Welcome!
Welcome to Data Security and Privacy Lab (DSP-Lab, founded in 2017) in the Department of Computer Science and Engineering at the University of Notre Dame. Here at DSP-Lab, we aim to explore and resolve security and privacy issues existing in the world of data so that people will be less involved in security or privacy breach in the big data era. The research areas of DSP-Lab at Notre Dame spans widely across multiple areas, from data science research to traditional security research, owing to the interdisciplinary nature of the security and privacy research in the big data.
Current and Past research projects
The following sections describe our current on-going research projects. Please contact Prof. Taeho Jung if you want further discussion.
Hybrid Secure Computation with Trusted Execution Environment and Homomorphic Encryption
Trusted Execution Environment is not designed to handle the applications accepting inputs from a large number of users (e.g., 100M, 1B users). Homomorphic Encryption incurs high overhead in non-linear computations due to the expensive homomorphic multiplications. We investigate how general computation in large-scale applications can be performed in a secure manner through the novel integration of Trusted Execution Environment and Homomorphic Encryption
Keywords: Trusted Execution Environment, Homomorphic Encryption, Large-scale Data Aggregation
Relevant software: https://gitlab.com/palisade/graphene-palisade-sgx
Secure and verifiable COVID-19 tracing and containment
To mitigate the spread of COVID-19, public health authorities (PHAs) need to utilize individuals’ geo-spatio-temporal data, but such data are extremely sensitive because they contain individuals’ private daily footprints. We study how existing cryptographic primitives and trusted execution environment can be combined to build a secure, verifiable, and efficient framework that allows PHAs to track and contain COVID-19 infection based on users’ daily footprints without having direct access to them.
Keywords: Trusted Execution Environment, Private Set Intersection, Private Histogram Calculation
Relevant software: TBA
Optimization of lattice-based homomorphic encryption schemes
Lattice-based homomorphic encryption is gaining much industrial attraction due to its versatility and post-quantum security. It is, however, known for the notorious inefficiency due to the large cipher texts and complex operations. We study how different special parameter settings along with customized algorithms optimize the homomorphic encryption schemes in CPUs and compute-enabled RAM.
Keywords: Fully/Somewhat homomorphic encryption, hardware accelerator
Relevant software: Full-RNS B/FV scheme with Fermat/Mersenne numbers, Benchmarking Microsoft SEAL for comparing against compute-enabled RAM
Secure and accountable management of big data
More and more data are generated and collected nowadays, but we do not have a way to monitor and control the management of those data. We study how to let individuals hold ultimate controls over their own personal data being collected everyday and everywhere.
Keywords: Accountability, data provisioning, secure provenance
Relevant software: Secure fuzzy deduplication on images, ProvNet: Tracking data provenance with blockNet
Privacy-preserving distributed deep learning
Deep learning technologies have given birth to numerous innovative applications in our life, and it is expanding to individuals’ devices. We believe now it is a proper time to consider the user privacy implications behind this breakthrough technology. In this project, we study how to enable various deep learning technologies without breaching individual privacy in distributed/decentralized environments.
Keywords: Privacy-preserving computation, applied cryptography, secure multi-party computation, Trusted execution environment, secure aggregation
Relevant software: One-round secure multiparty computation with TPM, Modified HEtest framework for testing and comparing SEAL/HElib, Cryptonite: ECC-based secure aggregation, SGXNN: Neural network training with SGX & GPU
On scalability and maintenance cost of blockchain
Blockchain has various desirable security properties (e.g., tamper-proofness, decentralization), however it has several shortcomings as well. Our goal is to make blockchain more scalable and sustainable.
Keywords: Blockchain, efficiency, scalability
Relevant software: Blockchain with proof of deep learning
Taeho Jung Changhao Chenli Jonathan Takeshita Wenyi Tang Nirajan Koirala Colin McKechney
Hannah Burchfield Cian Levy Ting Gong Justin Pajak Kathryn Hund Frank Gomulka Ryan Karl
Group meeting (Fall 2018) While attending ACM CCS 2018 at Toronto Group meeting during the pandemic (Summer 2020) Group meeting during the continued pandemic (January 2021) A remote group meeting in Fall 2021 (October 2021) One of the in-person group meetings in Fall 2021 (December 2021) Celebration of Ryan’s (or Dr. Karl’s) graduation
Collaboration
We have been actively collaborating with the following groups/labs.
- Computing with Emerging Technologies
- Sustainable Computing Laboratory (SCL)
- Distributed Cooperative Systems Research (DISCOVER) Lab
- IIT DB Group
- Data Mining towards Decision Making (DM2) Laboratory
- Prof. Aaron Striegel’s research group
- Cryptology & Algorithm Laboratory at Hanyang University