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1 Introduction

The textbook three equation New Keynesian (NK) model (see, e.g., Woodford 2003 or Gaĺı

2008) has enormous influence in both policy circles and among academic researchers due

to its elegance and tractability. The model boils down to a forward-looking IS equation

characterizing aggregate demand, a Phillips curve describing aggregate supply, and a rule

for the central bank’s principal policy tool, the short-term interest rate. The model has

yielded several important insights, including the potential desirability of inflation targeting,

the gains from policy commitment over discretion, and the importance of having the policy

rate track the “natural” or “neutral” rate of interest.

In spite of its myriad uses, the textbook model has proven inadequate for examining a

range of issues that have come to the fore in policy circles over the last decade. As it abstracts

from the financial sector, the model is unable to address the consequences of financial market

disruption of the sort that rocked the global economy in 2007-2009. It is also incapable of

directly speaking to the potential benefits and costs of quantitative easing (QE) type policies.

QE policies were among the first and most prominent of several unconventional interventions

deployed to fight the global financial crisis once policy rates were lowered to zero. There is

now a nascent literature incorporating QE into medium-scale DSGE models (e.g. Gertler

and Karadi 2011, 2013; Carlstrom, Fuerst and Paustian 2017; or Sims and Wu 2021). While

this work has proven useful and generated several important insights, these quantitative

frameworks lack the simplicity and transparency of the textbook three equation model.

Our paper bridges the gap between the complicated quantitative DSGE models that have

been developed to study QE with the elegance and tractability of the textbook three equation

model. Our model incorporates financial intermediaries, short- and long-term bonds, credit

market shocks, and scope for central bank bond holdings to be economically relevant. The

linearized version of our model reduces to four, rather than three, key equations. The IS

and Phillips curves are similar to the three equation benchmark. The innovation is that

credit shocks and central bank long bond holdings appear additively in both the IS and
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Phillips curves. This differs from many ad-hoc treatments of financial disturbances, which

often simply include residuals in the IS equation meant to proxy for credit spreads (see, e.g.,

Smets and Wouters 2007). The model is closed with a rule for the short-term policy rate

(as in the benchmark three equation model) and a rule for the central bank’s long bond

portfolio.

We study optimal monetary policy in the context of our four equation model. Reflecting

central banks’ dual mandate, we focus on an objective function that minimizes a weighted

sum of volatilities of inflation and the output gap. Because credit shocks appear in the

Phillips curve, the so-called “Divine Coincidence” (Blanchard and Gaĺı 2007) does not hold,

and it is not possible to achieve the global minimum of the loss function with just one policy

instrument.

When the central bank can actively manage both the short-term interest rate and a bond

portfolio, it can achieve complete stabilization of both inflation and the output gap. In equi-

librium, optimal policy entails adjusting the short-term interest to track fluctuations in the

natural rate of interest (as in the benchmark three equation model), but adjusting the long

bond portfolio to offset the effects of credit market disturbances. Our model therefore has an

implication that differs from the conventional wisdom among policymakers that adjustment

of short-term interest rates is sufficient to meet a dual mandate of price and output stability

– in general, QE policies ought to be used all the time to counter credit market shocks, not

only when policy rates are constrained by the zero lower bound (ZLB).

We also explore the implications of the ZLB for policy. When the policy rate is unavail-

able, optimal balance sheet policy is characterized by a “lean against the wind” condition

that nevertheless differs from the standard condition under discretion in the textbook three

equation model. A couple of interesting results emerge. First, credit market shocks need not

have differential effects at the ZLB in comparison to normal times. Adjusting the long bond

portfolio in exactly the same way as it would absent a ZLB constraint, the central bank is

able to stabilize both inflation and the output gap in response to credit shocks at the ZLB.
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Second, QE policies can serve as an effective (albeit imperfect) substitute for conventional

policy in response to natural rate shocks. Without QE available, output and inflation react

suboptimally to natural rate shocks when the short-term policy rate is constrained, the more

so the longer the anticipated duration of the ZLB. A central bank can partially offset these

non-optimal responses by adjusting its long bond portfolio. We derive an analytical expres-

sion for the optimal equilibrium path for QE at the ZLB as a function of the relative welfare

weight on the output gap in the loss function. Though it is not possible to completely sta-

bilize both inflation and the gap, a central bank engaging in QE operations can significantly

reduce the costs of the ZLB.

