of two successive

2Higher-order harmonics of the repetition rate can also be used, in which case next-nearest

neighbor coherences are being considered.
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mixers can be decomposed into the sum of two sinusoids:

cos(𝜔1𝑡+ 𝜑1) cos(𝜔2𝑡+ 𝜑2)

∼ cos [(𝜔1 − 𝜔2)𝑡+ (𝜑1 − 𝜑2)] + cos [(𝜔1 + 𝜔2)𝑡+ (𝜑1 + 𝜑2)] .

As the beatnote is locked to just one of 𝜔1+𝜔2 or 𝜔1−𝜔2, the phase shift of Q relative

to I will still be 90∘. All three lock-ins used the same time constant, amplitude, and

phase settings, and as the Michelson interferometers stage was scanned, their signals

were simultaneously recorded. The FTS travel range was 10.75 cm, resulting in a

resolution of 1.5 GHz, and the stage speeds varied but were on the order of 0.1 mm/s.
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Figure 5-17: Key SWIFTS results for a QCL comb biased to 0.9 A at 50 K. (a)
Normal, in-phase, and quadrature interferograms. (b) Frequency domain spectrum
product and coherence.

Figure 5-17(a) shows the SWIFT interferograms measured from a device biased
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to 0.9 A, along with a normal interferogram obtained at the same bias. Note that

while all three interferograms are nearly periodic with a spacing determined by the

repetition rate of the laser, the SWIFT interferograms have non-zero phase and as a

result are asymmetric about the zero path difference. Next, Figure 5-17(a)(b) shows

the SWIFTS coherence magnitude plotted alongside the spectrum product, calculated

using FTS. Despite the fact that they are fundamentally different measurements—one

coming from the bottom two interferograms and the other coming from the top one—

their excellent agreement shows that essentially all of the laser’s lines are separated

by the same repetition rate and that this can finally be called a frequency comb. The

coherence measurement shows approximately 70 comb lines above the noise floor,

which span a total range of almost 500 GHz.

It is also worth mentioning that the SWIFTS measurement provides a way to

check its own consistency. Ideally, the quantities 𝑆+(𝜔) = ⟨𝐸*(𝜔)𝐸(𝜔 + ∆𝜔)⟩ and

𝑆−(𝜔) = ⟨𝐸*(𝜔)𝐸(𝜔 − ∆𝜔)⟩ are actually trivially related to each other, since 𝑆−(𝜔+

∆𝜔) = 𝑆*
+(𝜔). In reality, this is will not exactly be the case since they effectively

represent independent measurements and are corrupted by noise. Even so, it should

be the case that 𝑆+(𝜔) and 𝑆−(𝜔) have magnitudes that closely resemble each other

if one of them is shifted by ∆𝜔. Figure 5-18 shows the result of this process. The

top panel shows the Fourier transforms of the raw I and Q interferograms, which

differ quite a bit since there’s no reason for them to be the same. In contrast, the

computed correlations in the bottom panel would be identical if not for the presence

of noise and other imperfections in the system (likely residual saturation of the HEB).

In fact, the two signals can even be averaged to improve the signal-to-noise ratio of

the measurement, although the effect is marginal since the difference is only
√

2.

5.3.3 Bias dependence of comb formation

To show how the laser bias affects comb operation, plotted in Fig. 5-19(a) is the

optical and RF power generated by a QCL comb versus its bias in the range over which

the device lases. At the onset of strong RF emission, there is a drop in total optical

power which corresponds to the onset of comb formation. Similarly, Fig. 5-19(b)
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Figure 5-18: Consistency of SWIFT data. (a) Top panel: raw Fourier transforms
of the I and Q interferograms of the data in Fig. 5-17. Bottom panel: calculated
SWIFT coherences, with 𝑆−(𝜔) shifted by the repetition rate of the laser. (b) The
zoomed-in region is plotted on a linear scale.

shows the linewidth of the QCL’s RF emission versus bias. Not all biases within the

range of strong RF emission actually form frequency combs, as there are certain biases

at which the beatnote linewidth abruptly increases to several MHz. Nonetheless, there

are three distinct regions in which the beatnote linewidth is narrow and a stable comb

is formed, denoted by Regions I, II, and III. In order to see whether these lasers can

actually exploit the full gain bandwidth at a given laser bias, the SWIFT spectra

obtained in the three regions of comb formation are compared with the gain spectra

measured by terahertz time-domain spectroscopy. The result is plotted in Figure 5-

19(c). In Region I, the lower-frequency lobe experiences more gain, and as a result

the corresponding portion of the correlation spectrum dominates. In Region II, the

two lobes of the gain and correlation spectra are approximately equal in strength.

In Region III, the higher-frequency lobe is stronger and lases more strongly. This

result demonstrates the effectiveness of the dispersion compensation technique, since

it shows that frequency combs can be formed under various conditions with different

gain profiles.
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Figure 5-19: Bias dependence of beat-note and SWIFT spectra. (a) RF power mea-
sured from a bias-tee (amplified by 66 dB, with wiring losses of 20 dB) and calibrated
terahertz power emitted by the QCL as a function of bias at 50 K, over the dynamic
range of lasing operation. (b) Standard deviation of the RF signal emitted from
the QCL as a function of bias, as measured with a spectrum analyser. The regions
of stable comb formation are shaded and denoted I, II and III. (c) SWIFT coher-
ence spectra (measured with the HEB) and gain spectra (measured with THz TDS)
corresponding to each of the three regions.

5.3.4 SWIFTS for phase retrieval

Another feature of SWIFTS that has yet to be mentioned is its ability to resolve the

phase difference between a pair of comb lines. Whereas normal FTS only measures⟨︀
|𝐸(𝜔)|2

⟩︀
, which is a strictly positive quantity, SWIFTS measures ⟨𝐸*(𝜔)𝐸(𝜔 ± ∆𝜔)⟩,

a quantity with phase. Ignoring the effects of apodization, the phase of SWIFTS is

essentially ̸ 𝑆+(𝜔) = ̸ 𝐸(𝜔+∆𝜔)− ̸ 𝐸(𝜔), that is the phase difference between adja-

cent lines of the comb. In fact, one can even say that this is essentially the principle

on which SWIFTS operates: simultaneous measurement of the phase difference of
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every comb pair.

If SWIFTS is used to retrieve all of the comb’s phase differences, then in principle it

can be used to retrieve the full phase of the electric field, by cumulative summing. This

would make SWIFTS a rival to full-field pulse characterization techniques like FROG

[105] and SPIDER [106]. In practice, integrating the phase is often impossible since

any spectral gaps break the continuity. But unlike traditional pulse characterization

techniques, which generally require a nonlinear element and are more suitable for

optical pulses, SWIFTS only requires a fast linear detector. Moreover, SWIFTS can

do one thing really well: measure the frequency-dependent group delay of the field

coming from a comb. Since group delay is essentially 𝜏𝑔 ≈ Δ𝜑
Δ𝜔

, this means that

SWIFTS can be used to measure it modulo the cavity round-trip time.
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Figure 5-20: Group delay and coherence magnitude corresponding to the data shown
in Figure 5-17. The data from the lower lobe of the gain spectrum is shown on the
left; the data from the upper lobe is shown on the right.

Figure 5-20 shows the frequency-dependent group delay of each of the two por-

tions of the gain spectrum, plotted against the corresponding magnitudes. All of the

frequencies in the lower lobe essentially arrive at the same time, indicating that their

behavior is pulse-like. In contrast, essentially none of the frequencies in the upper

lobe—the stronger of the two lobes—arrived simultaneously. This indicates that no

pulse is formed, and possibly that the output is strongly frequency-modulated. In

general, it was found to be the case that the weaker of the two lobes could form pulses

while the stronger of the two could not. Since four-wave mixing introduces a non-
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trivial phase delay in frequency combs that resembles frequency modulation [107],

this may indicate that the weaker lobe may not actually be forming a comb based on

four-wave mixing. One possibility is that the stronger lobe actually introduces a weak

microwave modulation in the cavity (that is, the beatnote), and that this microwave

modulation effectively modulates the lower lobe.

One might wonder whether it is possible to extract more information about the

time-domain behavior from SWIFTS. This is indeed the case, provided one is willing

to live with the presence of noise. Imagine a hypothetical SWIFTS measurement

in which it was determined that the spectrum consisted of two lobes separated by

a null. Though SWIFTS could easily be used to determine the phase difference of

each line in the comb, it could not be used to find the relative phase of the two

lobes, since such a measurement is highly susceptible to noise. This is illustrated by

Figure 5-21. In this plot, the two lobes have differing constant group delays—that is,

they represent two pulses arriving at different times—but because the pulses overlap

somewhat in the time domain the precise behavior of the time-dependent intensity

is unknown, particularly in the region where the two pulses overlap. Nevertheless,

there is clearly information there: the regions where the pulses do not overlap is very

well-determined, despite the unknown phase. Therefore, it is useful to calculate the

statistics of the measurement, shown in the last panel, which shows the mean and

standard deviation of the time-dependent intensity.

In theory, any quantity that can be calculated from the field coefficients could

be characterized in this way, including the electric field itself. In practice, one must

restrict oneself to quantities which are not particularly phase-sensitive. (An attempt

to characterize the electric field, for example, would give a result whose statistical

fluctuations consume the entire measurement.) Fortunately, both the time-dependent

intensity and the time-dependent frequency are amenable to this sort of measurement.

If the field at frequency 𝜔𝑛 has a phasor 𝐸𝑛, then the field’s positive frequency part

is 𝐸+(𝑡) =
∑︀

𝑛𝐸𝑛𝑒
𝑗𝜔𝑛𝑡, and the time-dependent intensity and phase can be defined
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respectively as

𝐼(𝑡) ≡ 𝐸*
+𝐸+ (5.16)

𝑓(𝑡) ≡ 1

2𝜋

𝑑

𝑑𝑡
arg (𝐸+) =

1

2𝜋|𝐸+|2
Im
[︂
𝐸*

+

𝑑𝐸+

𝑑𝑡

]︂
, (5.17)
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where the identity 𝑑
𝑑𝑡

arg(𝑧) = Im
[︀
𝑧* 𝑑𝑧

𝑑𝑡

]︀
/|𝑧|2 can be used to avoid discrete derivatives

and phase unwrapping. Essentially, 𝐼(𝑡) represents the instantaneous intensity of the

field and 𝑓(𝑡) represents the instantaneous carrier frequency. To make these quantities

even more insensitive to phase fluctuations, it is often useful to filter with them

with a reasonable integration time (say 10 ps) to reduce the standard deviation of

the measurement without filtering out potentially informative time-domain features.

This reduces sensitivity to phase error since both 𝐼(𝑡) and 𝑓(𝑡) are comprised wholly

of terms which go like 𝐸*
+𝐸+, giving rise to a double summation over frequency

differences. Filtering the data removes frequency differences that are “far” from each

other and are therefore more susceptible to statistical fluctations.

Another wrinkle is the issue of the type of randomness that is actually in the

system. In Figure 5-21, the only random (unknown) variable was the relative phase

between the two lobes. In reality, all frequencies possess some amount of noise which

corrupt the SWIFTS measurement. Figure 5-22 shows a phasor diagram for two

types of signals, a large one and a small one. The blue point represents the actual
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Figure 5-22: Phasor diagram of a large SWIFTS signal and a small one.

measurement, which has been corrupted by noise, whereas the gray region indicates

the distribution of underlying values that could have produced this measurement.

From this perspective, it is clear why the noise of some frequencies matter more

than others. When the amplitude of the measured signal is large compared to the

standard deviation of the noise, the uncertainty in phase is small. However, when the
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amplitude of the measured signal is small, the uncertainty in phase is large. In fact,

when the amplitude is down near the noise floor of the measurement, corresponding

to a gap in the spectrum, the distribution of possible phases is effectively uniform

over the interval [0, 2𝜋].

