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In many laser systems, frequency combs whose output is frequency-modulated (FM) can form, producing light whose
frequency sweeps linearly. While this intriguing result has been replicated experimentally and numerically, a compact
description of the core physics has remained elusive. By creating a mean-field theory for active cavities analogous to the
Lugiato–Lefever equation, we show that these lasers are described by a nonlinear Schrödinger equation with a potential
proportional to the phase of the electric field. This equation can be solved analytically and produces a field with quasi-
constant intensity and piecewise quadratic phase. We refer to these nondispersive waves as extendons, and they describe
both fundamental FM combs and harmonic states. Our results apply to many lasers, explaining the ubiquity of this
phenomenon, and our new theory unifies many experimental observations. © 2020 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Frequency-modulated (FM) combs are a type of frequency comb
that have been produced in a number of laser systems. First
observed decades ago in electro-optically modulated cavities
[1], such lasers were known to not produce pulses but would
instead produce an FM output [2]. These systems were assumed to
have sinusoidal modulation based on their spectra, but no direct
measurements of the temporal output could be performed since
the peak intensities were too low. More recently, it has been shown
that many lasers spontaneously enter self-FM regimes, where the
FM is produced without any external modulation and the ampli-
tude is approximately constant. This effect has been seen primarily
in semiconductor lasers: in quantum cascade lasers (QCLs) [3–6],
quantum dot lasers [7], diode lasers [8,9], etc. While not pulses,
these combs can still be used in applications such as dual-comb
spectroscopy [10–12]. They are distinct from Fourier domain
mode-locked lasers [13] in that these combs generate their own
frequency modulation, instead of having a frequency sweep that is
externally applied.

Earlier FM comb observations relied only on observations of a
narrow coherent beatnote and of a broadband spectrum. However,
it is well known that these observations are not sufficient to fully
reconstruct the temporal profile. Indeed, early reports of pulse for-
mation in QCLs were later determined to have had quasi-constant
intensities [14]. It was only recently, with the development of
Shifted Wave Interference Fourier Transform Spectroscopy
(SWIFTS) [15–17], that it became possible to measure high-
quality temporal traces of low-intensity combs. Surprisingly, it
was found that many of these FM combs do not have sinusoidal
modulation; they have linear-chirped operation [6–8,17] (or
boxcar operation when the gain spectrum is discontinuous [16]).

This chirp is completely coherent and comprises the whole laser
spectrum [18,19]. It can also manifest as harmonic states, where
the FM behavior repeats an integer number of times per round trip
[20].

While linear-chirped behavior is a robust result that has been
replicated in many different systems, it is not fully understood.
Primarily, these systems are simulated using Maxwell–Bloch for-
malisms, which lead to a series of eight coupled partial differential
equations [21–26]. Alternatively, they can be simulated using
modal expansions of optical nonlinearities [4,20,27,28] or a cou-
pled master equation description [29,30]. All of these results can
reproduce FM comb formation, but as numerical descriptions
they do not fully explain why the phenomenon appears in so many
different systems. In addition, most of these results require the
integration of many small time steps, making rigorous investiga-
tion more difficult. Still, the emergence of linear FM operation is
apparently ubiquitous and robust, which suggests that a deeper
mechanism is at play. Gaining a fundamental understanding of this
behavior would be critical for improving the performance of FM
combs and for discovering new states of light.

In this work, we show that all of these FM comb states are
described by a single underlying phenomenon: the generation
of nonlinear phase potentials. Above threshold, nearly any laser
with substantial mirror losses can have its electric field described
by a nonlinear Schrödinger equation (NLSE) with a potential
proportional to its phase:

−i
∂F
∂T
=
β

2

∂2 F
∂z2
+ γ |F |2(arg F − 〈arg F 〉)F

+ ir (|F |2 − P0)F , (1)
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where F is the electric field normalized to the unitless intracavity
gain (proportional to the laser’s steady-state intracavity intensity),
T is the slow time, β is the normalized group velocity disper-
sion (GVD), γ is the nonlinear cross-steepening, angle brackets
represent an average over position, and r represents amplitude
relaxation to the steady state intensity at the left facet, P0. Note that
the position z is within the artificially extended laser cavity: if L c is
the physical cavity length, waves traveling in the positive direction
are mapped to z ∈ [0, L c ), waves traveling in the negative direction
are mapped to z ∈ [−L c , 0), and periodic boundary conditions are
used. Unlike the conventional NLSE, whose potential famously
depends on the intensity of the electric field, here it is primarily
determined by its phase. The fundamental solution to this equation
can be written analytically as

