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Sensitivity of SWIFT spectroscopy

ZHUORAN HAN, DINGDING REN, AND DAVID BURGHOFF*

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46656, USA
*dburghoff@nd.edu

Abstract: SWIFT spectroscopy (Shifted Wave Interference Fourier Transform Spectroscopy) is
a coherent beatnote technique that can be used to measure the temporal profiles of periodic optical
signals. While it has been essential in understanding the physics of various mid-infrared and
terahertz frequency combs, its ultimate limits have not been discussed. We show that the envelope
of a SWIFTS interferogram is physically meaningful and is directly related to autocorrelation.
We derive analytical expressions for the SWIFTS signals of two prototypical cases—chirped
pulses from a mode-locked laser and a frequency-modulated comb—and derive scaling laws
for the noise of these measurements, showing how it can be mitigated. Finally, we confirm this
analysis by performing the first SWIFTS measurements of near-infrared pulses from femtosecond
lasers, establishing the validity of the technique for highly-dispersed sub-picojoule pulses.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent phase retrieval techniques such as beatnote interferometry [1] and SWIFTS [2] have
become valuable tools for assessing the coherence and temporal profiles of optical sources with
intensities that are too low to be probed by nonlinear techniques. In particular, the SWIFTS
technique has been used to measure the temporal profile and coherence of many long-wavelength
combs, including quantum cascade laser (QCL) [3–6] combs, interband cascade laser combs
[7], and mode-locked diode and quantum dot lasers [8,9]. QCL combs have fast gain recovery
dynamics and do not usually produce pulses [10–12], making nonlinear characterization very
challenging. Instead of relying on a nonlinearity to reconstruct the electric field’s phase
information, SWIFTS relies on the fast beating between nearby lines to reconstruct the phase
of a source (a concept enabled by the fact that it is an AC measurement technique [13,14]).
Although the contributions from all of the lines are multiplexed together, by adding a scanning
Michelson interferometer one can demultiplex these beatings, similar to conventional Fourier
Transform Spectroscopy (FTS). While conventional FTS is a multiplexed measurement of power,
SWIFTS is a multiplexed measurement of group delay. This technique is particularly salient at
long-wavelengths, as it possesses the usual throughput [15] and multiplex [16] benefits of FTS
while avoiding the requirement for nonlinearities. Similar coherent techniques have also been
used to perform broadband spectroscopy of gases [17].

Nevertheless, the lack of a nonlinearity comes with a price: because SWIFTS is a differential
measurement, reconstructing the full electric field requires that the SWIFTS phase φn be integrated.
This means that some measurements are inherently more sensitive to measurement noise than
others. In particular, quantities that are intrinsically related to phase differences—group delay,
intensity, frequency, etc.—are less sensitive to noise than quantities that are related to absolute
phase, such as electric field [3]. As a result, it becomes less efficacious when a system has many
closely-spaced lines, as in the case of conventional mode-locked lasers. Of course, one can
instead retrieve phase using a dual comb measurement, but achieving high-quality results requires
combs that have relatively phase-noise-free offset frequencies, as in the FACE measurement
[18,19]. One can also use electro-optic sampling-based approaches for field characterization
[20–22], an approach that is well-suited to mode-locked terahertz QCLs.
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Previously, the noise sensitivity of SWIFTS has only been analyzed experimentally using
Monte-Carlo methods, but this approach provide little understanding about the results that can
be realistically be achieved in a given situation. Here, we will derive the sensitivity of various
inferences to different types of noise. We will also derive analytically the form of the SWIFTS
measurement for two highly-relevant cases—chirped pulses and frequency-modulated (FM)
sources—and show how their parameters can be directly extracted from the interferograms’
envelopes without relying on frequency-domain analysis. Lastly, to demonstrate that the technique
is indeed valid for all types of combs, we use it to experimentally measure the group delay
dispersion of chirped pulses from a conventional Ti:Sapphire laser.

This paper is organized as follows: In Section 2, we will introduce the basic conventions and
discuss the sensitivity of SWIFTS coherence measurements to phase noise and non-equidistance
of the comb. In Section 3, we will analyze the SWIFTS waveforms for the cases of chirped
pulses and FM combs, showing how the parameters describing the temporal profile can be
directly extracted from the interferograms’ envelopes. We will also show how these envelopes are
related to conventional autocorrelation. In Section 4, we will discuss phase correction and derive
expressions for the signal-to-noise ratio of group delay, chirp, and high-order coherences, and
will also discuss why the measurement is more practical for chip-scale combs than for solid-state
lasers. Lastly, in Section 5 we confirm this analysis experimentally by using SWIFTS to measure
the chirp of conventional near-infrared mode-locked lasers.