Our model has important implications for central banks facing a dual mandate to stabilize

both inflation and real economic activity due to the failure of the Divine Coincidence. How

much QE is desired at the ZLB depends critically on how much weight the central bank puts

on inflation vs. output fluctuations. The more weight the central bank puts on the output

gap, the less QE is required in response to a shock to the neutral rate of interest. Prior to

the Great Recession, active management of a long-bond portfolio was not a major feature of

most central banks’ toolkits, Japan being one notable exception.

With only one policy instrument available, a “lean against the wind” condition for the

policy rate holds; in fact, this condition is the same as in the textbook three equation model.

The direction for the optimal short rate response to a credit shock depends on whether the

central bank cares more about inflation or output stabilization. For a positive credit shock, a

central bank focusing solely on inflation would increase the short rate; whereas if the central

bank only cares about the output gap, it would instead cut the short rate. Alternatively, if

a central bank can use bond purchases all the time as a policy instrument, there need not

be any conflict between the two aspects of the dual mandate.

Our analysis of optimal policy highlighted above studies how a central bank’s two instru-

ments (the policy rate and long bond portfolio) ought to optimally adjust in equilibrium to

stabilize its two targets (inflation and the output gap). While instructive, targeting rules
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of this sort may not be easily implementable. We also therefore consider an extension with

“simple and implementable” rules for both the policy rate and the bond portfolio (Schmitt-

Grohe and Uribe 2007): both instruments follow a Taylor-type rules that react to deviations

in the two target variables (inflation and the output gap). When the long bond portfolio

does not react to endogenous variables, the restrictions on parameter values of the rule for

the policy rate necessary for equilibrium determinacy are identical to the standard three

equation model. When the long bond portfolio does react to endogenous variables, deter-

minacy is more likely when it responds strongly to the output gap and not inflation. We

then show that having the policy rate react strongly to inflation and the bond portfolio react

strongly to the output gap mimics the optimal allocations while also delivering a determinant

equilibrium. We further show that an implementable rule for the central bank’s long bond

portfolio significantly ameliorates the adverse consequences of a binding ZLB on the policy

rate.

Though irrelevant in a standard model (Wallace 1981), there are several potential chan-

nels by which QE can transmit to the real economy that have been explored in the literature

(see Bhattarai and Neely 2020 for a thorough survey). One is a signaling channel, wherein

accumulating a large balance sheet in the present might commit a central bank to lower

short-term policy rates in the future (e.g. Bauer and Rudebusch 2014 and Bhattarai et al.

2019). Another is based on exogenous participation constraints that build on the preferred

habitat theory of the term structure (e.g. Vayanos and Vila 2009, Hamilton and Wu 2012,

and Chen et al. 2012). A third assumes leverage constraints on intermediaries (e.g. Gertler

and Karadi 2011, 2013). The key friction in our model is a leverage constraint that allows for

a long-short interest rate spread. Relative to more involved papers based on a leverage con-

straint, such as Sims and Wu (2021), our model makes a number of simplifying assumptions

that allow us to reduce the model down to four equations. At the expense of some realism,

these simplifying assumptions afford a great deal of tractability, which allows us to make

clear statements about optimal policy. More expansive models with leverage constraints
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nevertheless generate similar quantitative predictions as our four equation model.

Our paper relates to the literature on unconventional monetary policy in the New Keyne-

sian model. Gertler and Karadi (2011, 2013), Carlstrom, Fuerst and Paustian (2017), Sims

and Wu (2021, 2020b), and Mau (2019) all represent attempts to model large scale asset

purchases in a quantitative DSGE framework. Distinct from this strand of the literature,

one important contribution of our paper is to incorporate the financial frictions giving rise

to effective QE policies in these papers into the tractable small-scale New Keynesian model

of Clarida, Gaĺı and Gertler (1999) that is popular among academics and policymakers alike.