F (z, T)= A0 exp

[
i
γ |A0|

2

2β

(
z2
−

1

3
L2

c γ |A0|
2T
)]

, (2)

where A0 =
√

P0(1+
γ

2r )
−1/2
≈
√

P0 is the wave’s amplitude.
Equation (2) can be considered the fundamental FM comb. Its
phase is piecewise quadratic, leading to a linear chirp, and at the
boundary its derivative is undefined. Like the celebrated sech2

solitons that result from an intensity potential, this solution is
nonperturbative and can be used as a starting point for more
sophisticated analysis. It is dissipative and nondispersive, and does
not change shape as it propagates. Unlike cavity solitons, it is inher-
ently delocalized and must extend a full round trip to remain stable.
In analogy to solitons, we refer to these nondispersive extended
waves as extendons.

We will show that this result can be used to understand all of the
salient features of FM combs that have been experimentally and
numerically observed. For example, this result explains the pulsa-
tion that is frequently observed at the turnaround point where the
frequency abruptly changes. It explains why these structures are
not observed in other nonlinear media with self-steepening, such as
microresonators and fibers. It explains why they do not form in ring
cavities, which instead support lower-bandwidth states governed
by a Ginzburg–Landau equation [30–32]. It also predicts the exist-
ence of harmonic states—analogous to higher-order solitons—and
it allows us to analytically examine the conditions under which FM
combs can form.

To arrive at this result, we must first develop a new mean-field
formalism that describes the propagation of light in nonlinear
laser cavities and shows how these phase potentials are produced.
It is analogous to the celebrated Lugiato–Lefever equation (LLE)
used to describe many nonlinear resonators, such as fiber ring
resonators [33,34], microresonator Kerr combs [35–40], and
Fabry–Perot (FP) [41–43] Kerr combs. The realization that the
LLE was an excellent description of Kerr combs marked a turning
point in their development, allowing them to be understood at
a deep level [44,45]. FM combs have lacked such a description
until now. We use the concept of the extended-cavity theory that
has been used to describe the dynamics of nonlinear FP cavities
[42,46], but with a key difference—we take into account the large
changes of the field that are present in a laser cavity with substantial
mirror losses and spatially varying gain. Though the resulting
equation is integral, it greatly simplifies analysis and reproduces
essentially all experimental data, reducing to the NLSE with some
weak assumptions. We anticipate that it will be useful for the cre-
ation of novel FM comb states, just as the LLE has proven useful
at predicting soliton states in Kerr combs and other novel states

such as dark solitons [47], Turing rolls [40,48,49], soliton crystals
[40,50,51], etc. We will show how phase potentials arise naturally
from the cross-steepening nonlinearity, suggesting ways they can
be engineered.

2. RESULTS

To show how lasers naturally give rise to the NLSE with a phase
potential, we first derive a mean-field equation that describes the
propagation of light within lasers with large spatial hole burning
and mirror losses. Mean-field theory is a powerful technique that
allows for the dynamics of nonlinear resonators to be evaluated
over timesteps much larger than would otherwise be required, even
multiple round trips. For example, the LLE has been critical for
the understanding of Kerr combs [35], and can be modified for FP
cavities [42,46]. Unfortunately, lasers with large internal gain and
losses have not been described in this way, as large internal effects
make averaging difficult. Even though the changes in the field after
a complete round trip are typically small, the changes in the field
within a round trip can be quite large. For example, lasers with
large mirror losses experience exponential gain inside the cavity
and delta function loss at the mirrors. To address this challenge, we
normalize the electric field of the cavity to its steady state intensity,
defining the envelope F (z, t) as E (z, t)≡ K 1/2(z)F (z, t). Here
K ≡ P/P0 is a spatially varying gain function proportional to the
laser’s steady-state power in the absence of any phase-coupling
terms, i.e., without dispersion and nonlinearity. The full derivation
is given in Supplement 1, and in terms of normalized parameters
the result is that