Strictly speaking, accounting for this uncertainty requires that the underlying

probability distribution of the SWIFTS signal be known at each frequency. While

this could be accomplished by doing many measurements, it is easier to note that when

the noise of each point of the interferogram is uncorrelated and the interferogram is

large, the central limit theorem dictates that the noise in each channel of the FFT

is Gaussian (regardless of the type of noise in the interferogram).3 Therefore the

noise can be modeled using a two-dimensional Gaussian whose standard deviation is

determined by the noise floor.

Analytically calculating the statistics of the time-dependent quantities is challeng-

ing, and so Monte Carlo methods were used instead. The following procedure was

used:

1. Use a region of the SWIFTS spectrum known to be noisy to find the standard

deviation of each quadrature of the measurement, 𝜎𝐼 and 𝜎𝑄. In principle one

should measure these as a function of frequency, but in practice it is usually

easier to assume that the noise is white and that the “worst case” value is used.

2. Take the observed SWIFTS data, 𝑆𝐼/𝑄(𝜔), and subtract from each frequency

a different value drawn from the normal distribution. Use it to find a possible

value of the “true” SWIFTS signal uncorrupted by noise, and denote it by

𝑆
(𝑖)
+ (𝜔).

3. For each iteration, use 𝑆(𝑖)
+ (𝜔) and 𝑆0(𝜔) to find the phasors associated with

the nth comb lines. Denote these by 𝐸(𝑖)
𝑛 . Use (5.16) and (5.17) to determine

the time-dependent intensity and frequency, and filter the results in the time

domain.

3If 𝑥𝑛 represents the interferogram samples, the real part of the DTFT at frequency 𝜔 is 𝑋(𝜔) =∑︀
𝑛 𝑥𝑛𝑐𝑜𝑠(𝜔𝑛). This is a weighted sum, and so the central limit theorem applies.
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4. Repeat steps 2 and 3 for a large number of samples. Calculate the expectation

values ⟨𝐼(𝑡)⟩ and ⟨𝑓(𝑡)⟩, as well as the confidence level for each measurement

(which is also time-dependent).

Figure 5-23 shows the result of this process for the data previously shown (at

0.9 A). First, examine the intensity versus time. As was claimed using the group
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Figure 5-23: Time-dependent intensity and frequency inferred from the previous
SWIFTS data, filtered with a 10 ps window. Shaded regions indicate a standard
deviation, and dotted lines indicate a single period (round-trip time).

delay plot, the lower (red) lobe of the gain spectrum produces a time-domain pulse

that arrives at t=20 ps. Even though there is some uncertainty in the height of the

pulse near its peak, it is clear that phase noise doesn’t change the fact that it is a

pulse. The upper (blue) lobe of the gain spectrum, meanwhile, lases at practically

all times during the laser’s period except for the time at which the lower lobe is

lasing. In other words, the lower lobe can only lase by virtue of the upper lobe

shutting off, and is essentially a result of temporal hole burning. Shifting focus to the

frequency versus time, an important thing to note is that the standard deviation of

the frequency measurement grows large whenever the intensity of each lobe is small,

which is of course expected since the signal-to-noise ratio at these times is low. The

red lobe is essentially completely flat in the region where its SNR is high, meaning
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that the pulse is not chirped and is nearly transform-limited. In contrast, the blue

lobe is strongly frequency-modulated and has a sawtooth-like profile in the time-

domain. This is indicative of a self-frequency modulation that is a signature of laser

microcombs [107].

This information is extremely useful for characterizing the different regimes of

comb operation, perhaps even more so than the SWIFTS measurement directly. Fig-

ure 5-24 shows the bias dependence of 𝐼(𝑡) measured using SWIFTS alongside the

different regimes of comb operation. The three regions of comb operation have strik-

ingly different time-domain behavior. Region I is dominated by the red lobe, and

exhibits a complicated multi-pulse emission. The blue lobe emits only when the red

lobe transiently turns off. In region II, the two signals have similar average powers,

but the red lobe’s power is concentrated in narrow time-domain pulses while the blue

lases nearly continuously. It is a regime of passive mode-locking, albeit for only part

of the spectrum. In region III, the blue lobe dominates and the red lobe lases only

when it shuts off. Once again, a signature of temporal hole burning is evident.

5.4 Absolute coherence of comb

Though most of this chapter has focused on mutual coherence, the absolute linewidth

of the comb will also matter for applications like dual-comb spectroscopy. The reason

for this is that to have a unique mapping between the optical domain and RF domain

requires that all of the beatnotes between the two combs fit within half the repetition

rate. If 𝑁 is the number of laser lines, ∆ is the detuning between repetition rates, and

𝑓𝑟 is the repetition rate, then this condition can be succinctly stated as 𝑁∆ < 𝑓𝑟/2

[87]. For combs based on solid-state mode-locked lasers, the repetition rate is small

and N is large, so linewidths on the order of hundreds of Hz are required. In contrast,

a comb with 2 THz of bandwidth and a repetition rate of 6.8 GHz only needs to fit

294 lines into a 3.4 GHz span, resulting in a required separation of 11.5 MHz.

To measure the comb’s absolute coherence, it is beat with a narrow-linewidth

distributed-feedback (DFB) laser. Since the comb is already known to be mutually
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coherent to Hz levels thanks to SWIFTS, measuring the linewidth of a single line will

essentially measure the linewidth of all the lines. A third-order DFB [108, 109] was

constructed using metal-metal waveguides fabricated from the same gain medium as

the comb, FL183S. It was 21 µm wide, 450 µm long, and consisted of 15 periods of a

corrugation that lased at 3.85 THz, with about a milliwatt of power. The DFB was

operated in continuous-wave mode in a compact Stirling cryocooler at 47 K. For this

measurement, the DFB laser was shined directly onto the facet of the comb laser, and

the heterodyne beating generated by the intracavity mixing of the DFB laser and

the comb laser was examined. Though fast detectors like HEBs or Schottky mixers

can be used to measure similar properties, this measurement also demonstrates one

of the salient features of this particular comb: the ability to detect the frequency

of terahertz lasers without any additional components (modulo the repetition rate).

The setup is shown in Figure 5-25. The RF beatnotes were collected from the comb
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Figure 5-25: Setup used for measuring the heterodyne beating between a comb laser
and a DFB laser.

laser using a bias tee and amplified with a low-noise amplifier providing 50 dB of

gain.

Figure 5-26(a) shows the spectra of the two lasers involved: a single-mode DFB

laser at approximately 3.85 THz, and the SWIFT spectrum of a comb biased near
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0.9 A. Figure 5-26(b) shows the beatnotes generated by a comb device over a large
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Figure 5-26: Heterodyne beatnote between single-mode laser and comb. (a) Coher-
ence spectrum of comb at 0.9 A, spectrum of DFB laser. (b) Heterodyne beating of
free-running comb laser at 0.885 A with free-running DFB laser at various biases. (c)
Zoomed-in view of one of the lines, showing a convolved FWHM of 2.5 MHz.

frequency span, measured with a resolution bandwidth of 3 MHz. At a given bias,

there are two lines present below the repetition rate, corresponding to beating of the

DFB laser with the two nearest adjacent comb lines. Their frequencies therefore add

up to the comb’s repetition rate. Moreover, when the DFB’s frequency is shifted

by tuning its bias, the two lines are observed to move in opposite directions by the

same amount, the laser’s tuning coefficient (28 MHz/mA in this case, the same as

what was measured by a collaborator in Ref. [110]). Even though the DFB laser is

operating near the edge of the comb’s bandwidth and only a few percent of the DFB’s

power can be coupled into the metal-metal waveguide, it is still possible to measure

beatnotes with signal-to-noise ratios exceeding 20 dB. Figure 5-26(c) shows one of

these beatnotes over a smaller frequency span. Because the DFB’s frequency and

comb’s offset frequency are both unstabilized, the measured full-width half maximum

(FWHM) linewidth of 2.5 MHz represents a convolution between their respective
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lineshapes. Assuming they are identical Gaussians, it is therefore possible to estimate

an absolute comb linewidth of 1.8 MHz. Previous characterization of similar DFB

lasers has measured free-running linewidths between 1 and 3 MHz [111], showing that

the comb’s offset frequency is as stable as a single-mode laser. Even in the worst case

scenario, this linewidth is more than suitable for dual-comb spectroscopy at these

wavelengths, owing to the large ratio of the laser’s repetition rate to its frequency. If

this laser was used to perform dual-comb spectroscopy, its linewidth could perform

a measurement with a resolution equivalent to a FT spectrometer with 60 meters of

delay.
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Chapter 6

Conclusions and future work

In summary, this thesis used terahertz quantum cascade lasers as broadband sources,

samples, and detectors. By applying dispersion compensation techniques first devel-

oped at visible wavelengths to the THz QCL, I was able to make compact frequency

combs based on THz QCLs that passively generated broadband radiation. Such

combs cover a frequency range of almost 500 GHz with more than 70 lines at 3.5

THz, and represent nearly an almost order of magnitude improvement over the 10

modes obtained by active mode-locking. The comb’s bandwidth covers 14% of its

center frequency—the highest fractional bandwidth of integrated semiconductor fre-

quency combs to date—suggesting that similar techniques can be used to improve

laser microcombs at other wavelengths, including the mid-infrared.

In developing a means for characterizing these combs I demonstrated SWIFTS,

a coherent detection scheme that can be used in combination with FTS to quanti-

tatively measure the performance of such lasers and to characterize the efficacy of

comb formation. I have also demonstrated that by utilizing intracavity mixing these

lasers can be used to compactly measure the frequency of single-mode lasers without

the need for a high-speed terahertz detector or an external solid state laser. There

is much future work to be done. At present, the gain medium’ double-peaked shape

causes the laser’s energy to be split across two lobes and limits its general applica-

bility, as the region between the two lobes experiences too much loss and cannot be

accessed without a high-dynamic range detector. In addition, the weak interaction
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between the two lobes leads to a complicated bias dependence of the comb’s proper-

ties and reduces its robustness. Fortunately, both of these issues are straightforward

to resolve, as continuing development of heterogeneous gain media will lead to flatter,

broader comb spectra. Octave-spanning gain spectra were recently achieved in THz

QCLs [75], and once combs are made from them it may even be possible to stabilize

the comb’s absolute frequency without any additional components, since the intra-

cavity mixing process demonstrated in this thesis should also be capable of generating

f-2f beating. Such combs could be used to form compact solid-state dual-comb spec-

trometers, which by utilizing intracavity mixing may even be able to operate without

external detectors. These devices could potentially even act as complete terahertz

spectrometers on a chip, as shown in Figure 6-1.

This thesis also used broadband terahertz time-domain spectroscopy to analyze

the behavior of THz QCLs. By using QCLs as independent photoconductive switches,

the usual limitations imposed by optical coupling are circumvented, and properties

of the laser previously inaccessible can be directly observed. These properties include

the gain and absorption of the laser gain medium above and below threshold, anti-

crossings in the system, the populations of the laser’s subbands, and properties of

the waveguide like its loss and dispersion. The temperature performance of various

lasing schemes were analyzed, and this information was used to identify a additional

transitions contributing to the laser’s performance at high temperatures. Knowledge

of these properties were used to guide frequency comb design, and were also used to

inform simulations for designing better lasers including genetic algorithm-designed

structures.