2. Sensitivity of coherence measurements

2.1. Basic conventions

One application of SWIFTS is to probe the equidistance and mutual coherence of nearby lines.
To examine its efficacy, we assume in this section that the electric field under consideration is
comb-like—with lines that are nearly evenly-spaced—but not necessarily a true phase-locked
comb. In other words, we assume that the electric field can be expressed as a superposition

E(t) =
∑
n

Eneiωnt, (1)

where En ≡ E(ωn) and the summation is taken over both positive n and negative n. Note that we
do not initially assume that the cavity modes are equidistant. We assume only that E−n = E∗n and
ω−n = −ωn to ensure the field is real. The intensity measured on a detector at the output of a
Michelson interferometer with delay τ is proportional to

S(t, τ) =
1
2
(E(t) + E(t − τ))2 (2)

=
1
2
(E2(t) + E2(t − τ) + 2E(t)E(t − τ)) (3)

=
1
2

∑
n,m

EnE∗me
iωnmt(1 + e−iωnmτ + 2eiωmτ), (4)

where ωnm ≡ ωn − ωm. In conventional FTS, one averages over lab timescales to record the
signal S0(τ) ≡ 〈S(t, τ)〉. In SWIFTS, one first demodulates the power with a local oscillator of
frequency ωLO, recording S+(τ) ≡ 〈S(t, τ)e−iωLOt〉. The LO can either be from a stable oscillator
[2,7], or it can be derived from the source itself in the self-referenced scheme [3,4]. Typically, one
chooses an LO frequency ωLO that is near an integer multiple of the approximate mode spacing
ωr (ωLO ≈ Lωr, where typically L = 1). One must have a detector whose bandwidth is sufficient
to measure this frequency—potentially a challenge for millimeter-wave repetition rate combs
such as microresonator combs—as well as the ability to digitize several channels simultaneously.
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When the LO is chosen so that ωLO ≈ Lωr, then only the n = m terms survive in normal FTS
and the n = m + L terms survive in SWIFTS:

S0(τ) =
1
2

∑
n
〈EnE∗n〉(1 + 1 + 2eiωnτ) (5)

S+(τ) =
1
2

∑
n
〈En+LE∗ne

i(ωn+L,n−ωLO)t〉(1 + e−iωn+L,nτ + 2eiωnτ) (6)

In both cases, the first two terms are non-inferferometric, corresponding to the fixed and variable
arm contributions. They beat at non-optical frequencies and are usually removed. (We will
denote the interferometric part by Ŝ0 and Ŝ+). For a perfect comb with ωLO = Lωr exactly,

Ŝ0(τ) =
∑
n

EnE∗ne
iωnτ (7)

Ŝ+(τ) =
∑
n

En+LE∗ne
iωnτ . (8)

meaning that the respective Fourier coefficients are just EnE∗n and En+LE∗n. For an imperfect
comb, the time averages require more careful consideration. Clearly, the average 〈ei(ωn+L,n−ωLO)t〉

will vanish when the LO frequency differs from ωn+L,n by more than the averaging bandwidth.
But actually, a stronger statement can be made, which is that it will effectively vanish when the
equidistance is violated by more than the inverse of the measurement time.

To see why this is, we consider a situation where practically no averaging is performed at all,
only the weak averaging sufficient to filter out n , m + L. We also allow for modal amplitudes to
have fluctuating phases. If interferograms are recorded at a mirror velocity v, delay and time are
explicitly related by τ = 2v

c t, and

Ŝ0(τ) =
∑
n

En(τ)E∗n(τ)e
iωnτ (9)

Ŝ+(τ) =
∑
n

En+L(τ)E∗n(τ)e
i(ωn+L,n−ωLO)

c
2vτeiωnτ . (10)

In other words, errors in equidistance are inverse Doppler-shifted by the mirror. The first-
order coherence measured by SWIFTS is assessed by comparing the normal and SWIFTS
interferograms; in terms of Fourier coefficients it is given by gn = |S(n)+ |/

√
S(n)0 S(n+L)0 [3]. If the

travel distance of the mirror τmax is chosen to be near an integer number of repetition periods,
then the Fourier coefficients are approximately given by the inner products 1

τmax

∫
dτe−iωnτ :

S(n)0 =
1
τmax

∫
En(τ)E∗n(τ)dτ = |En |

2 (11)

S(n)+ =
1
τmax

∫
En+L(τ)E∗n(τ)e

i(ωn+L,n−ωLO)
c
2vτdτ. (12)

In the absence of equidistance errors and phase noise, |gn | = 1. When either are present, |gn | < 1.
We analyze each case separately.

2.2. Equidistance errors

When the lines are phase-stable but not equidistant, the coherence reduces to

|gn |2 =
���� 1
τmax

∫ τmax

0
ei(ωn+L,n−ωLO)

c
2vτdτ

����2 = sinc2
( c
4v
(ωn+L,n − ωLO)τmax

)
(13)

Since the maximum delay is related to the total measurement time T by τmax = 2vT/c, this can
be rewritten as
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|gn |2 = sinc2
(
πT(fn+L,n − fLO)

)
. (14)

One immediately finds that the smallest equidistance error that produces gn = 0 occurs when
fn+L,n− fLO = 1

T . Since typical measurement times are on the order of minutes to hours, observing
a coherence on the order of unity means that equidistance has been ensured to within the
milliHertz level.