∂F
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=i
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]
F

−
1

3
r
(
|F |2 + 2〈K 〉−1 K̃ [|F |2] − 3P0

)
F , (3)

where T denotes slow time, β represents dispersion, Dg repre-
sents gain curvature, r represents energy relaxation, and γ1 and
γ2 represent cross-steepening. Cross-steepening is the primary
nonlinear process responsible for FM comb generation. It is similar
to the self-steepening that occurs in fibers [52], and can be con-
strued as being related to an intensity-dependent group velocity.
In a laser, it arises directly from the gain medium. In contrast to
self-steepening, cross-steepening arises from the intensity of the
counterpropagating wave. Here we also have defined K̃ [ f ](z)
as a convolution between K and the arbitrary function f ; these
convolutions arose because the cavity contains forward and back-
ward propagating waves. In comparison with the standard LLE and
the FP-LLE formalisms derived for propagation within low-loss
cavities [42,45,53], this formalism is somewhat more complicated
due to the presence of the convolutions involving K . Still, this is
essential for understanding FM comb operation, as it is the spatial
dependence of K that gives rise to stable FM comb formation.
Though this equation is integral in nature, it is highly amenable
to numerical analysis since it is convolutional and can be rapidly
evaluated using Fourier methods. It is readily solved using split-
step methods, as is commonly done in fibers and other nonlinear
resonators.

This formalism is readily extendable to more complicated
gain spectra, and explains temporal traces observed in the tera-
hertz [16] and in the mid-infrared (mid-IR) [54] (Fig. 1). For
a mid-IR QCL with a gain spectrum well approximated by a
Lorentzian, linearly chirped behavior is produced. However, if the

https://doi.org/10.6084/m9.figshare.13207682
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Fig. 1. (a) SWIFTS trace and mean-field theory description of a
mid-IR QCL comb. The spectrum is linearly chirped since the gain
spectrum is continuous. The gain and power spectra are also shown.
(b) SWIFTS trace and mean-field theory description of a THz QCL with
a double-peaked lineshape. When the experimentally measured lineshape
is put into the model, the boxcar modulation is correctly reproduced.
(c) Simulated beatnote map of a mid-IR QCL comb above threshold
(GVD of −2500 fs2

/mm) as the current is ramped over 250,000 round
trips. The laser is initially single mode, then enters an FM comb regime,
then enters a high phase noise regime dominated by breathers and chaos.
Similar behavior has been observed in numerous comb systems [56–58].

gain spectrum is double-peaked, as was the case for the terahertz
temporal traces in Ref. [16], then the comb spectrum breaks into
sub-combs. Temporally, this results in a switching behavior, with
a trace resembling a boxcar modulation. Describing this effect
requires that the gain curvature term be replaced by the medium’s
actual lineshape function, but this is naturally implemented using
split-step methods. When the experimental lineshape measured by
terahertz time domain spectroscopy [5] is used as an input to the
mean-field model, the boxcar modulation is correctly reproduced.
Likewise, this model correctly produces the beatnote maps that
are commonly observed experimentally; for moderate dispersion
values, a laser will have a single-mode regime at low pumps, an
FM comb regime at moderate pumps, and a chaotic regime at
large pumps.

An example of simulating a typical mid-IR QCL comb with
a split-step implementation of the mean-field theory is shown in
Fig. 2. The field is initialized to a low value and initially stabilizes to
its steady-state intensity. Over many round trips, the phase builds
and eventually gives way to a periodic parabola, representing an
FM comb (whose frequency is linearly chirped). Because we need
only take one time step per round trip, the simulation takes only
seconds and agrees with the full-field theory. In addition, as the
mean-field theory has been constructed in a way that removes the

Fig. 2. Split step simulation of a QCL using the mean-field theory
described by Eq. (3). Parameters are given in Supplement 1, Table 1,
and the QCL has a GVD of −2000 fs2