140



Source comb

2.8 3 3.2 3.4 3.6 3.8 4

−50

−40

−30

sample
spectrum

Detector comb
sample

2.8 3 3.2 3.4 3.6 3.8 4

−50

−40

−30

reference
spectrum

sample absorption

Figure 6-1: Ideal dual comb spectrometer. The sources and detector combs are co-
integrated, f-2f stabilization is done internally, and a weak coupling element allows
the source to detect the spectroscopic reference. Everything is electronic.
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Appendix A

Periodic density matrix formalism

Density matrices are a useful tool for analyzing the dynamics of QCLs, on account

of their ability to coherently model the effects of both transport and the electro-

magnetic interaction. This appendix reviews the basic principles of density matrix

analysis and develops a periodic density matrix formalism particularly well-suited for

describing periodic systems like QCLs. This formalism is completely egalitarian in

the sense that it requires no human to decide where a module starts and where it

ends, making it especially suitable for algorithmic optimization (for example, using

genetic algorithms).

A.1 Density matrices of a finite system

A.1.1 Basic definitions

In theory, the dynamics of an electron existing in a pure state |𝜓⟩ are completely

determined by Schrödinger’s equation, 𝐻̂ |𝜓⟩ = 𝑖ℎ̄ 𝜕
𝜕𝑡
|𝜓⟩. In reality, one nevers knows

the precise state of the wavefunction or even the exact form of the Hamiltonian. For

example, in QCLs layer thickness fluctuations will stochastically modify the Hamilto-

nian in a way that depends on the local environment. Density matrices can account

for this. Suppose that an electron is only known to be in one of many possible states

of a large ensemble, and that the probability of an electron being in state |𝜓𝑖⟩ is 𝑝𝑖.
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The density matrix associated with this electron is defined to be

𝜌 ≡
∑︁
𝑖

𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| =
⟨
|𝜓⟩⟨𝜓|

⟩
. (A.1)

Here, 𝜌 is an operator. The “matrix” part of “density matrix” comes from projecting

this operator into a finite orthogonal basis {|𝑛⟩}, i.e. by definining 𝜌𝑛𝑚 = ⟨𝑛|𝜌|𝑚⟩.

When written this way the defining relation becomes

𝜌𝑛𝑚 =
⟨
⟨𝑛|𝜓⟩⟨𝜓|𝑚⟩

⟩
= ⟨𝑐𝑛𝑐*𝑚⟩ , (A.2)

where the values of {𝑐𝑛} represent the coefficients of the basis states. In other words,

density matrices represent the wavefunction’s second-order statistics. The on-diagonal

elements, for which 𝑛 = 𝑚 and 𝜌𝑛𝑛 = ⟨|𝑐𝑛|2⟩, are referred to as populations since they

are strictly positive numbers that represent how occupied a state is. The off-diagonal

elements, for which 𝑛 ̸= 𝑚 and 𝜌𝑛𝑛 = ⟨𝑐𝑛𝑐*𝑚⟩, are referred to as coherences since they

represent how phase-coherent states 𝑛 and 𝑚 are.1

One of the most important aspects of quantum mechanics is the calculation of

expectation values of an operator 𝐴, and this can of course be done using density

matrices. Doing this requires that the expectation value of each wavefunction in the

ensemble be averaged:

⟨𝐴⟩ =
∑︁
𝑖

𝑝𝑖⟨𝜓𝑖|𝐴|𝜓𝑖⟩ =
∑︁
𝑖

𝑝𝑖⟨𝜓𝑖|

(︃∑︁
𝑛𝑚

𝐴𝑛𝑚|𝑛⟩⟨𝑚|

)︃
|𝜓𝑖⟩

=
∑︁
𝑖𝑛𝑚

𝐴𝑛𝑚𝑝𝑖⟨𝑚|𝜓𝑖⟩⟨𝜓𝑖|𝑛⟩ =
∑︁
𝑛𝑚

𝐴𝑛𝑚𝜌𝑚𝑛 =
∑︁
𝑛

(𝐴𝜌)𝑛𝑛 = Tr(𝐴𝜌). (A.3)

Calculating expectation values therefore only requires a calculation of the trace of an

operator with the density matrix. Note that because the trace operation is invariant

under a unitary change of basis, expectation values remain basis-independent (as

expected). This is assuming that the density matrix has been normalized to Tr(𝜌) =

1The same analysis that was used to motivate the definition of optical coherence applies here.

Two states are said to be completely coherent if 𝜌𝑛𝑚/
√
𝜌𝑛𝑛𝜌𝑚𝑚 = ⟨𝑐𝑛𝑐*𝑚⟩ / |𝑐𝑛| |𝑐𝑚| = 1.
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∑︀
𝑖 𝑝𝑖 = 1; other normalizations can be used but they must be divided out when

expectation values are calculated. Some other properties of density matrices are

summarized below, although they are not derived:

∙ 𝜌 is Hermitian, and so 𝜌† = 𝜌 and 𝜌𝑛𝑚 = 𝜌*𝑚𝑛.

∙ Tr(𝜌2) = 1 when a state is pure (i.e., comprised of a single wavefunction).

∙ Tr(𝜌2) < 1 when a state is mixed (i.e., comprised of multiple wavefunctions).

∙ |𝜌𝑛𝑚|2 ≤ 𝜌𝑛𝑛𝜌𝑚𝑚 for 𝑛 ̸= 𝑚, with equality holding only for pure states. There-

fore pure states are the most coherent.

∙ If a wavefunction had a representation in some basis 𝑣, then the density matrix

corresponding to a pure state of that wavefunction is simply an outer product,

i.e. 𝜌(𝑣) = 𝑣𝑣†.

∙ The matrix inner product of two density matrices is defined by ⟨𝜌𝑎, 𝜌𝑏⟩ ≡

Tr(𝜌†𝑎𝜌𝑏) = Tr(𝜌𝑎𝜌𝑏).

∙ If the wavefunctions 𝑛 and 𝑚 are orthogonal, then the density matrices of the

corresponding pure states will be orthogonal in the sense that 𝜌(𝑛)𝜌(𝑚) = 𝜌(𝑛)𝛿𝑛𝑚

and ⟨𝜌(𝑛), 𝜌(𝑚)⟩ = 𝛿𝑛𝑚.

A.1.2 Time-evolution

Next, the dynamics of density matrices are considered. First, consider how they

evolve as a result of Schrödinger’s equation, 𝐻̂ |𝜓⟩ = 𝑖ℎ̄ 𝜕
𝜕𝑡
|𝜓⟩, the so-called coherent

part of the evolution:

𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑡
⟨|𝜓⟩⟨𝜓|⟩ =

⟨
𝜕|𝜓⟩
𝜕𝑡

⟨𝜓| + |𝜓⟩𝜕⟨𝜓|
𝜕𝑡

⟩
=

⟨
1

𝑖ℎ̄
𝐻̂|𝜓⟩⟨𝜓| − 1

𝑖ℎ̄
|𝜓⟩⟨𝜓|𝐻̂

⟩
=

1

𝑖ℎ̄

(︁
𝐻̂𝜌− 𝜌𝐻̂

)︁
=

1

𝑖ℎ̄

[︁
𝐻̂, 𝜌

]︁
. (A.4)
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Here, brackets represent commutators. In matrix form, this is often written simply

as

𝜌̇ =
1

𝑖ℎ̄
[𝐻, 𝜌] . (A.5)

This result is essentially the density matrix equivalent to Schrödinger’s equation and

is often referred to as Liouville’s equation. The consequence of this is that even if all of

the individual wavefunctions comprising the original ensemble were unknown, as long

as the density matrix is known one can use it to fully describe the system’s observables

and time evolution. Therefore, the density matrix is a complete description of reality.

Still, this is basically just a warmed-over version of Schrödinger’s equation. Where

density matrices really shine is in their ability to handle the effects of incoherent

processes, including scattering and dephasing. A common approach for modeling

transport through semiconductor structures is using rate equations, with scattering

rates determined by Fermi’s Golden Rule. However, this approach fails whenever

wavefunction coherence is important to transport. By including these semiclassical

scattering events in Liouville’s equation, both incoherent and coherent processes can

be considered simultaneously. First, consider the impact of scattering from state

𝑖 to state 𝑓 . If this occurs with a time constant of 𝜏𝑓𝑖, then one would expect

that the population (on-diagonal) element of the density matrix will decay with this

rate, i.e. 𝜌𝑖𝑖(𝑡) = ⟨|𝑐𝑖𝑖(𝑡)|2⟩ ∼ ⟨|𝑐𝑖𝑖(0)|2⟩𝑒−𝑡/𝜏𝑓𝑖 , and that the population of the final

state will increase according to this schedule. In other words, 𝜌̇𝑖𝑖 = −𝜌𝑖𝑖/𝜏𝑓𝑖 and

𝜌̇𝑓𝑓 = 𝜌𝑖𝑖/𝜏𝑓𝑖. Likewise, it is reasonable to require that the coherences associated

with state 𝑖 decay with half this rate since coherence is associated with fields and not

intensity, i.e. 𝜌𝑖𝑗(𝑡) ∼ ⟨𝑐𝑖(0)𝑐*𝑗(0)⟩𝑒−𝑡/2𝜏𝑓𝑖 and 𝜌̇𝑖𝑗 = −𝜌𝑖𝑗/2𝜏𝑓𝑖. All of these conditions

can be compactly specified as

𝜌̇𝑛𝑚 = −𝜌𝑛𝑚
2𝜏𝑓𝑖

(𝛿𝑛𝑖 + 𝛿𝑚𝑖) +
𝜌𝑖𝑖
𝜏𝑓𝑖
𝛿𝑛𝑓𝛿𝑚𝑓 , (A.6)

where the first term takes care of the decay of state 𝑖 while the second takes care of

the transfer to state 𝑓 . Note that the decay of the coherences is typically referred

to as dephasing, since it corresponds to a decay in the phase stability of the two
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components. Equation (A.6) only includes a single scattering process; including all

scattering processes {𝜏𝑛𝑚} results in

𝜌̇𝑖𝑗 =
∑︁
𝑛𝑚

− 𝜌𝑖𝑗
2𝜏𝑛𝑚

(𝛿𝑖𝑚 + 𝛿𝑗𝑚) +
𝜌𝑚𝑚

𝜏𝑛𝑚
𝛿𝑖𝑛𝛿𝑗𝑛

= −𝜌𝑖𝑗
(︂

1

2𝜏𝑖
+

1

2𝜏𝑗

)︂
+ 𝛿𝑖𝑗

∑︁
𝑛

𝜌𝑛𝑛
𝜏𝑗𝑛

, (A.7)

where 1
𝜏𝑖
≡
∑︀

𝑛
1
𝜏𝑛𝑖

is the total lifetime of the ith state. Note that this ansatz allows

for the presence of terms that scatter states into themselves; these processes scramble

the wavefunction’s phase but do not transfer population and are referred to as pure

dephasing. Typically, an additional phenomenological dephasing term 1/𝑇 *
2 is added

to (A.7) to include the effects of scattering processes that are not modeled. With this

modification, the scattering term becomes

𝜌̇𝑖𝑗 = −𝜌𝑖𝑗
(︂

1

2𝜏𝑖
+

1

2𝜏𝑗
+

1

𝑇 *
2

)︂
+ 𝛿𝑖𝑗

∑︁
𝑛

𝜌𝑛𝑛
𝜏𝑖𝑛

≡ (Γ𝜌)𝑖𝑗. (A.8)

Combining the coherent and incoherent terms, the dynamical equation for the density

matrix is given by

𝜌̇ =
1

𝑖ℎ̄
[𝐻, 𝜌] + Γ𝜌 ≡ ℒ𝜌 , (A.9)

where ℒ is called the Liouville superoperator.

A.1.3 Superoperators

How can Liouville’s equation (A.9) be solved to find physically meaningful quantities?