2.3. Phase noise

When the lines are equidistant but not phase-stable, the coherence can be written as

|gn |2 =
���� 1T ∫ T

0
eiφn(t)dt

����2 (15)

where φn(t) is the phase of the beating En+L(t)E∗n(t). First, we analyze this exactly for the case of
white frequency noise. To do this, we discretize time into steps of ∆t, treat the phase as a random
process with φ(tm+1) = φ(tm) + q(tm) and q(tm) ∼ N(0,Q) (Q is the per-step variance), calculate
the expectation value

〈
|gn |2

〉
, and take the limit ∆t→ 0. Note that since the frequency noise is

white, the spectrum of eiφn(t) is a Lorentzian function with a full-width half-maximum (FWHM)
given by fFWHM = Q/(2π∆t); we are essentially calculating the spectrum at its peak. The exact
result is then given by

|gn |2 =
2

(πTfFWHM)2

(
e−πTfFWHM + πTfFWHM − 1

)
(16)

In the low-noise limit |gn |2 ∼ 1 − 1
3πTfFWHM, and in the high-noise limit |gn |2 ∼ 2

πTfFWHM
. Once

again, phase noise whose linewidth is significantly greater than 1/T causes a substantial reduction
in the measured coherence.
To consider the more general case, one expands Eq. (15) to second order in φn(t):

|gn |2 =
1
T2

∫ T

0
dt

∫ T

0
dt′

〈
ei(φn(t)−φn(t

′)
〉
≈ 1 −

1
2T2

∫ T

0
dt

∫ T

0
dt′

〈
(φn(t) − φn(t′))2

〉
(17)

= 1 −
1
T

∫ T

0

〈
φ2n(t)

〉
dt (18)

where we made use of the ergodic property to eliminate the cross term for large T . In other words,
the coherence is decreased by the integrated phase noise. The power of the technique lies in
the fact that it essentially bounds the power spectral density of phase noise integrated over all
frequencies (down to 1/T and up to the digitization Nyquist frequency).
In all cases, the observation of unity coherence in the SWIFTS measurement allows one to

state that the phases are mutually stable for at least the measurement time, provided that the RF
chain has been calibrated relative to the DC chain. Of course, SWIFTS can only measure the
coherence of lines which beat at frequencies accessible by photodetection, which means that
higher-order coherence measurements (e.g., by beating with phase-stable combs as in FACE
[18] or other dual-comb measurements [23–25]) are necessary for determining whether distant
lines are coherent (particularly when there is a spectral gap). Measurements like FACE also have
the advantage that they measure several comb teeth simultaneously and in real-time, whereas
SWIFTS is asynchronous and only measures relative phases of mode pairs.
On the other hand, SWIFTS can possibly more easily ascertain the existence of partial

coherence than can a dual comb measurement, as in the case of combs that transiently enter
high phase noise regimes [3,26] or in the case of injection-locked combs [7]. In a dual comb
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measurement, incoherent components of the spectrum have extremely large linewidths—for
example, QCLs in high phase noise regimes can have beat linewidths that are as broad as 1
GHz—and these components would essentially manifest as a broad background overlapping the
much narrower dual comb beat components. Determining their presence requires a calibrated
comparison to an incoherent spectrum like an FTS spectrum. While it is natural to record an
FTS spectrum at the same time a SWIFT spectrum is recorded, it is more difficult to do this with
dual comb measurements and FACE.
The fact that the incoherent components of the spectrum are essentially invisible to SWIFTS

confers both advantages and disadvantages. The absence of these components is advantageous
both in the sense that they cannot contribute coherent artifacts to the measurement and also
in the sense that they do not affect the sensitivity of any coherence or temporal measurements
(provided they are not so large as to create nonlinear distortions in the interferograms). The
only effect of the incoherent components is to compete with the coherent components for the
measurement’s limited dynamic range. On the other hand, it also means that one must be careful
when describing the result of temporal measurements, and it is most correct to say that one is only
measuring the periodic part of the optical waveform. Fortunately, the coherence measurement
itself provides a measure of the waveform’s periodicity.

3. Direct analysis of SWIFTS interferograms

In the following sub-sections, we will derive the SWIFTS interferograms for the case of chirped
Gaussian pulses and FM combs. We will also show that it is frequently more useful to consider the
envelopes of the interferograms rather than the raw I and Q signals, as these contain information
about the chirp and pulse shape.

3.1. Envelope functions and their relation to autocorrelation

Interpreting the raw interferograms of SWIFTS signals can be challenging, because they are
sinusoidal and often have subtle variations not easily noticed by the eye. In addition, they depend
on the choice of the phase of the reference signal, which is essentially arbitrary. As a result, much
of the published analysis utilizing SWIFTS has plotted the interferograms without comment,
except perhaps to note the dip at zero path delay for FM combs. Although the extracted intensity
and frequency of the electric field are informative, they are noise-sensitive. Instead, we will make
use of the instantaneous intensity and frequency of the SWIFTS signal itself (not to be confused
with the optical intensity and frequency). They are defined respectively as

I(τ) ≡
��Ŝ+(τ)��2 (19)

ω(τ) ≡
d
dτ

arg Ŝ+(τ) =
1��Ŝ+(τ)��2 Im

(
Ŝ∗+(τ)

dŜ+
dτ

)
. (20)

These functions contain frequency components at twice the comb frequencies, and it is usually
better to filter these out. Let L be the transfer function of a low pass filter that does this operation.
In addition, the expression for ω(τ) contains a division by I(τ), which is undesirable. Therefore,
we instead define the slowly-varying envelope functions as follows:

AI(τ) ≡ L
(
Ŝ∗+(τ)Ŝ+(τ)

)
(21)

AωI(τ) ≡ L

(
Im

(
Ŝ∗+(τ)

dŜ+
dτ

))
(22)

These two terms are mathematically similar (having units of intensity and intensity times
frequency), and have noise directly related to the measurement noise. Because they uniquely
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define a SWIFTS signal they also uniquely specify the corresponding electric field, and can
be used to extract its temporal parameters. However, as they are related to the envelope of the
electric field, they are slowly varying and therefore easier to analyze. They also contain no
dependence on the phase of the reference signal.
These functions are also closely related to the conventional autocorrelation of a signal. By

inserting Eq. (8) into these definitions and manipulating the summations, one finds that the
signals reduce to

AI(τ) =
∑
n,m>0

(
En+LE∗nE

∗
m+LEm + En−LE∗nE

∗
m−LEm

)
eiωnmτ (23)

AωI(τ) = Re
∑
n,m>0

ωn
(
En+LE∗nE

∗
m+LEm − En−LE∗nE

∗
m−LEm

)
eiωnmτ , (24)

where each summation is now over positive frequencies only. Consider the intensity auto-
correlation, perhaps the most common pulse characterization measurement. Defining it as
IAC(τ) ≡

∫
dt I(t)I(t + τ) and using the fact that I(t) =

��∑
n>0 Eneiωnt

��2, one finds that the
autocorrelation can be written as

IAC(τ) =
∑
l

∑
n,m>0

En+lE∗nE
∗
m+lEmeiωnmτ (25)

where the summation over l is taken over both positive and negative frequencies. Comparing
this expression to Eq. (23), one finds that the SWIFTS intensity envelope is essentially an
approximation to the intensity autocorrelation. Whereas the full autocorrelation contains a
summation over all possible shifts, the envelope intensity signal contains only those components
having l = L and l = −L. The envelope frequency signal does not have such a simple interpretation
due to the negative sign on the second term, but as we will show it ends up being closely related
to the chirp of the optical waveform. While the SWIFTS envelope is not necessarily a good
approximation to the autocorrelation, it is better than the l = 0 term alone, which contains no
phase information.

3.2. Chirped Gaussian pulse

Perhaps no optical pulse has been studied as much the chirped Gaussian pulse, which is a simple
approximation for the output of a conventional mode-locked laser. For a transform-limited pulse
of width τ0 that has undergone a group delay dispersion (GDD) of D2, the analytic part of the
electric field can be written as

Ea(t) =

√√
τ20

τ20 + iD2
E0 exp

©«
−t2

2
(
τ20 + iD2

) ª®®¬ eiω0t (26)

where the full field is given by E(t) = Ea(t) + E∗a(t), ω0 is the carrier frequency, and the
temporal FWHM is given by tFWHM = 2

√
ln 2 × τ0

√
1 + D2

2/τ
4
0 . For this analysis, we will

use the slightly different convention where Ŝ+(τ) ≡
〈
E(t + τ/2)E(t − τ/2)e−iωLOt

〉
and Ŝ0(τ) ≡

〈E(t + τ/2)E(t − τ/2)〉, as the interferometer used for our pulse measurements was a rocking-type
interferometer. (The previous analysis is essentially unchanged but for the fact that the frequency
components of the SWIFTS interferogram are all shifted by ωLO/2 [7].) Additionally, for this
analysis we will neglect the resonant terms of Ŝ+ (i.e., E2

a), as these are small for all but the
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shortest pulses. Calculating each interferogram as

Ŝ+(τ) =
1
Tr

∫ Tr/2

−Tr/2

(
Ea (t + τ/2)E∗a (t − τ/2) + E∗a (t + τ/2)Ea (t − τ/2)

)
e−iωLOtdt (27)

Ŝ0(τ) =
1
Tr

∫ Tr/2

−Tr/2

(
Ea (t + τ/2)E∗a (t − τ/2) + E∗a (t + τ/2)Ea (t − τ/2)

)
dt, (28)

and taking Tr →∞ as is typical for pulses, we find that

Ŝ+(τ) = |E0 |
2
√
πτ0
Tr

e
− 1

4τ20
(τ2+(D2

2+τ
4
0 )ω

2
LO)

(
e
iω0τ+

D2ωLO
2τ20

τ
+ e
−iω0τ−

D2ωLO
2τ20

τ
)

(29)

Ŝ0(τ) = |E0 |
2
√
πτ0
Tr

e
− 1

4τ20
τ2 (

eiω0τ + e−iω0τ
)
. (30)

Some discussion is in order. First, note that the normal interferogram is also Gaussian but has no
dependence on the chirp of the pulse. This is because it depends only on the power spectrum and
contains no phase information, as is well-known. However, the SWIFTS signal contains the chirp
in two ways. D2 appears in the envelope of the SWIFTS signal, changing its overall intensity
relative to the normal interferogram. Secondly, the positive and negative frequency components
have essentially been shifted in opposite directions, with their respective envelopes now peaking
at D2ωLO and −D2ωLO, respectively. For typical mode-locked lasers this effect is slight since
ωLO = Lωr is much smaller than the optical bandwidth, but nevertheless it is measurable.
Next, we examine the envelope functions:

AI(τ) = |E0 |
4 πτ

2
0

T2
r
e
− 1

2τ20
(τ2+(D2

2+τ
4
0 )ω

2
LO)

(
e

1
τ20

D2ωLOτ
+ e
− 1
τ20

D2ωLOτ
)

(31)

AωI(τ) = |E0 |
4 πτ

2
0

T2
r
e
− 1

2τ20
(τ2+(D2

2+τ
4
0 )ω

2
LO)

(
e

1
τ20

D2ωLOτ
− e
− 1
τ20

D2ωLOτ
)
ω0. (32)

The functions have identical Gaussian envelopes, but differ near the center burst. Whereas AI
has a cosh-like dependence on D2ωLO—causing it to modulate the Gaussian’s width, AωI has a
sinh-like dependence—causing it to become anti-symmetric and vanish at the center. AωI also
has an additional factor of ω0, consistent with its units. The slope of the ratio of the two quantities
at the origin is given by ω0D2ωLO/τ

2
0 and is proportional to the chirp of the pulse. When there is

no chirp, AωI vanishes entirely. Note also that the size of AωI depends strongly on L, meaning
that for mode-locked lasers with low repetition rates it is often advantageous to choose L>>1.
Figures 1(a) and 1(b) show the interferograms and envelopes, respectively, of a chirped

Gaussian pulse (with experimental details described in Section 5). The raw interferograms
convey some information, with a characteristic dip in the center, but the envelopes are far more
informative. In particular, the frequency envelope is essentially proportional to the dispersion.
By fitting a dispersion value, one can obtain the GDD without Fourier transforming. Figure 1(c)
shows the effect of varying the dispersion on a simulated pulse. While the intensity envelope is
practically unaffected by the chirp, the frequency envelope is strongly affected. A negative slope
at the origin indicates negative chirp, whereas a positive slope indicates positive chirp.

3.3. Frequency-modulated (FM) comb

A constant-intensity, linearly-chirped FM comb is a decent approximation for describing the
output of QCL combs and other combs with fast gain recovery dynamics. We assume that the
frequency is sweeping linearly upwards over a period over a bandwidth of ∆ω with a center
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Fig. 1. Interferograms of a chirped Gaussian pulse. a. I and Q interferograms measured
from a pulse with τ0=29 fs, along with an analytical fit for D2 = -0.89 ps2. b. Corresponding
SWIFTS intensity and frequency envelopes, along with an analytical fit. c. Calculated
envelopes for different D2 parameters.

frequency of ω0. (For negative sweeping, one takes ∆ω<0.) The instantaneous frequency can
then be written as ω(t) = ω0 +

∆ω
Tr t over a single period. Letting [t] represent the time relative

to the nearest integer multiple of the repetition period (i.e., the smallest value of |t − mTr |), the
phase at a given time is the integral of frequency, leading to the following expressions:

ω(t) = ω0 +
1
2π
∆ωωr[t] (33)

φ(t) = ω0t +
1
4π
∆ωωr[t]2 (34)

Ea(t) = E0 exp
(
i
1
4π
∆ωωr[t]2

)
eiω0t (35)

Running the same calculations for the inteferograms and for the envelope functions as before (but
not taking Tr →∞), we find that

Ŝ+(τ) = |E0 |
2 4
(2πL)2 − (∆ωτ)2

(−1)L+1 sin
(
∆ωτ

2

)
(∆ωτ cos (ω0τ)

+ i2πL sin (ω0τ))

(36)

Ŝ0(τ) = |E0 |
2 4
∆ωτ
(−1)L+1 sin

(
∆ωτ

2

)
cos (ω0τ) (37)

AI(τ) = 4 |E0 |
4 (2πL)

2 + (∆ωτ)2(
(2πL)2 − (∆ωτ)2

) (1 − cos (∆ωτ)) (38)

AωI(τ) = 16 |E0 |
4 πL∆ωτ(
(2πL)2 − (∆ωτ)2

) (1 − cos (∆ωτ))ω0. (39)

As in the case of chirped pulses, some clear differences arise between the normal FTS and the
SWIFTS measurements. While the envelope of the normal FTS signal depends on sinc

(
∆ωτ
2

)
and therefore peaks at the origin, the SWIFTS signal is always guaranteed to vanish at the origin.
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This is of course the reason underlying the dip of the origin originally identified within the context
of beatnote interferometry by Hugi et al. [1], and is fundamentally different from the case of
chirped pulses. As a result, both envelope functions also vanish at the origin.

Figures 2(a) and 2(b) show the SWIFTS interferograms and envelopes, respectively, of an FM
comb operating in a linearly-chirped regime [27]. The characteristic dip at the origin is present
here, and because the chirping is negative the slope of the frequency envelope at the origin
is negative (on average). Figure 2(c) shows the simulated envelopes for several chirp values.
Unlike the case of the pulse, the intensity envelope is strongly affected by the chirp, but due to its
symmetry one cannot determine the sign without the frequency envelope.