/mm and zero Kerr nonlinearity.
Position values below L c = 4 mm represent positive propagation; values
above L c represent negative propagation. (a) Evolution of the normalized
intracavity intensity over 5000 round trips. The intensity quickly builds
to a constant value from spontaneous emission, then gains minor modula-
tion due to comb formation. (b) Evolution of the phase. The phase begins
random, and eventually gives way to a periodic parabola with an abrupt
turnaround point. (c) Comparison of the full-field simulation [Eq. (S1)]
to the mean-field simulation [Eq. (3)].

wave’s explicit dependence on position, one can alternatively treat
the position variable as a co-moving coordinate. This allows for
timesteps to be taken that are fractions of a round trip (for addi-
tional accuracy) or multiples of a round trip (for additional speed).
Note, however, that the exponential gain in (3) does not typically
permit timesteps of many round trips at once.

Next, we show how our mean-field theory leads to a NLSE
with a phase potential. To do this, we ignore gain curvature; this
leads to an amplitude that is constant in space everywhere but
the turnaround point. Let A and φ be F ’s amplitude and phase,
respectively. The derivatives in the cross-steepening term can be
written as ∂F ∗

∂z F =−i ∂φ
∂z |A|

2, and the nonlinear gain simplifies to
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g NL = i(γ1 − γ2)|A|2 K̃
[
∂φ

∂z

]
=−i

(γ1 − γ2)|A|2

4L c P0

×

∫ 4L c

0

∂ P
∂z

(
−

u
2

)
φ(z− u)du. (4)

In other words, the nonlinear gain depends on the derivative
of the laser’s steady-state power distribution. For an asymmetric
cavity with R1 6= 1 and R2 = 1, we approximate the power distri-
bution as piecewise linear. The most important feature of this curve
is not the precise shape of the curve itself, but the discontinuity
that occurs when the power reflects at mirror 1. (Similar results
are obtained when the mirror losses are split over two mirrors.)
If the change in the power at mirror 1 is denoted by 1P , then
∂ P
∂z =

1P
2L c
−1P δ(z), and

g NL = i(γ1 − γ2)
|F |2

P0

1P
4L c

(φ − 〈φ〉). (5)

After convolution, the linear part of the power profile leads to
the average value of the phase, while the discontinuity at the mirror
leads to its instantaneous value. Thus, large discontinuities in power
can be considered the key ingredient for FM comb formation.
After a wave has reflected, it sees a large cross-steepening term that
represents its phase at a slightly earlier time. This causes the phase
to experience positive feedback. Similarly, the amplitude relaxation
term can be integrated to produce an equation that we refer to as
the phase NLSE:

−i
∂F
∂T
=
β

2

∂2 F
∂z2
+ γ |F |2(φ − 〈φ〉)F + ir (|F |2 − P0)F ,

(6)
where γ ≡ (γ1 − γ2)

1P
4L c P0

is the normalized cross-steepening
nonlinearity. While the phase NLSE strongly resembles the con-
ventional intensity NLSE, there is an important difference: the
intensity NLSE lacks the final term, a non-Hermitian relaxation
term that attempts to force the amplitude to its steady-state value.
It is this term that causes the system’s dynamics to be dominated
by its phase rather than its amplitude. This term is present only in
active cavities with gain and discourages the formation of pulses.

By solving for the amplitude and phase separately, one can show
that an analytical solution to (6) is

F (z, T)= A0 exp

[
i
γ |A0|

2

2β

(
z2
−

1

3
L2

c γ |A0|
2T
)]

, (7)

where A0 =
√

P0(1+
γ

2r )
−1/2
≈
√

P0. This is the key result, as
this solution is nonperturbative and almost completely describes
FM combs. It also describes higher-order harmonic states [55],
which have the same mathematical form but a position that is mod-
ulo a reduced cavity length. The linear dependence of the phase on
the slow time leads to a carrier–envelope offset, while the quadratic
dependence on position leads to an instantaneous frequency of

fi (t)=
1

2π

( c
n

)2 γ

β
|A0|

2t, (8)

where we have converted from position to fast time using
t↔− n

c z. This is a linearly chirped frequency, with a chirp rate
inversely proportional to the laser’s dispersion. While this simple
formalism predicts that zero dispersion would produce a comb of
infinite bandwidth, as we will show later, a finite gain linewidth

will not allow a stable comb to exist unless the sweep bandwidth is
limited.