The key observation is that despite the fact that 𝜌 is a matrix, the operator ℒ is still

linear in 𝜌. Therefore, all of the usual machinery of vector spaces apply to 𝜌, and

if it is reshaped into a column vector then the action of the Liouville superoperator

is just the action of a matrix. If the system had 𝑁 states then the density matrix

would be 𝑁 ×𝑁 , the vectorized density matrix would be 𝑁2 × 1, and the vectorized

superoperator would be 𝑁2 × 𝑁2. A superoperator requires four indices to describe

it: two for the source term and two for the destination term. For example, (A.9)
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could be written as

𝜌̇𝑖𝑗 =
∑︁
𝑘𝑙

ℒ𝑖𝑗,𝑘𝑙𝜌𝑘𝑙. (A.10)

Once everything has been vectorized, Liouville’s equation can be solved in equi-

librium by setting the time derivative to zero and finding the 𝜌0 that satisfies ℒ𝜌0 = 0

and Tr(𝜌0) = 1. This solution is guaranteed to exist and to be unique as long as some

dissipation is present in the system. Though it is possible to find the explicit form of

the superoperator ℒ using brute force, it is easier to do with elementary operations.

To do this, it is often convenient to make several definitions:

∙ The Kronecker product, which forms the outer product of two matrices and

therefore forms a superoperator, is defined by (𝐴⊗𝐵)𝑖𝑗,𝑘𝑙 ≡ 𝐴𝑖𝑘𝐵𝑗𝑙.

∙ The Hadamard product, 𝐴 ⊙ 𝐵, is simple entrywise multiplication of two ma-

trices.

∙ The vectorization operator, vec(𝐴), is the operation that turns a matrix into a

vector; the precise ordering of the elements is determined by convention (e.g.,

column-normal order). Some basic properties:

– vec(𝐴𝐵) = (𝐼 ⊗ 𝐴) vec(𝐵) = (𝐵†* ⊗ 𝐼) vec(𝐴), where 𝐼 is the identity

matrix.

– Tr(𝐴†𝐵) = vec(𝐴)† vec(𝐵). The matrix and vector inner products coin-

cide.

– vec(𝐴⊙𝐵) = vec(𝐴) ⊙ vec(𝐵)

For example, the coherent part of the superoperator can be expressed using Kronecker

products, since

vec
(︂

1

𝑖ℎ̄
[𝐻, 𝜌]

)︂
=

1

𝑖ℎ̄
vec(𝐻𝜌− 𝜌𝐻)

=
1

𝑖ℎ̄

(︀
𝐼 ⊗𝐻 −𝐻†* ⊗ 𝐼

)︀
vec(𝜌)
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Other terms can be expressed similarly. The advantage of this approach is that the

superoperators can be directly constructed using simple expressions instead of more

complicated index-dependent ones.

A.1.4 Optical susceptibility of density matrices

Perhaps the most important quantity of interest when modeling QCLs is not the

electron distribution itself or even the current density, but rather how the QCL affects

light that is propagating through it. For this, we must perform a first-principles

calculation of the susceptibility. The approach taken here is to perturb the system

with an optical field and to use first-order perturbation theory to see how the density

matrix responds. Assume that in the absence of a perturbation the system has a

Hamiltonian 𝐻0 and a density matrix 𝜌0, with 𝜌̇0 = ℒ𝜌0. If the system is weakly

perturbed with a Hamiltonian 𝐻 ′, then the first order correction to the density matrix

𝜌′ must obey Liouville’s equation:

𝜌̇0 + 𝜌̇′ =
1

𝑖ℎ̄
[𝐻0 +𝐻 ′, 𝜌0 + 𝜌′] + Γ(𝜌0 + 𝜌′)

=
1

𝑖ℎ̄
[𝐻0, 𝜌0] + Γ𝜌0⏟  ⏞  

ℒ𝜌0

+
1

𝑖ℎ̄
[𝐻0, 𝜌

′] + Γ𝜌′⏟  ⏞  
ℒ𝜌′

+
1

𝑖ℎ̄
[𝐻 ′, 𝜌0] +

1

𝑖ℎ̄
[𝐻 ′, 𝜌′]⏟  ⏞  

2nd-order

𝜌̇′ = ℒ𝜌′ +
1

𝑖ℎ̄
[𝐻 ′, 𝜌0]. (A.11)

This result can be used to calculate linear susceptibilities; nonlinear susceptibilities

require that higher order perturbations be calculated. To calculate the response to

an optical field, assume a plane wave of the form 𝐸⃗(𝑡) = 𝐸(𝜔)𝑒𝑖𝜔𝑡𝑧 is impinged.

The corresponding vector potential in the Coulomb gauge will be given by 𝐸⃗ =

−𝜕𝐴⃗
𝜕𝑡
, or 𝐴⃗(𝑡) = − 1

𝑖𝜔
𝐸(𝜔)𝑒𝑖𝜔𝑡𝑧. For electrons with a mass 𝑚0 and a charge −𝑒 the
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corresponding perturbation potential is

𝐻 ′(𝑡) =
𝑒

𝑚0

𝐴⃗ · 𝑝

= 𝑖
𝑒

𝑚0𝜔
𝐸(𝜔)𝑒𝑖𝜔𝑡𝑝𝑧, (A.12)

where 𝑝𝑧 is the component of the electron’s momentum in the growth direction. This

form is usually converted into a dipole moment using the position operator, but as

will be discussed subsequently this is inconvenient since the position operator is not

well-defined in periodic systems. Assume that the matrix elements of 𝑝𝑧 have been

evaluated in the same basis as the density matrix. If the unperturbed system is in

equilibrium, the density matrix 𝜌0 will be constant in time, and by (A.11) 𝜌′(𝑡) will

have the same frequency components as 𝐻 ′(𝑡). Therefore, we can write without loss

of generality that 𝜌′(𝑡) = 𝜌′(𝜔)𝑒𝑖𝜔𝑡. Inserting the perturbation Hamiltonian into the

first-order result, we find that

(𝑖𝜔 − ℒ) 𝜌′(𝜔) =
𝑒

𝑚0ℎ̄𝜔
[𝑝𝑧, 𝜌0]𝐸(𝜔)

𝜌′(𝜔) = 𝐸(𝜔)
𝑒

𝑚0ℎ̄𝜔
(𝑖𝜔 − ℒ)−1 [𝑝𝑧, 𝜌0]. (A.13)

Note that since ℒ is a superoperator, (𝑖𝜔 − ℒ)−1 is a matrix inversion that acts on

the commutator [𝑝𝑧, 𝜌0], a matrix.

To find the permittivity of the QCL gain medium, 𝜀𝑟, assume that the total

electric displacement field is a sum of the component arising from the intersubband

contribution and from the material (which has a refractive index n):

𝜀0𝜀𝑟
𝜕𝐸⃗

𝜕𝑡
= 𝐽𝜌 + 𝜀0𝑛

2𝜕𝐸⃗

𝜕𝑡

𝜀𝑟(𝜔)𝐸(𝜔) =
1

𝑖𝜔𝜀0
𝐽𝜌(𝜔) + 𝑛2𝐸(𝜔)

𝜀𝑟(𝜔) = 𝑛2 +
1

𝑖𝜔𝜀0

𝐽𝜌(𝜔)

𝐸(𝜔)
. (A.14)

Therefore, we need to find the semiclassical current density associated with the in-
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tersubband transitions. Current density is the product of charge density and charge

velocity, and in QCLs with a doping level of 𝑁𝑑 is essentially 𝐽 = −𝑒𝑁𝑑⟨𝑣⃗⟩ = − 𝑒𝑁𝑑

𝑚0
⟨𝑝⟩.

The portion of this current density directed in the growth direction at a frequency 𝜔

is just

𝐽𝑧(𝜔) = −𝑒𝑁𝑑

𝑚0

Tr (𝑝𝑧𝜌
′(𝜔))

= − 𝑒2𝑁𝑑

𝑚2
0ℎ̄𝜔

Tr
(︀
𝑝𝑧 (𝑖𝜔 − ℒ)−1 [𝑝𝑧, 𝜌0]

)︀
𝐸(𝜔),

leading to the final result that

𝜀𝑟(𝜔) = 𝑛2 + 𝑖
𝑒2𝑁𝑑

𝜀0𝑚2
0ℎ̄𝜔

2
Tr
(︀
𝑝𝑧 (𝑖𝜔 − ℒ)−1 [𝑝𝑧, 𝜌0]

)︀
.2 (A.15)

This expression can be used to calculate the effective index and optical gain for essen-

tially any electronic system, using 𝑛(𝜔) = Re(
√︀
𝜀𝑟(𝜔)) and 𝑔(𝜔) = 2𝜔/𝑐 Im(

√︀
𝜀𝑟(𝜔)).

It essentially requires only the superoperator, the equilibrium density matrix, and the

momentum matrix. Note that because dephasing built into the superoperator already

broadens the transition linewidths, no phenomenological broadening is necessary be-

yond that already built into the superoperator. The cost of this generality is that

attributing features to any one optical transition is difficult, as gain essentially comes

from the whole density matrix at once. While this makes it appealing from a compu-

tational standpoint, it is unappealing from a pedagogical standpoint.

A.2 Periodic density matrices

The analysis in the previous section was completely general, applying to any quantum

system. In principle, it should be applied to all of the states of a QCL. Of course,

this is not computationally practical; in reality the system should be reduced to just

a few modules. Traditionally, this is done by cutting the module at the injector

2Evaluating this trace requires that (𝑖𝜔 − ℒ)−1
be calculated for each value of 𝜔. As ℒ can be

quite large, it is computationally unwieldly. Instead, it is usually faster to diagonalize ℒ first.
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barrier and requiring that electrons be injected through this channel [34]. However,

this approach is not without problems. For example, it is not always clear where the

injector barrier is for an arbitrary system, or indeed whether one exists at all. Ideally,

algorithmic design of QCL bandstructures would be unencumbered by traditional

design paradigms, and should treat every layer equally.

For this, a theory of periodic density matrices was developed. This formalism is

essentially an extension of the common Kazarinov-Suris formalism, and can be used to

write down and solve for the dynamical equations of a system like the QCL without

cutting the module at an arbitrary location or elevating one layer above the rest.

To start, imagine writing down the full density matrix of a large system with 𝑁𝑚𝑜𝑑

modules and 𝑁 states per module. Call this full matrix 𝜌𝑓 . If the density matrix

were truly periodic, one would expect that the elements of the density matrix repeat

down the diagonal, as shown below:

(A.16)

In this expression, each 𝜌𝑖 is considered to be an 𝑁 × 𝑁 matrix and is referred to

as a block ; blocks represent the coherence between all the states of a module and all

the states of another module. If 𝜌(𝑓)𝑖𝑗 represents the block at position 𝑖𝑗 of 𝜌𝑓 , then

we would write 𝜌(𝑓)𝑖𝑗 = 𝜌𝑖−𝑗. Note that the off-diagonal blocks are not independent of

each other, since Hermiticity guarantees that 𝜌−𝑖 = 𝜌†𝑖 . The highlighted submatrix of

𝜌𝑓 is referred to as a tile and is essentially a column array of blocks. It contains all

of the information about the system, and will be denoted by 𝜌𝑡.

In the spirit of tight-binding, it is assumed to be the case that the states of a

module can only interact with the states of nearby modules. 𝒩 will be used to
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represent this distance (𝒩 = 1 for nearest-neighbor coupling). Usually it is more

convenient to deal with 𝑀 ≡ 2𝒩 + 1, the number of modules that each module

interacts with. Because we will not care about coherences that may develop between

modules that are far apart, blocks any further than 𝒩 off the diagonal are neglected.

It is for this reason that the tile matrix 𝜌𝑡 is an𝑀×1 array (i.e., an𝑀𝑁×𝑁 matrix).

Though the tile matrix is a complete description of the density matrix, it is not

square and can be inconvenient for calculations. To form a square matrix, let 𝒮

denote the circular shift operator that replicates and shifts a column vector M times.