Fig. 2. Interferograms of an FM comb. a. I and Q interferograms measured for a mid-IR
QCL operating in a linearly-chirped regime, along with an analytical fit assuming ∆f=-0.96
THz (indicating negative chirp) [27]. b. Corresponding SWIFTS intensity and frequency
envelopes, along with the analytical fit. c. Calculated envelopes for different ∆f parameters.

4. Sensitivity to measurement noise

In this section, we analyze the sensitivity of chirp parameters to measurement noise, showing
why the measurement of the chirp of an FM comb is typically much easier to measure than the
chirp of pulses from a mode-locked laser. To do this, we must first discuss correction of the
SWIFTS phase.

4.1. Phase correction

When performing any interferometric measurement, phase correction is essential. In an
unbalanced interferometer, phase is introduced into one path but not the other. If the variable
path of the interferometer undergoes a transfer function H(ω) that the variable arm does not, then
the Fourier coefficients that will be measured in SWIFTS is S(n)+ = En+LE∗nH∗(ωn) [28]. This
additional factor of Hn ≡ H(ωn) translates into error in the inferred SWIFTS phase, which can be
substantial. As these are systemic, they must be accounted for to achieve optimal results. There
are two ways of doing this, which can be combined:

1. Use the normal interferogram’s phase. As its Fourier coefficients are given by S(n)0 =
|En |

2H∗n, subtracting off the normal coefficients’ phase eliminates this error. In this case,
the SWIFTS phase is computed as φn = arg S(n)+ − arg S(n)0 .

2. Construct the product S(n)p ≡ S(n)+ S(−n−L)+ = (En+LEn)
2 (
Hn+LH∗n

)
. Though this does not

remove all beamsplitter error—it leaves a factor of the beamsplitter’s group delay on the
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SWIFTS phases—in most situations this is acceptable since it will delay all frequencies
by this value. It does, however, add GDD to the optical signal. In this case, the SWIFTS
phase is computed as φn = 1

2 arg S(n)p .

The advantage of the latter approach is that it only uses the SWIFTS measurement and is therefore
simpler to analyze (requiring only one noise parameter). It also doubles the SNR of the final
result. The only major downside is that it does create a π ambiguity in the final extracted phase
(since its phase depends on (En+LEn)

2). This translates into a group delay ambiguity of Tr/2,
which is generally not relevant provided the phase is continuous across the spectrum.

4.2. Sensitivity of group-delay measurements

Since the SWIFTS phase φn = argEn+L − argEn is directly proportional to group delay τg ≈ φn
ωLO

,
the noise of a group delay measurement is essentially just the noise associated with these phase
measurements (i.e., inversely proportional to the amplitude). However, since either form of phase
correction requires the multiplication of two signals, this should be taken into account.
We assume that the measurement noise in the frequency domain is given by uncorrelated

additive white Gaussian noise that perturbs each quadrature of the signal by an amount whose
variance is σ2. In other words, the total noise at each frequency is 2σ2. Under these conditions,
the variance of a single phase measurement is σ2/|S+(ωn)|

2. Therefore, the variance of the
phase-corrected signal φn and the group delay τg are:

Var (φn) =
σ2

4

(
1

|S+(ωn)|
2 +

1
|S+(ω−n−L)|2

)
≈

σ2

2|S+(ωn)|2
=

1
4 SNR(ωn)

(40)

Var
(
τg(ωn)

)
≈

1
4ω2

LOSNR(ωn)
(41)

where SNR(ωn) denotes the signal-to-noise ratio of the SWIFTS measurement, and we have
made the approximation that the spectrum of the SWIFTS signal is approximately symmetric.
Note that in the presence of partial coherence, the SNRs will decrease in proportion to |gn |2.

Right away, we can see the challenge of using SWIFTS to measure the group delay of typical
femtosecond lasers: for an SNR of 103 and an LO frequrency of 80 MHz, one can expect typical
delay errors of about 31 ps. This means that even very short pulses would appear as Gaussians
that are 31 ps wide. Moving to a high harmonic of the repetition rate helps, but an LO frequency
of 2 GHz still results in an error of 1.25 ps, far longer than the pulse width of state-of-the-art
systems. However, for an FM QCL comb with fr=10 GHz, the frequency components are splayed
over the repetition rate (100 ps), and a 250 fs error is much less noticeable.

4.3. Sensitivity of chirp and FWHM measurements

When measuring the average chirp of a waveform, defined here as D2 =
dτg
dω =

1
ωLO

dφn
dω , one

essentially needs to find the average value of the slope of the SWIFTS signal over its bandwidth.
This is most readily accomplished by fitting a line to the phase of the signal, but this fit should
be weighted by the inverse of the variance of each frequency component. First we calculate the
noise for a chirped Gaussian pulse, where the spectrum of the SWIFTS signal is proportional to
|S+(ωn)|

2 ∼ e−2(ωn−ω0)
2τ20 . The fit weight is therefore

w =
1

Var φ
= 4 SNR(ω0)e−2(ω−ω0)

2τ20 (42)

Finding the covariance matrix of the extracted fit requires a calculation of (XTWX)−1, where X is
the linear fit matrix and W is the diagonal weight matrix [29]—but is analytically tractable in the
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case of Gaussian pulses where the summation over frequencies can be converted to an integral.
By finding the variance of the extracted slope, one finds that the variance of the D2 measurement
and the extracted FWHM are