3. DISCUSSION

First, we discuss why the frequency ends up linearly chirped.
Physically, it occurred because the cross-steepening at the facet
generated positive feedback on the phase, which was then miti-
gated by the dispersion. Mathematically, it arose because the phase
evolution of the NLSE has a parabolic solution in equilibrium.
When the amplitude is constant, the phase evolution is given by

∂φ

∂T
=−

β

2

(
∂φ

∂z

)2

+ γ |A|2(φ − 〈φ〉). (9)

If the dispersive term is initially small, phase perturbations
experience exponential gain due to the nonlinearity. If the GVD
is negative, dispersion suppresses negative perturbations and
enhances positive perturbations. However, at the FM turnaround
point, the derivative is zero, and the exponential gain in the nega-
tive direction remains uninhibited. This generates a discontinuity
in the derivative of φ, which leads to the production of a character-
istic pulsation in the amplitude. This pulsation is physical and has
been observed in several systems [6,8], but can also destabilize the
comb.

Figure 3 compares the analytical results of the extendon solu-
tions to the solutions obtained by the mean-field theory. First, we
consider the case without gain curvature, shown in Fig. 3(a). The
agreement between the mean-field theory and the analytic form is
excellent, as the assumption of a linear intracavity power is actually
a relatively weak one. The most conspicuous discrepancy is present
at the turnaround point, where the assumption of a constant
amplitude cannot hold, as the second derivative of φ is not well
defined. Provided the pulsation is small, the extendon will be able
to form, as spatial inhomogeneities are automatically dampened by
the relaxation term. However, consider the dispersive term, whose
phase evolution is given by ∂φ

∂T =
β

2 (
1
A
∂2 A
∂z2 − (

∂φ

∂z )
2) when inho-

mogeneities are present in the amplitude. If the pulsation causes
A to dip to near zero, the amplitude-dependent term diverges
and amplitude inhomogeneities become large, destabilizing the
phase. When these fluctuations are too large, they will become
self-reinforcing and destabilize comb operation. In other words,
these states cannot be coherent unless they extend throughout the
entire cavity.

In the absence of gain curvature, there is essentially no value
of the dispersion that causes the comb to destabilize—the NLSE
supports infinite-bandwidth FM combs. However, once gain
curvature is considered, this is no longer the case. Figure 3(b) shows
the same results as in Fig. 2(a), but with gain curvature enabled.
We use the same theory as before, but modify the intensity using
δP =− Dg

4r (
∂φ

∂z )
2, which is estimated by requiring that the change

in amplitude due to gain curvature be balanced by the restoring
force. Characteristic dips in the amplitude are now visible around
the pulsation, which exist because the FM comb has deviated from
its central frequency and its gain has been reduced. Thus, the power
begins to fall. If the dispersion is reduced such that the FM comb
bandwidth exceeds the gain bandwidth of the laser, the power will
dip to near zero and the amplitude pulsation will destabilize comb
operation. This leads to the following approximate condition for
stable extendon formation:
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Fig. 3. (a) Comparison of mean-field simulation results and extendon theory with gain curvature disabled (GVD of −1700 fs2
/mm and zero Kerr

nonlinearity). The agreement between the simulation and extendon theory is excellent, correctly predicting the chirp. The theory breaks down at the
turnaround point, where an amplitude pulsation develops. (b) Same comparison, but with gain curvature. As the FM deviates from its center frequency, the
amplitude sags due to the lower gain.

P0
Dg

4r

(
γ L c

β

)2

� 1. (10)

Experimentally, this typically manifests as a maximum pump
for which stable combs can form. As the nonlinearity is related to
the gain, beyond some pump value the Risken–Nummedal–
Graham–Haken instability will instead be triggered. Gain
curvature also acts directly on the phase, suppressing the posi-
tive feedback. If the gain is not large enough, the laser will remain
single mode. Thus, gain curvature is actually responsible for both
thresholds apparent in Fig. 1(c).