Then the periodicized version of the tile matrix is defined as 𝜌∞ ≡ 𝑆𝜌𝑡. For example,

for M=3:

𝜌∞ ≡

⎛⎜⎜⎜⎝
𝜌0 𝜌−1 𝜌1

𝜌1 𝜌0 𝜌−1

𝜌−1 𝜌1 𝜌0

⎞⎟⎟⎟⎠ (A.17)

Another way of formulating this definition is by writing 𝜌(∞)
𝑖𝑗 ≡ 𝜌[𝑖−𝑗], where brackets

are used to denote modulo M. In this section, all rows and column indices will run from

−𝒩 to𝒩 , and so the modulo operation is assumed to map back into this region.3 The

key advantage of using periodicized operators is that nearly all of the usual machinery

of density matrices applies to them directly, with only a few modifications. Even

though they are redundant, they can also be reduced to tile operators quite easily as

𝜌𝑡 is just the center column of 𝜌∞, that is 𝜌𝑡 = 𝜌
(∞)
∙0 .4

A.2.1 Periodicization of operators

Other quantum mechanical operators can be periodicized in the same way as the

density matrix, since an operator 𝐴𝑓 will have a form similar to 𝜌𝑓 . However, there

is one very important difference. Whereas 𝜌𝑓 is completely periodic, operators that

depend explicitly on position will usually be shifted on their diagonal from one module

to the next. For example, the position operator will be shifted by the length of a

3Explicitly, [𝑥] ≡ mod(𝑥+𝒩 ,𝑀)−𝒩 .
4Bullets appearing in indices are used here to denote rows and columns of matrices, for example

𝐴∙𝑗 is the jth column of A.

153



module, and the Hamiltonian will be shifted by the voltage drop per module. A

general operator 𝐴𝑓 must therefore be written as

𝐴
(𝑓)
𝑖𝑗 = 𝐴𝑖−𝑗 + 𝜆𝐴𝐼𝛿𝑖𝑗𝑗 (A.18)

where 𝜆𝐴 is the module-to-module shift and 𝐼 is the 𝑁 × 𝑁 identity matrix. Simi-

larly, the periodicized operator 𝐴∞ must be defined in such a way that the shift is

incorporated, that is

𝐴
(∞)
𝑖𝑗 ≡ 𝐴[𝑖−𝑗] + 𝜆𝐴𝐼𝛿𝑖𝑗𝑗 (A.19)

𝐴∞ =

⎛⎜⎜⎜⎝
𝐴0 − 𝜆𝐴𝐼 𝐴−1 𝐴1

𝐴1 𝐴0 𝐴−1

𝐴−1 𝐴1 𝐴0 + 𝜆𝐴𝐼

⎞⎟⎟⎟⎠ (for M=3). (A.20)

Of course, the operator 𝐴∞ is not really periodic, and so this means that one must

take great care when assigning properties to it. In this analysis, expectation values

are only calculated for operators which lack a shift, like the momentum operator 𝑝𝑧.

It is for this reason the optical susceptibility was left in terms of the momentum

operator rather than converting it a dipole moment.

What are the expectation values of an operator in terms of periodic density matri-

ces and tiles? Assume that the block representing a module’s interaction with itself,

𝜌0, has been normalized to Tr(𝜌0) = 1. In other words, the probability of finding an

electron in a module is 1. Then the expectation value of the full density matrix is

simply the usual expectation value, normalized to the number of modules:

⟨𝐴⟩ =
1

𝑁𝑚𝑜𝑑

Tr(𝐴𝑓𝜌𝑓 ). (A.21)

For shift-free operators, this result can be expressed in terms of blocks as follows
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(keeping in mind that 𝜌𝑖 is a matrix, not a number):

⟨𝐴⟩ =
1

𝑁𝑚𝑜𝑑

Tr(𝐴𝑓𝜌𝑓 ) =
1

𝑁𝑚𝑜𝑑

𝑁𝑚𝑜𝑑∑︁
𝑛=1

Tr ((𝐴𝑓𝜌𝑓 )𝑛𝑛) = Tr ((𝐴𝑓𝜌𝑓 )00)

= Tr

(︃
𝒩∑︁

𝑘=−𝒩

𝐴
(𝑓)
0𝑘 𝜌

(𝑓)
𝑘0

)︃
=
∑︁
𝑘

Tr(𝐴−𝑘𝜌𝑘)

=
∑︁
𝑘

Tr(𝐴†
𝑘𝜌𝑘) = Tr(𝐴†

𝑡𝜌𝑡). (A.22)

This allows for the calculation of expectation values directly from tiles or from blocks.5

It can also be calculated from periodic operators by performing a similar calculation,

in which case one finds that Tr (𝐴∞𝜌∞) = 𝑀
∑︀

𝑘 Tr(𝐴
†
𝑘𝜌𝑘), or

⟨𝐴⟩ =
1

𝑀
Tr (𝐴∞𝜌∞) . (A.23)

The factor of M is of course due to the fact that periodic operators contain M copies

of a tile. The following table summarizes these results for each representation of the

density matrix, in decreasing order of size:

Type Symbol Block representation Size ⟨𝐴⟩

full 𝜌𝑓 𝜌
(𝑓)
𝑖𝑗 = 𝜌𝑖−𝑗 𝑁𝑚𝑜𝑑𝑁 ×𝑁𝑚𝑜𝑑𝑁

1
𝑁𝑚𝑜𝑑

Tr(𝐴𝑓𝜌𝑓 )

periodic 𝜌∞ 𝜌
(∞)
𝑖𝑗 = 𝜌[𝑖−𝑗] 𝑀𝑁 ×𝑀𝑁 1

𝑀
Tr (𝐴∞𝜌∞)

tile 𝜌𝑡 𝜌
(𝑡)
𝑖 = 𝜌𝑖 𝑀𝑁 ×𝑁 Tr(𝐴†

𝑡𝜌𝑡)

blocks {𝜌𝑖} 𝜌𝑖 = 𝜌𝑖 𝑀 (𝑁 ×𝑁)’s
∑︀

𝑘 Tr(𝐴
†
𝑘𝜌𝑘)

A.2.2 Periodicization of superoperators

To find the dynamics of a system requires that Liouville’s equation be translated into

the language of periodic density matrices. However, this is not as straightforward as

the calculation of expectation values, since special care must be taken to ensure that

the time-evolution of periodic density matrices maintains periodicity. Assume that

the superoperator of the finite system, ℒ𝑓 , has been found. What is the corresponding

5Since 𝐴𝑡 is not a square matrix, 𝐴†
𝑡 ̸= 𝐴𝑡.
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superoperator for tiles, ℒ𝑡? Note that in contrast to the full superoperator which takes

four indices to describe each block, the tile superoperator only needs two indices since

it tiles are column arrays. Consider finding ℒ(𝑡)
−11, which represents the contribution

of 𝜌1 to 𝜌̇−1. Since 𝜌1 and 𝜌−1 appear many times in 𝜌𝑓 , there will be many ways 𝜌1

can contribute to 𝜌̇−1:

(A.24)

In general, a “source” block 𝜌𝑗 appears at location (𝑗, 0) in the full density matrix,

whereas the possible “destination” blocks appear at (𝑖 + 𝑡, 𝑡), where 𝑡 is any integer.

Therefore, we can write that the superoperator associated with 𝜌𝑡 is given by

ℒ(𝑡)
𝑖𝑗 =

∞∑︁
𝑡=−∞

ℒ(𝑓)
(𝑖+𝑡)𝑡,𝑗0 (A.25)

Note that as before, whole blocks are being indexed, meaning that ℒ(𝑡)
𝑖𝑗 is not a

number, it is a superoperator that acts on 𝑁 ×𝑁 matrices.

To find the superoperator for periodic matrices, ℒ∞, the process is similar, but

instead of considering individual blocks the entire periodic matrix needs to be tiled

across 𝜌𝑓 and a macro-periodicity of 𝑀 is assumed:
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(A.26)

A source block 𝜌𝑘𝑙 appears at location (𝑙− [𝑙−𝑘], 𝑙) in the full density matrix, whereas

the destination block 𝜌𝑖𝑗 appears at locations (𝑗 − [𝑗 − 𝑖] + 𝑀𝑡, 𝑗 + 𝑀𝑡). Therefore,

the superoperator associated with 𝜌∞ is given by

ℒ(∞)
𝑖𝑗,𝑘𝑙 =

∞∑︁
𝑡=−∞

ℒ(𝑓)
(𝑗−[𝑗−𝑖]+𝑀𝑡)(𝑗+𝑀𝑡),(𝑙−[𝑙−𝑘])𝑙

Shifting 𝑡 to make 𝑗 − [𝑗 − 𝑖] = [𝑗 − [𝑗 − 𝑖]] = 𝑖,

ℒ(∞)
𝑖𝑗,𝑘𝑙 =

∞∑︁
𝑡=−∞

ℒ(𝑓)
(𝑖+𝑀𝑡)(𝑖−[𝑖−𝑗]+𝑀𝑡),(𝑙−[𝑙−𝑘])𝑙 (A.27)

Even though this expression looks fairly complicated, as a result of the nearest neigh-

bor approximation it tends to simplify dramatically.

The superoperators associated with dephasing and scattering are rather easy to

periodicize, but the one associated with coherent transport—that is, arising from the

Hamiltonian—is less straightforward. Nevertheless, the result itself is exceptionally

clean, and so it is worth doing as an example. To find it, note that the time-evolution

of the full density matrix is 𝑖ℎ̄𝜌̇𝑓 =
∑︀

𝑘𝑙𝐻
(𝑓)
𝑖𝑘 𝛿𝑙𝑗𝜌𝑘𝑙 − 𝜌𝑘𝑙𝛿𝑖𝑘𝐻

(𝑓)
𝑙𝑗 . Inserting this form

into (A.27), we find that

𝑖ℎ̄𝜌̇
(∞)
𝑖𝑗 =

∑︁
𝑘𝑙

∞∑︁
𝑡=−∞

𝐻
(𝑓)
(𝑖+𝑀𝑡)(𝑙−[𝑙−𝑘])𝛿𝑙(𝑖−[𝑖−𝑗]+𝑀𝑡)𝜌𝑘𝑙

− 𝜌
(∞)
𝑘𝑙 𝛿(𝑖+𝑀𝑡)(𝑙−[𝑙−𝑘])𝐻

(𝑓)
𝑙(𝑖−[𝑖−𝑗]+𝑀𝑡)
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By modular arithmetic, 𝑙 = 𝑖 − [𝑖 − 𝑗] + 𝑀𝑡 implies 𝑙 = 𝑗, and 𝑙 − [𝑙 − 𝑘] = 𝑖 + 𝑀𝑡

implies 𝑘 = 𝑖. Using this to remove the delta functions and changing the 𝑙’s in the

second term to 𝑘’s,

𝑖ℎ̄𝜌̇
(∞)
𝑖𝑗 =

∑︁
𝑘

∞∑︁
𝑡=−∞

𝐻
(𝑓)
(𝑖+𝑀𝑡)(𝑗−[𝑗−𝑘])𝜌

(∞)
𝑘𝑗 − 𝜌

(∞)
𝑖𝑘 𝐻

(𝑓)
𝑘(𝑖−[𝑖−𝑗]+𝑀𝑡)

Next, the shift-periodicity of the Hamiltonian, 𝐻(𝑓)
𝑛𝑚 = 𝐻𝑛−𝑚 + 𝜆𝐻𝐼𝛿𝑛𝑚𝑛, is used.