Var (D2) = C
√

2
π

1
SNR(ω0)

ωresτ
3
0

ω2
LO

(43)

Var (tFWHM) = C
√

2
π

1
SNR(ω0)

ωresτ0

ω2
LO

4 ln 2 (44)

where ωres is the resolution of the measurement (2π/τmax), C is a correction factor that depends
on the FTS apodization function (1 for a boxcar and 8/3 for a Hann window), and tFWHM has been
linearized in the high-chirp limit. Note that for mode-locked lasers with MHz-level repetition
rates it is usually the case that the FTS travel is much less than the cavity length, and ωres >> ωr.
For a Ti:Sapphire with τ0=48 fs, fLO=2 GHz, fres=0.17 THz, and SNR=1000, this leads to an
expected D2 error of 0.04 ps2 and a FWHM error of 1.4 ps. While one needs a much higher
SNR to measure the structure of femtosecond pulses, this technique possibly has advantages for
low-energy picosecond pulses, where nonlinear operations become more difficult. These results
are confirmed experimentally in Fig. 3.

Fig. 3. Ten SWIFTS measurements of a chirped Gaussian pulse, with τ0=30 fs, fres=0.51
THz, and fLO=2.03 GHz. The calculated D2 standard deviation of 0.067 ps2 closely matches
the measured standard deviation of 0.058 ps2, and the measured value agrees with the value
expected from the compressor’s grating separation (see Section 5).

For an FM comb, the result is tractable if one makes the assumption that the sweeping is much
slower than the bandwidth (∆ω >> ωr), in which case the spectrum can be approximated as
constant over the range [ω0 − ∆ω/2,ω0 + ∆ω/2] and 0 outside. In this case, the weights are
constant (w = (4 SNR(ω0))

−1), and the result is simply

Var (D2) = C
3

SNR(ω0)

1
ωLO∆ω3 . (45)

Here we have assumed that the FTS resolution is greater than the cavity FSR, and the resolution
that appears is therefore the LO frequency (ωres = ωLO). For mid-IR QCLs with a bandwidth of
3 THz, a phase error of 21 mrad (SNR=600), and a repetition rate of 7.4 GHz [4], the expected
error is approximately 0.1 ps2—far smaller than the measured chirp of -6.4 ps2 and comparable
to the measured error.

4.4. Sensitivity of high-order coherences

Reconstructing intensity and frequency can be construed as reconstructing the higher-order
coherences of the wavefunction, EnE∗m for large |n − m|. Because the functions depend on the
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square of electric field, they can be represented as

I(t) =
∑
n,m>0

EnE∗me
iωnmt (46)

f (t) =
1

I2(t)
Re

∑
n,m>0

fnEnE∗me
iωnmt. (47)

It is instructive to examine the noise of these coherences. Since the phases of distant lines are
found by integrating the SWIFTS phase between them, the variance of the phase difference
Φnm ≡ argEnE∗m is found using

Var (Φnm) =

k=m−L∑
k=n

Var (φ(ωk)) =

k=m−L∑
k=n

1
4 SNR(ωk)

. (48)

In this case, measurement noise not only adds noise to the signal, it biases the result. Let
εnm ∼ N(0, Var (Φnm)) be a zero-mean noise vector. Neglecting the much smaller amplitude
noise, the expectation value of the measured coherence will be given by〈

EnE∗m
〉
= E(t)n E∗(t)m

〈
eiεnm

〉
= E(t)n E∗(t)m e−

1
2Var(Φnm) (49)

where E(t)n E∗(t)m is the true coherence value. One can expect that the magnitude of distant
coherences will therefore be reduced from the true value. The corresponding variance and SNR
are

VarEnE∗m =
〈��EnE∗m −

〈
EnE∗m

〉��2〉 = ���E(t)n E∗(t)m

���2 (
1 − e−Var(Φnm)

)
(50)

SNREnE∗m =

��〈EnE∗m
〉��2

VarEnE∗m
=

1
eVar(Φnm) − 1

. (51)

While the signal is reduced exponentially in the presence of large measurement noise, the variance
tends towards a constant. As a result, the SNR of these coherences becomes vanishingly small.

Fig. 4. a. Raw intensity and frequency waveforms extracted directly from the measurement
of a chirped pulse. Both functions possess unphysical spikes due to high-order coherence
noise. b. Result of using the measured noise to calculate the median of the distribution,
which regularizes the result and smooths out the spikes.
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This is the reason that raw SWIFTS inferences tend to be accurate on long timescales, but are
fuzzy on the details at short timescales. This is also why these measurements contain ’spikes.’

In general, it is recommended that Monte Carlo analysis be performed to mitigate these effects.
Because one knows the measured signal as well as the noise level, one can calculate a distribution
of I(t) and f (t). Since this process automatically causes high-order coherences to be reduced
according to their SNR, the median of this distribution is a better estimation of the signal than is
the raw measurement. Figure 4 shows the result of this process for a Gaussian pulse that has been
chirped by -0.8 ps2. The intensity of the waveform is clearly a broad pulse, but it also contains a
train of spikes that are essentially artifacts due to noise. Nevertheless, the mean of the Monte
Carlo distribution contains fewer less-intense spikes. Similarly, the frequency contains many fast
fluctuations around t=70 ps, despite the fact that the intensity is non-zero. Once again, finding
the median of the distribution removes these artifacts, revealing that the linear chirp persists.