These concepts also explain the formation of harmonic states
in QCLs, which can be conceived of as higher-order extendons.
Because the frequency cannot be stably swept by more than the
gain bandwidth during a round-trip period, when the dispersion
is small or the nonlinearity is large, the only stable steady-state
solutions to the NLSE will have the same chirp, but with a reduced
sweep bandwidth and an integer number of turnaround points.
These are FM profiles that have N sweeps per round trip, and
therefore sweep over only 1/Nth the bandwidth. Harmonic states
are the higher-order solutions of the phase NLSE, and can also
be produced within this formalism by initializing the field to be
periodic at an integer harmonic of the repetition rate (Fig. 4). Since
harmonic states also obey the NLSE (except at the boundaries), in
terms of the fundamental solution F1(z, T), the Nth harmonic
state takes the form

FN(z, T)= F1

(
z mod

2L c

N
, T
)
, (11)

where the modulo operator is taken over z ∈ [− L c
N ,

L c
N ). However,

within this formalism, harmonic states can be only quasi-stable, as
any aperiodic perturbation will eventually cause them to decay to

Fig. 4. Harmonic state mean-field simulation and corresponding the-
ory (GVD of−1700 fs2

/mm). If the field is initialized with a periodicity
that is an integer multiple of the repetition rate, a harmonic comb will be
produced.

the fundamental comb state. Defect engineering [30] effectively
creates reflectors—additional sources of phase potential—that
can cause harmonic states to be more stable than the fundamental
extendon.
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While the cross-steepening nonlinearity is responsible for the
creation of phase potentials and therefore FM comb formation,
other optical nonlinearities can modify the extendons. For exam-
ple, the Kerr nonlinearity will modify the range over which combs
can be stable (see Supplement 1, Section 3). Briefly, gain curva-
ture creates a dip in the amplitude, and the Kerr effect generates
a position-dependent phase shift. As this mimics dispersion, the
effective GVD is reduced by an amount proportional to the gain
curvature and the Kerr nonlinearity. Conceptually, this is similar to
the way in which intensity solitons have their dispersion balanced
by the Kerr effect.

Which types of lasers can support broadband FM comb opera-
tion? In terms of the physical laser parameters, the total chirp over
one cycle (comb bandwidth) can be calculated from Eq. (8) as

1 f =
L c

12π
αm(g 0 − αw − αm)k′′−1(T1 +

1
2 T2), (12)

where k′′ is the physical dispersion, g 0 is the small-signal gain,
αm is the mirror loss, αw is the waveguide loss, and T1 and T2 are
the population and coherence lifetimes, respectively. It is inter-
esting that this chirp depends only on a few fundamental laser
parameters, which suggests that any FP laser could in principle
support FM modes of operation. Although this mode of action can
be suppressed by other effects, such as gain curvature and carrier
diffusion, the nonlinearity comes from the gain medium itself—no
saturable absorber is needed. Short gain recovery times (small T1

values) are not needed, and in fact are actually detrimental to FM
comb formation. This explains why these combs can be observed
in systems such as quantum dot and quantum well lasers. Small
dispersion is beneficial, but only provided the gain bandwidth
is not exceeded. Small gain curvature (small T2) is also helpful.
Perhaps the most critical aspect is that the mirror losses must be
large. Cross-steepening is significant only when there is a large
change in the intracavity power at a facet; for αm ≈ 0, frequency
modulation is suppressed. Similarly, the mirrors must be physically
adjacent to the gain medium. This explains why FM combs have
tended to be observed in FP semiconductor lasers, which have a
combination of large mirror losses, small gain curvatures, and large
gains. Without this combination, other multimode dynamics will
dominate.

4. CONCLUSION

We have shown for the first time that light in many lasers can obey
a NLSE whose potential is proportional to its phase. In these sys-
tems, phase dynamics dominate due to the presence of an effective
relaxation term that drives the laser to its steady-state output. The
fundamental solution to this equation is a dissipative extendon
with quadratic phase, a nondispersive wave whose frequency is
modulated linearly in time. This explains the numerous exper-
imental observations of FM combs in various laser systems. We
arrived at this result by deriving an LLE-like mean-field theory for
lasers with large internal gain, and our results explain the previously
mysterious dynamics of these combs. Our results will pave the way
for the development of new types of light sources utilizing these
concepts, as the theory is general for many laser systems and ties
together several recently discovered phenomena.
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