However, note that because of the nearest-neighbor form of the Hamiltonian, 𝐻𝑥+𝑀𝑡 =

0 for 𝐻 too far from the diagonal (i.e., H outside the mod range). As a consequence,∑︀
𝑡𝐻𝑥+𝑀𝑡 = 𝐻[𝑥], and the (𝑖 + 𝑀𝑡) − (𝑗 − [𝑗 − 𝑘]) term becomes [𝑖 − 𝑘] while the

𝑘 − (𝑖− [𝑖− 𝑗] +𝑀𝑡) term becomes [𝑘 − 𝑗]:

𝑖ℎ̄𝜌̇
(∞)
𝑖𝑗 =

∑︁
𝑘

(𝐻[𝑖−𝑘] + 𝜆𝐻𝛿[𝑖−𝑘](𝑗 − [𝑗 − 𝑘]))𝜌
(∞)
𝑘𝑗

− 𝜌
(∞)
𝑖𝑘 (𝐻[𝑘−𝑗] + 𝜆𝐻𝛿[𝑘−𝑗]𝑘)

Since 𝐻[𝑛−𝑚] = 𝐻
(∞)
𝑛𝑚 − 𝜆𝐻𝐼𝛿𝑛𝑚𝑛,

𝑖ℎ̄𝜌̇
(∞)
𝑖𝑗 =

∑︁
𝑘

(︁
𝐻

(∞)
𝑖𝑘 + 𝜆𝐻𝛿𝑖𝑘(𝑗 − 𝑘 − [𝑗 − 𝑘])

)︁
𝜌
(∞)
𝑘𝑗 − 𝜌

(∞)
𝑖𝑘 𝐻

(∞)
𝑘𝑗

=
∑︁
𝑘

𝐻
(∞)
𝑖𝑘 𝜌

(∞)
𝑘𝑗 − 𝜌

(∞)
𝑖𝑘 𝐻

(∞)
𝑘𝑗 + 𝜆𝐻𝛿𝑖𝑘 ([𝑖− 𝑗] − (𝑖− 𝑗)) 𝜌

(∞)
𝑖𝑗

= (𝐻∞𝜌∞ − 𝜌∞𝐻∞)𝑖𝑗 + 𝜆𝐻 ([𝑖− 𝑗] − (𝑖− 𝑗)) 𝜌
(∞)
𝑖𝑗

The first term is just a commutator and the second just an entrywise multiplication,

so we at last arrive at our final result:

𝑖ℎ̄𝜌̇∞ = [𝐻∞, 𝜌∞] + 𝜆𝐻𝐶∞ ⊙ 𝜌∞ (A.28)

where 𝐶𝑖𝑗 ≡ [𝑖− 𝑗] − (𝑖− 𝑗) and 𝐶(∞)
𝑖𝑗 ≡ 𝐶𝑖𝑗1𝑁 (an 𝑀 ×𝑀 and 𝑀𝑁 ×𝑀𝑁 matrix,

respectively). In other words, the periodic density matrix evolves nearly identically

to the aperiodic one, with the exception of a correction term that incorporates the

158



effect of the shift. Note that 𝐶 has an extremely simple form; e.g. for M=3 and 5

𝐶3 =

⎛⎝ 0 0 3
0 0 0
−3 0 0

⎞⎠ 𝐶5 =

⎛⎜⎜⎜⎜⎝
0 0 0 5 5
0 0 0 0 5
0 0 0 0 0
−5 0 0 0 0
−5 −5 0 0 0

⎞⎟⎟⎟⎟⎠
These matrices only affect the off-diagonal elements of Liouville’s equation, and es-

sentially correct for the error introduced by the shift in 𝐻∞. A similar result holds

for the tile and for the block matrices:

𝑖ℎ̄𝜌̇𝑖 =
∑︁
𝑗

𝐻[𝑖−𝑗]𝜌𝑗 − 𝜌𝑗𝐻[𝑖−𝑗] + 𝜆𝐻𝑘𝛿𝑖𝑘𝜌𝑖 (A.29)

𝑖ℎ̄𝜌̇𝑡 = (𝒮𝐻𝑡) 𝜌𝑡 − (𝒮𝜌𝑡)𝐻𝑡 + 𝜆𝐻𝐷𝑡 ⊙ 𝜌𝑡 (A.30)

where 𝒮 is the circular shift operator, 𝐷𝑘 ≡ 𝑘 and 𝐷(𝑡)
𝑘 ≡ 𝐷𝑘1𝑁 .

As an example, consider the basic biased superlattice with one state per module

and nearest-neighbor coupling (𝑁 = 1 and 𝑀 = 3). If the coupling between a well

and its neighbor is ∆, and the bias per module is 𝜆, then the periodic Hamiltonian

would be

𝐻∞ =

⎛⎜⎜⎜⎝
−𝜆 ∆* ∆

∆ 0 ∆*

∆* ∆ 𝜆

⎞⎟⎟⎟⎠ (A.31)

As it stands, this Hamiltonian actually reflects the Hamlitonian of the wrong infinite

system, effectively this one:
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instead of this one:

It is impossible to formulate Schrodinger’s equation in such a way that the bi-

ased system can ever be modeled, short of explicitly including each and every state.

However, the same is not true of Liouville’s equation:

𝑖ℎ̄𝜌̇∞ =

⎛⎜⎜⎜⎝
0 −𝜆𝜌−1 −2𝜆𝜌1

𝜆𝜌1 0 −𝜆𝜌−1

2𝜆𝜌−1 𝜆𝜌1 0

⎞⎟⎟⎟⎠
⏟  ⏞  

[𝐻∞,𝜌∞]

+𝜆

⎛⎜⎜⎜⎝
0 0 3𝜌1

0 0 0

−3𝜌−1 0 0

⎞⎟⎟⎟⎠
⏟  ⏞  

𝐶∞⊙𝜌∞

=

⎛⎜⎜⎜⎝
0 −𝜆𝜌−1 𝜆𝜌1

𝜆𝜌1 0 −𝜆𝜌−1

−𝜆𝜌−1 𝜆𝜌1 0

⎞⎟⎟⎟⎠

The key point here is that the uncorrected result is not periodic and reflects the

dynamics of the wrong system, whereas the corrected result is fully periodic. More-

over, the factor of 3𝜆 essentially accounts for the incorrect positioning of the periodic

extension.

A.3 Basis for scattering calculations

Up until now, the choice of basis used for constructing the density matrix has not

been mentioned. This is because in principle, any orthogonal basis should be suitable

for the preceding analysis. Still, there is one major exception: the calculation of

scattering rates. Scattering should always be calculated in the energy eigenbasis since

Fermi’s Golden Rule requires energy eigenstates as inputs. There are two problems

with this:
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1. The effect of dephasing on the choice of basis is not always apparent. The usual

approach is to restrict the band structure simulation to one module or another,

effectively solving for the non-injector eigenstates in a delocal basis and solving

for the injector eigenstates in a local basis. However, as previously mentioned

this presupposes that an injector barrier even exists. It is also mathematically

discontinuous, making it a less than ideal choice.

2. In a periodic system, it is not clear whether a thing such as energy eigen-

states even exist. The corrected Liouville’s equation is for density matrices,

not wavefunctions. Moreover, at first glance it is not immediately obvious how

wavefunctions even fit into this formalism.

A single solution can solve both issues: an orthogonal basis that minimizes the time

evolution of the density matrix, ||𝜌̇||2. But first, it is necessary to talk about the

choice of computational basis.

A.3.1 Computational basis

The choice of an appropriate basis can be tremendously helpful for analyzing different

structures. A useful concept for analyzing band structures algorithmically is the

concept of a layer function 𝐿(𝑧), a function of position that ticks up every time a new

layer is encountered:

𝐿(𝑧) = 𝑘 for𝑧 ∈ layer 𝑘. (A.32)

One can also define similarly a module function 𝑀(𝑧), which ticks up every time

a new QCL module is encountered. The reason these operators find a use is that

they can be used to construct wavepackets which nicely localize wavefunctions in

a layer or a module, without destroying the interactions between adjacent states

as solving Schrodinger’s equation with infinite barriers would. To do this, suppose

that the wavefunctions of a finite system under flat-band conditions, 𝜓𝑛(𝑧), have

already been found. The matrix elements of the layer operator can be calculated

using 𝐿𝑛𝑚 =
∫︀∞
−∞ 𝜓*

𝑛(𝑧)𝐿(𝑧)𝜓𝑚(𝑧), and the resulting matrix 𝐿 can be diagonalized in
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terms of its eigenvalues. The resulting eigenvectors are essentially the finite basis’ best

representation of the layer function, and in analogy to LCAO the resulting eigenstates

minimize the standard deviation of the layer operator. (In concept, the layer-localized

basis functions are similar to Wannier functions.) Figure A-1 shows the local basis

functions calculated for FL183S, along with the usual wavefunctions.
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Figure A-1: Band diagram of FL183S gain medium in the absence of bias, in both
the eigenbasis and in the layer-localized basis.

Even when large numbers of states per module are included (𝑁 > 10), the layer-

localized basis states agree with the “intuitive” notion of QCLs as a series of weakly-

coupled wells. An advantage of the layer-localized basis is that it can be used to

implement pure dephasing due to layer thickness variations directly. The eigenvalues

of the layer operator correspond to the layer each basis function is localized to, and

so one expects that the dephasing rate between two layer states due to interface

roughness is proportional to the difference in eigenvalues. Pure dephasing was usually

implemented in this basis.
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A.3.2 Quasi-eigenstates

To find the appropriate basis for scattering calculations, it is worth considering the

meaning of an energy eigenstate. Because an electron in an energy eigenstate 𝜓𝑛

will stay in that state indefinitely, the corresponding density matrix associated it is

completely stationary (𝜌𝑛 = 0). In a system without dissipation, there are 𝑁 such

states, and as a result the Liouville superoperator has a null space with dimensionality

𝑁 . In contrast, a system with any dephasing and scattering between all levels will

only permit a unique 𝜌̇0 = 0—the equilbrium value—which is not even a pure state.

Accordingly, finding “eigenstates” of a system with dephasing is impossible.

In spite of this, if the requirement that 𝜌𝑛 = 0 is relaxed, it is possible to define

quasi-eigenstates that are similar to energy eigenstates. Imagine that a collection of

wavefunctions {𝜓𝑗} have coefficients 𝑉𝑖𝑗 in some basis (i.e., 𝜓𝑗 is represented by the

column vector 𝑉∙𝑗). The pure state density matrix that corresponds to this function

is 𝜌𝑗 = 𝑉∙𝑗𝑉
†
∙𝑗, and the corresponding time evolution is 𝜌̇𝑗 = ℒ𝑉∙𝑗𝑉 †

∙𝑗. One can then

define a cost function which represents the amount of time evolution experienced by

V:

𝜖(𝑉 ) ≡
∑︁
𝑗

⃒⃒⃒⃒⃒⃒
ℒ𝑉∙𝑗𝑉 †

∙𝑗

⃒⃒⃒⃒⃒⃒2
(A.33)

This cost function is fourth-order in 𝑉 , and can be readily minimized using numer-

ical optimization techniques since its gradient can be analytically determined. The

main issue is that eigenstates which are correctly-defined should be orthogonal to

each other, meaning that 𝑉 needs to be optimized under the constraint that it be

unitary. This was done by projecting the gradient onto a Riemannian space and

using rotation matrices to ensure that unitarity was preserved [113]. A secondary

issue that pertains especially to algorithmic design of QCLs is that such an opti-

mization can be computationally expensive if the superoperator ℒ is left in its matrix

form. Having analytical expressions for the time-evolution of the density matrix (e.g.,

(A.28)) without explicitly constructing superoperators is often extremely helpful in

this regard.

For typical values of the phenomenological pure dephasing parameter and of the
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injector anti-crossing, the quasi-eigenstates closely resemble the wavefunctions nor-

mally obtained by cutting the module at the injector barrier, only without a human

necessary to make this judgment. Once a suitable basis has been found, the expecta-

tion value of the Hamiltonian is used as the quasi-eigenstates’ “energy,” and scattering

rates are calculated using Fermi’s Golden Rule. The superoperator associated with

this scattering, Γ, is constructed, and is rotated back6 into the computational basis

using

Γ → (𝑉 * ⊗ 𝑉 ) Γ (𝑉 * ⊗ 𝑉 )† . (A.34)

A.3.3 Periodic eigenstates

The notion of quasi-eigenstates extends quite naturally to periodic density matrices:

as there are 𝑁 basis functions per module one just needs to find 𝑁 quasi-eigenstates.