5. SWIFTS measurements of mode-locked laser pulses

Lastly, in order to establish that the SWIFTS technique can indeed be used to measure pulse
trains from conventional mode-locked lasers, we chirp the output of a femtosecond laser and
measure this chirp using SWIFTS. Similar work has been performed using mid-IR QCL combs
[30], but as those were FM combs to begin with this measurement should allay any lingering
doubts about the validity of the technique.
For these measurements, we use a Tsunami Ti:Sapphire laser with an 80 MHz repetition rate

and a minimum pulse width of approximately 40 fs. A schematic is shown in Fig. 5(a). As
the noise of a dispersion measurement is proportional to ω−2LO it is preferable to choose an LO
frequency that is a high harmonic of the repetition rate, near 2 GHz. For these measurements, we
used two Thorlabs FDS015 photodiodes with respective rise and fall times of 35 ps and 200 ps.
The I and Q components of the photodiode signal (i.e., its quadratures 〈S(t, τ) cos (ωLOt)〉 and
〈S(t, τ) sin (ωLOt)〉) were measured using a dual-phase lock-in amplifier and were recorded as the
FTIR was scanned.
Depending on the signal-to-noise ratio, we can achieve measurements of D2 with standard

deviations in the .003 ps2 to .03 ps2 range and group delay resolutions as low as 0.1 ps. Negative
chirp is added to the pulses using a grating compressor [31] with two 1200 mm−1 gratings at
an incident angle of 53◦. We can adjust the grating separation over a distance of 15 to 27 cm,
corresponding to a dispersion of 0.5 to 0.85 ps2. Note that in all cases the incident power on the
detectors was approximately 20 µW, corresponding to pulse energies of 0.25 pJ and durations of
tens of picoseconds. Under these conditions, no intensity autocorrelation could be measured: the
pulses had a peak intensity that was far too low to generate a useful signal.
Figure 5(b) shows the measured GDD values over the travel distance of the compressor,

along with the GDDs that were calculated from the grating separation. We find excellent
agreement between the calculated dispersion and the measured dispersion (to within the SNR of
the measurement). In Fig. 5(c) we plot the intensity and frequency of a nominally-unchirped
beam and a heavily chirped beam: as expected, the FWHM of the heavily-chirped beam is
considerably larger and the chirp is evident on the frequency.
Comparing SWIFTS to intensity autocorrelation, we note that SWIFTS is linear and can

be used on beams whose chirp is arbitrarily large, without any signal-to-noise penalty. It also
contains more information. However, the intrinsic noise of the measurement also places a
practical lower bound on the width of pulses that can be effectively measured, as any pulses that
are narrower will appear to be broader due to noise alone. Systemic biases in the instrumentation
can also create a small false chirp that must be removed by calibration. While SWIFTS has a
simpler optical system than nonlinear schemes (requiring only a Michelson interferometer and no
nonlinear crystal), the backend electronics and signal processing are more complex. Figure 5(d)
shows a comparison between the autocorrelation of picosecond pulses in the small range where
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Fig. 5. a. Experimental setup used in the measurements of a Ti:Sapphire laser. The
self-referenced LO scheme is used here. b. Measured group delay dispersion of the pulses,
compared with the value expected from the grating distance. c. Chirped and nominally-
unchirped pulse intensity and frequency waveforms (along with measured dispersions). d.
Comparison of the intensity autocorrelation measured by an autocorrelator to that extracted
by SWIFTS (for a pulse dispersed by 0.042 ps2).

the two methods overlap. A femtosecond pulse at 805 nm is chirped by 0.76 m of acrylic glass,
corresponding to a calculated dispersion of 0.048 ps2 [32] and a SWIFTS-measured dispersion
of .042±.003 ps2. The pulse is characterized both using an intensity autocorrelator and using
SWIFTS; the intensity function inferred from SWIFTS is then autocorrelated and compared with
the direct autocorrelation measurement. The two autocorrelations are in close agreement, each
having an autocorrelation FWHM of 2.7 ps (i.e., a Gaussian-deconvolved tFWHM =1.9 ps).

6. Conclusion

In conclusion, we have derived several important theoretical results relating to SWIFTS’s
sensitivity and verified them experimentally. We defined the envelopes of the interferograms and
demonstrated their connection to autocorrelation, and we showed how these envelopes could be
used to directly infer properties of chirped pulses and FM combs. We derived the analytical forms
of the interferograms in these cases, and in turn derived the sensitivity of various parameters
including the first-order coherence, group delay, chirp, and higher-order coherences. We also
pointed out how Monte Carlo estimation could be used to drastically reduce the number of
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measurement artifacts common to these measurements. Finally, we showed that the technique
is capable of measuring the temporal profile of pulses from ultrafast mode-locked lasers, in
agreement with intensity autocorrelation. While the technique may not be competitive with
nonlinear techniques at short timescales, it may have a niche at longer timescales, at lower pulse
energies, and in any other situation when nonlinear techniques are impractical.
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