Still, there are some caveats. The first point of note is that a wavefunction in the

periodic formalism must be allowed to extend over 𝑀 modules to allow for nearest-

neighbor coupling. The prototypical example would be a laser whose upper laser level

is aligned to its injector. In the absence of dephasing the energy eigenstates will be

symmetric and anti-symmetric linear combinations of the basis states, even though

those basis states are in separate modules. Essentially, this means that the coefficient

matrix 𝑉 should be the same size as a tile matrix (𝑀𝑁 ×𝑁), and can be written in

terms of blocks in the same way (e.g., for M=3):

𝑉𝑡 =

⎛⎜⎜⎜⎝
𝑉−1

𝑉0

𝑉1

⎞⎟⎟⎟⎠ (A.35)

6When rotating into a new basis 𝑉 , a vector 𝑤 becomes 𝑉 †𝑤, a matrix 𝐴 becomes 𝑉 †𝐴𝑉 , and

a superoperator ℒ becomes (𝑉 * ⊗ 𝑉 )
† ℒ (𝑉 * ⊗ 𝑉 ).
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As always, one can define a periodicized version of 𝑉𝑡 by considering its circularly-

shifted tiling, 𝑉∞ = 𝒮𝑉𝑡:

𝑉∞ =

⎛⎜⎜⎜⎝
𝑉0 𝑉−1 𝑉1

𝑉1 𝑉0 𝑉−1

𝑉−1 𝑉1 𝑉0

⎞⎟⎟⎟⎠ (A.36)

Another caveat lies in the unitarity constraint. We should not merely require that

𝑉𝑡 be unitary (i.e., that 𝑉 †
𝑡 𝑉𝑡 = 𝐼), we should also require that 𝑉∞ be unitary (i.e.,

that (𝒮𝑉𝑡)†(𝒮𝑉𝑡) = 𝐼). In other words, the columns of 𝑉𝑡 must also be orthogonal

to shifted versions of themselves. Essentially, what this means is that not only do

wavefunctions within a module need to be orthogonal to each other, wavefunctions

in different modules also need to be orthogonal to each other. Fortunately, all of the

properties that pertain to unitary matrices also pertain to periodic unitary matrices,

and so this constraint is not difficult to satisfy.

The last caveat lies in the construction of a density matrix associated with a

given wavefunction. Normally, the pure state associated with a state 𝜓 would be

constructed from an outer product of its coefficient vector, 𝑣𝑣†. However, implicit in

the periodic density matrix formalism is the notion that even if we knew that the

system was in state 𝜓 we would still lack information about which module it was

in. Therefore, the best we can hope to do is to construct a mixed state consisting

of a superposition of the same wavefunction tiled over all modules. Letting 𝒮𝑖 be a

modified circular shift operator that shifts an 𝑀𝑁 ×𝑀𝑁 matrix down and to the

right by 𝑖𝑁 ,7 the state associated with 𝑣 should be defined by

𝜌(𝑣)∞ =
∑︁
𝑖

𝒮𝑖

(︀
𝑣𝑣†
)︀
. (A.37)

In fact, it is this choice of construction that ensures that 𝜌𝑗∞ is periodic as required.

It is also interesting to note that even though this is not a pure state per se, if states

𝑣 and 𝑤 were shift-orthogonal then it would be the case that 𝜌(𝑣)∞ 𝜌
(𝑤)
∞ = 𝜌

(𝑣)
∞ , just as

7Explicitly, (𝒮𝑖𝐴∞)𝑗𝑘 = 𝐴
(∞)
[𝑗−𝑖][𝑘−𝑖].
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if they were pure states.

A.3.4 Comparison with experimental data

Figure A-2 shows a comparison between the gain measured at 30 K for the scattering-

assisted design (on the left) and simulated with the periodic density matrix formalism

(on the right). The band diagram is once again shown for reference. Qualitatively,
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Figure A-2: Measured and simulated gain versus frequency and bias at 30 K for the
OWI185E-M1 gain medium.

they agree fairly well. Below threshold the simulation predicts all sorts of absorption

features that transiently appear and disappear as the bias is adjusted. Above thresh-

old the simultation predicts both scattering-assisted gain and resonant-phonon gain.

Quantitatively, there is room for improvement, e.g. the gain of the scattering-assisted

transition is over-predicted. In fact, in simulations it was found to be the case that

most resonant-phonon designs should have a scattering-assisted transition between
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the injector and the upper laser level. This likely indicates that the optimal basis

calculation did not sufficiently penalize the formation of a doublet across the injector

barrier, and that perhaps higher-order calculations would be necessary to fully model

this behavior.

A.3.5 Unconstrained optimization by genetic algorithms

Because the periodic density matrix formalism contains no a priori assumptions about

the QCL band structure, it is particularly well-suited to nonlinear optimization algo-

rithms. The key idea is to formulate a fitness function—in this case, gain at 300 K

at some frequency—which is then optimized. In genetic algorithms, a population of

designs is created whose fitness is evaluated at each iteration. A fittest fraction of the

population is then selected for reproduction, and a new population is generated based

on these reproducing designs. The new population is generated by both mutating the

old designs—adding some amount of Gaussian noise—and also by mixing together

layers thicknesses from different designs, much like how biological organisms combine

genes. These principles were used to generate a scattering-assisted design that ac-

cording to simulation should have lased up to 320 K, but in actuality only lased up

to 120 K. In all likelihood, the algorithm is simply overzealous in its optimization,

taking advantage of defects in the model to achieve its simulated performance.
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Appendix B

Electrical modulation schemes

B.1 Asynchronous double modulation

The first method developed for determining transmission of a terahertz pulse through

a QCL is referred to as asynchronous double modulation, and was originally developed

for transmission measurements of mid-infrared QCLs [112]. In this scheme, shown in

Figure B-1, the emitter section and the laser section are independently biased using

ω1Pulse generator  
duty cycle=50%

Pulse generator  
duty cycle=f

ω2 Lock-in ω1

EO detector

PDs

in out

Lock-in ω2

in out

sμ sΔ

Figure B-1: Electrical schematic for asynchronous double modulation.

square waves of frequencies 𝜔1 and 𝜔2, respectively. The duty cycle of the emitter

bias is usually chosen to be 50% to maximize signal, while the laser is biased at a duty

cycle 𝑓 . No attempt is made to synchronize their outputs. The balanced detection

signal from the EO detection setup is placed into a lock-in amplifier tuned to 𝜔1,

which simply sees the average terahertz signal produced by the emitter plus laser
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system. If 𝑝on and 𝑝off represent the signal associated with the laser being on and the

laser being off, then the output of this lock-in, denoted by 𝑠𝜇, is given by

𝑠𝜇 = 𝑓𝑝on + (1 − 𝑓)𝑝off (B.1)

(a weighted average). The output of this lock-in is placed into a second lock-in tuned

to 𝜔2, which in turn represents the difference in terahertz obtained when the laser is

on and when the laser is off. The resulting signal, called 𝑠Δ, is therefore proportional

to the difference signal:

𝑠Δ = 𝑠(𝑝on − 𝑝off). (B.2)

The proportionality factor 𝑠 can be determined through calibration measurements of

the pulse acquired with the laser fully off. By inverting these relations, one can easily

find 𝑝on and 𝑝off in terms of the measured parameters:

𝑝on(𝜏) = 𝑠𝜇(𝜏) +
1 − 𝑓

𝑠
𝑠Δ(𝜏) (B.3)

𝑝off(𝜏) = 𝑠𝜇(𝜏) − 𝑓

𝑠
𝑠Δ(𝜏). (B.4)

One thing to note about this scheme is that since the laser usually spends much more

time off than on (typical duty cycles are 10%), the SNR of 𝑝off(𝜏) is usually much

better than the SNR of 𝑝on(𝜏). In other words, the limiting factor is the SNR of the

𝑝on(𝜏) signal.

B.2 Synchronous double modulation

In synchronous double modulation, first performed in Ref. [68] and extended here,

the laser and emitter are biased in sync with each other, with the laser being biased

every other emitter pulse. The advantage of this technique is that it uses the laser

duty cycle much more intelligently, because in asynchronous double modulation half

the time the laser turns on the emitter is not on. In a sense, that time is completely

wasted, reducing the final SNR by a factor of
√

2.
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The procedure for performing this technique is shown in Figure B-2. Once again

Pulsemgeneratormωmm Pulsemgeneratormω/2mm
Lock-inmω

EOmdetector

PDs

in out

Lock-inmω/2dutymcycle=f2dutymcycle=f1
in out

s1 s2

f1T

f2(2T)

lasermperiodm=m2T

Emitter
pulse

Laser
pulse

Terahertz
signal

pon

poff

2π
ωemittermperiodm=mT=

Figure B-2: Biasing scheme and electrical schematic for synchronous double modula-
tion.

the lock-ins are locked into the emitter and laser frequencies, but this time both

use the signal directly from the balanced detectors. Assume that they’ve been auto-

phased using a TTL signal which tracks the laser and emitter bias. Let 𝑓1 denote

the duty cycle of the emitter and 𝑓2 denote the duty cycle of the laser. One can then

show using elementary Fourier analysis that the two signals detected by the lock-in
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amplifiers are given by

̃︀𝑠1 = 𝑝on
sin(2𝜋𝑓2) cos((𝑓1 − 2𝑓2)𝜋)

2 sin(𝜋𝑓1)
+ 𝑝off

(︂
1 − sin(2𝜋𝑓2) cos((𝑓1 − 2𝑓2)𝜋)

2 sin(𝜋𝑓1)

)︂
(B.5)

̃︀𝑠2 =
sin(𝜋𝑓2)

sin(𝜋𝑓1)
(𝑝on − 𝑝off), (B.6)

where ̃︀𝑠𝑖 ≡ 𝜋√
2

1
sin(𝜋𝑓1)

𝑠𝑖 is a scaled version of the raw lock-in signals. Evidently, this

result is the same as the asynchronous case, with an “effective duty cycle” of

𝑓 =
sin(2𝜋𝑓2) cos((𝑓1 − 2𝑓2)𝜋)

2 sin(𝜋𝑓1)
, (B.7)

and an “effective scale factor” of

𝑠 =
sin(𝜋𝑓2)

sin(𝜋𝑓1)
. (B.8)

Synchronous double modulation improves the SNR by a factor of
√

2 at the expense

of some extra complexity.
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Appendix C

SWIFTS analysis

C.1 Definitions and conventions

Because electric fields are continuous variables, to be fully rigorous Shifted Wave

Interference Fourier Transform Spectroscopy (SWIFTS) should be derived using the

language of continuous-time Fourier transforms. Conventional FTS is also analyzed

here as something with which SWIFTS can be contrasted. The following conventions

and definitions will be used:

1. 𝐸(𝑡) is the time-dependent electric field of the source. It will be sent through a

Michelson interferometer whose variable arm is delayed by 𝜏 .

2. Even though the optical power that exits the interferometer is proportional to

𝑃 (𝑡, 𝜏) = (𝐸(𝑡) + 𝐸(𝑡 − 𝜏))2 = 𝐸2(𝑡) + 𝐸2(𝑡 − 𝜏) + 2𝐸(𝑡)𝐸(𝑡 − 𝜏), only the

interference term 𝐸(𝑡)𝐸(𝑡 − 𝜏) will be considered. (The first two terms are

uninteresting in FTS since they are non-interferometric.)

3. Fourier transforms are referred to by capital letters, and the convention used

for them is the electrical engineering one:

F [𝑓(𝑡)] (𝜔) ≡ 𝐹 (𝜔) ≡
∫︁ ∞

∞
𝑓(𝑡)𝑒−𝑗𝜔𝑡d𝑡
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Within this convention, the well-known convolution theorem states that if ℎ(𝑡) =

𝑓(𝑡) · 𝑔(𝑡), then 𝐻(𝜔) = 1
2𝜋
𝐹 (𝜔) *𝐺(𝜔).

4. The effect of the final measurement of a signal 𝑥(𝑡) can be abstracted away

as an integration with a measurement kernel 𝐾(𝑡). For example, if the kernel

represents a simple DC average collected over a finite time interval 𝑇=1 s, then

a measurement of 𝑥(𝑡) can be expressed as the integral

⟨𝑥⟩ ≡ 1

𝑇

∫︁ 𝑇

0

𝑥(𝑡)d𝑡 =

∫︁ ∞

−∞
𝐾(𝑡)𝑥(𝑡)d𝑡,

where 𝐾(𝑡) is a boxcar function.

5. The FTS instrument used has a multplicative apodization function 𝐴(𝜏), a

result of its finite travel range. As time-domain multiplication is frequency-

domain convolution, the effect of this apodization will always be to convolve

the measured interferograms with the lineshape function 𝐴(𝜔).

C.2 Basic analysis

C.2.1 Conventional FTS

In conventional FTS, the raw signal that is measured is essentially the field autocor-

relation as a function of stage position, 𝑆0(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏)⟩. Including the effects

of apodization, its Fourier transform is given by

𝑆0(𝜔) =

∫︁ ∞

−∞
d𝜏𝐴(𝜏) ⟨𝐸(𝑡)𝐸(𝑡− 𝜏)⟩ 𝑒−𝑗𝜔𝜏 .
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Applying the convolution theorem,

𝑆0(𝜔) = 𝐴(𝜔) *
∫︁ ∞

−∞
d𝜏 ⟨𝐸(𝑡)𝐸(𝑡− 𝜏)⟩ 𝑒−𝑗𝜔𝜏

= 𝐴(𝜔) *
∫︁

d𝜏

∫︁
d𝑡𝐾(𝑡)𝐸(𝑡)𝐸(𝑡− 𝜏)𝑒−𝑗𝜔𝜏

= 𝐴(𝜔) *
∫︁

d𝑡𝐾(𝑡)𝐸(𝑡)

∫︁
d𝜏 𝐸(𝑡− 𝜏)𝑒−𝑗𝜔𝜏 .

Changing variables to 𝑡′ ≡ 𝑡− 𝜏,

𝑆0(𝜔) = 𝐴(𝜔) *
∫︁

d𝑡𝐾(𝑡)𝐸(𝑡)𝑒−𝑗𝜔𝑡

∫︁
d𝑡′𝐸(𝑡′)𝑒𝑗𝜔𝑡

′
.

The first integral is just the Fourier transform of the product of 𝐾(𝑡) and 𝐸(𝑡), and

by the convolution theorem is just essentially just (𝐸 *𝐾)(𝜔). The second integral

is simply 𝐸(−𝜔) = 𝐸*(𝜔). Ignoring the factors of 2𝜋 and adding in the effect of the

finite apodization, we find that the data collected by conventional FTS is

𝑆0(𝜔) = 𝐴(𝜔) *
[︁
𝐸*(𝜔) · (𝐸 *𝐾)(𝜔)

]︁
(C.1)

Note that the measurement kernel 𝐾(𝜔) is typically very narrow in the frequency

domain (Hz-level), and can be considered a delta function on any practical length

scales. Making this substitution, one obtains the usual result that 𝑆0(𝜔) = 𝐴(𝜔) *

|𝐸(𝜔)|2, i.e. the spectrum measured is a convolution of the power spectrum and the

apodization function.

C.2.2 Shifted Wave Interference FTS

In SWIFTS, the raw signals that are collected are 𝑆𝐼(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) cos(∆𝜔𝑡)⟩

and 𝑆𝑄(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) sin(∆𝜔𝑡)⟩ [104]. The Fourier transform of the in-phase

interferogram is
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𝑆𝐼(𝜔) =

∫︁ ∞

−∞
d𝜏𝐴(𝜏) ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) cos(∆𝜔𝑡)⟩ 𝑒−𝑗𝜔𝜏

= 𝐴(𝜔) *
∫︁

d𝜏

∫︁
d𝑡𝐾(𝑡)𝐸(𝑡)𝐸(𝑡− 𝜏) cos(∆𝜔𝑡)𝑒−𝑗𝜔𝜏

= 𝐴(𝜔) * 1

2

∫︁
d𝑡𝐾(𝑡)𝐸(𝑡)

(︀
𝑒𝑗Δ𝜔𝑡 + 𝑒−𝑗Δ𝜔𝑡

)︀ ∫︁
d𝜏 𝐸(𝑡− 𝜏)𝑒−𝑗𝜔𝜏

= 𝐴(𝜔) * 1

2

∫︁
d𝑡𝐾(𝑡)𝐸(𝑡)

(︀
𝑒−𝑗(𝜔−Δ𝜔)𝑡 + 𝑒−𝑗(𝜔+Δ𝜔)𝑡

)︀ ∫︁
d𝑡′𝐸(𝑡′)𝑒𝑗𝜔𝑡

′

= 𝐴(𝜔) * 1

2
[(𝐸 *𝐾)(𝜔 − ∆𝜔) + (𝐸 *𝐾)(𝜔 + ∆𝜔)]𝐸*(𝜔).

Using similar reasoning, the in-quadrature interferogram is given by

𝑆𝑄(𝜔) = 𝐴(𝜔) * 1

2𝑗
[(𝐸 *𝐾)(𝜔 − ∆𝜔) − (𝐸 *𝐾)(𝜔 + ∆𝜔)]𝐸*(𝜔)

Combining these into a complex quantity 𝑆± ≡ 𝑆𝐼 ∓ 𝑗𝑆𝑄 and once again adding in

the effect of the apodization, the final result is that

𝑆±(𝜔) = 𝐴(𝜔) *
[︁
𝐸*(𝜔) · (𝐸 *𝐾)(𝜔 ± ∆𝜔)

]︁
(C.2)

Notice that if the measurement kernel is once again taken to be a delta function, the

result simplifies to 𝑆±(𝜔) = 𝐴(𝜔)*
[︁
𝐸*(𝜔)𝐸(𝜔±∆𝜔)

]︁
. The fact that the apodization

occurs after the frequency has been shifted and multiplied is essentially the powerful

aspect of SWIFTS, because it allows the user to determine how equidistant the lines

of the spectrum are in a way that is independent of the instrument resolution.

C.2.3 Incoherent sources

The previous analysis implictly assumed that the electric field 𝐸(𝑡) was well-defined.

For sources that are incoherent, however, one must also consider the effect of statistical

fluctations on the interferograms. Conceptually, this is equivalent to considering an

ensemble average of electric fields 𝐸𝑖(𝑡). The final results in conventional FTS and in
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SWIFTS are modified by the inclusion of an average over all such ensembles:

𝑆0(𝜔) = 𝐴(𝜔) * 1

𝑁

𝑁∑︁
𝑖=1

𝐸*
𝑖 (𝜔)𝐸𝑖(𝜔) (C.3)

𝑆±(𝜔) = 𝐴(𝜔) * 1

𝑁

𝑁∑︁
𝑖=1

𝐸*
𝑖 (𝜔)𝐸𝑖(𝜔 ± ∆𝜔). (C.4)

For the sake of notation, the effect of the apodization and the ensemble average are

frequently combined into angle brackets as follows:

𝑆0(𝜔) =
⟨
𝐸*(𝜔)𝐸(𝜔)

⟩
(C.5)

𝑆±(𝜔) =
⟨
𝐸*(𝜔)𝐸(𝜔 ± ∆𝜔)

⟩
. (C.6)

Note that for completely incoherent sources like glow-bars, the FTS signal will be

non-zero whenever |𝐸(𝜔)| is non-zero, whereas in SWIFTS the signal will vanish even

when |𝐸(𝜔)| and |𝐸(𝜔 ± ∆𝜔)| are non-zero. This is because SWIFTS contains a

phase factor, and the average over a random phase will wash out the spectrum.

C.3 Generalization to non-ideal beamsplitters

If the beamsplitter used in the Michelson interferometer is non-ideal, the preceding

analysis needs to be modified. The simplest way is to allow the electric fields put into

the fixed and variable arms of the interferometer to differ, calling them 𝐸1(𝑡) and

𝐸2(𝑡), respectively. Next, the following substitution is made:

𝐸(𝑡)𝐸(𝑡− 𝜏) −→ 𝐸1(𝑡)𝐸2(𝑡− 𝜏)

The analysis is the same as before, with the previous results becoming

𝑆0(𝜔) = 𝐴(𝜔) *
[︁
𝐸*

2(𝜔) · (𝐸1 *𝐾)(𝜔)
]︁

(C.7)

𝑆±(𝜔) = 𝐴(𝜔) *
[︁
𝐸*

2(𝜔) · (𝐸1 *𝐾)(𝜔 ± ∆𝜔)
]︁

(C.8)
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Once again, the measurement kernel is considered a delta function, in which case

𝑆0(𝜔) = 𝐴(𝜔) *
[︁
𝐸*

2(𝜔)𝐸1(𝜔)
]︁

(C.9)

𝑆±(𝜔) = 𝐴(𝜔) *
[︁
𝐸*

2(𝜔)𝐸1(𝜔 ± ∆𝜔)
]︁

(C.10)

Suppose now that 𝐸1(𝜔) = 𝐸(𝜔) and 𝐸2 = 𝐻(𝜔)𝐸(𝜔), where H represents the

transfer function of the beamsplitter. In this situation, the phase imparted by the

beamsplitter causes the phase of the normal interferogram to be non-zero.

𝑆0(𝜔) = 𝐴(𝜔) *
[︁
𝐻*(𝜔) |𝐸(𝜔)|2

]︁
(C.11)

𝑆±(𝜔) = 𝐴(𝜔) *
[︁
𝐻*(𝜔)𝐸*(𝜔)𝐸(𝜔 ± ∆𝜔)

]︁
(C.12)

This is actually the reason why real interferograms are typically asymmetric. It is also

the reason phase correction is often performed in commercial FTIR systems. Luckily,

since the phase of the uncorrupted interferogram is known to be zero, this means

that the phase of the normal interferogram can be used to correct for the phase of

the SWIFT interferograms as well. This is especially critical when SWIFTS is used

for phase retrieval.

C.4 Effect of demodulation imperfections

The previous analysis assumed that the in-quadrature signal was precisely given

by 𝑆𝑄(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏) sin(∆𝜔𝑡)⟩. In general, one must actually take 𝑆𝑄 to be

𝑆𝑄(𝜏) = ⟨𝐸(𝑡)𝐸(𝑡− 𝜏)𝐴𝑄 cos(∆𝜔𝑡+ 𝜑𝑄)⟩, where 𝐴𝑄 ≈ 1 and 𝜑𝑄 ≈ −𝜋/2. This

accounts for demodulation error. In this case, one can show that the definition of 𝑆±

needs to be modified as follows:

𝑆±(𝜔) =
𝑆𝐼(𝜔) − 1

𝐴𝑄
𝑒∓𝑗𝜑𝑄𝑆𝑄(𝜔)

1
2
(1 − 𝑒∓𝑗2𝜑𝑄)

(C.13)

Note that when 𝐴𝑄 = 1 and 𝜑𝑄 = −𝜋/2, this expression reduces to the earlier

definition 𝑆± = 𝑆𝐼 ∓ 𝑗𝑆𝑄. The amplitude and phase factors can be measured directly
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using calibration, or they can be measured from the non-interferometric component

of SWIFTS corresponding to the variable arm.
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