The framework we present here can be used to address a number of important policy ques-

tions in a way similar to how the three equation model is used. For example, Sims and Wu

(2020a) use the four equation model to relate the Fed’s QE policies in the wake of the Great

Recession to the Wu and Xia (2016) shadow rate series.

The remainder of the paper is organized as follows. Section 2 presents the model. Sec-

tion 3 discusses optimal central bank policy. Section 4 considers optimal implementable

rules for both the policy rate and the central bank’s long bond portfolio. Section 5 offers

concluding thoughts.

2 Model

This section presents our model. We first present the four equation linearized model in

Subsection 2.1. The full non-linear model is derived from first principles in Subsection 2.2.

Subsection 2.3 studies positive properties of a calibrated version of the model before turning

to normative issues in Section 3. Details are available in online Appendices A - F.

2.1 The Four Equation Model

The principal equations of our linearized model are an IS curve:

xt = Et xt+1 −
1− z
σ

(rst − Et πt+1 − r∗t )− z
[
b̄FI (Et θt+1 − θt) + b̄cb (Et qet+1 − qet)

]
, (2.1)
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and a Phillips curve:

πt = γζxt −
zγσ

1− z

[
b̄FIθt + b̄cbqet

]
+ β Et πt+1. (2.2)

Lowercase variables with a t subscript denote log deviations about the non-stochastic

steady state. πt is inflation and xt = yt − y∗t denotes the output gap, where y∗t is the

equilibrium level of output consistent with price flexibility and no credit shocks.1 We refer

to this level of output as potential output. Similarly, r∗t denotes the natural rate of interest –

i.e. the real interest rate consistent with output equaling potential. It follows an exogenous

process. θt captures credit conditions in the financial market; positive values correspond to

more favorable conditions. This variable is described further in Subsection 2.2. We take it

to be exogenous and henceforth refer to it as a credit shock. qet denotes the real market

value of the central bank’s long-term bond portfolio. rst is the short-term nominal interest.

Letters without t subscripts are parameters or steady state values. σ, β, and γ are

standard parameters – σ measures the inverse intertemporal elasticity of substitution, β is

a subjective discount factor, and γ is the elasticity of inflation with respect to real marginal

cost.2 b̄FI and b̄CB are parameters measuring the steady state long-term bond holdings

of financial intermediaries and the central bank, respectively, relative to total outstanding

long-term bonds. These coefficients sum to one, i.e. b̄FI + b̄CB = 1.

As described in Subsection 2.2, there are two kinds of households in our model. We will

refer to these types of households as “parent” and “child,” respectively. The parent is the

standard household in a textbook New Keynesian model – it consumes, borrows or saves via

1Traditionally in New Keynesian models, potential output is defined as the hypothetical level of output

consistent with price flexibility and is denoted yft . As described below, in our model both price stickiness

and financial frictions distort the competitive equilibrium. It is therefore natural to define potential output

as a concept wherein both frictions are neutralized rather than just price rigidity. See further details in

online Appendix D.
2In particular, γ = (1−φ)(1−φβ)

φ is the standard expression in the three equation model, where φ ∈ [0, 1)

measures the probability of non-price adjustment.
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one-period bonds, supplies labor, and owns firms. The child does not supply labor nor does

it have an equity interest in production firms. It is less patient than the parent and finances

its consumption by issuing long-term bonds. It pays the servicing cost of these long-term

bonds with a transfer from the parent each period. The parameter z ∈ [0, 1) represents the

share of children in the total population. ζ is the elasticity of real marginal cost with respect

to the output gap; it is conceptually similar to the corresponding parameter in the standard

three equation model, but augmented to account for two types of households.3 Our model

collapses to the standard three equation NK model when z = 0. In this case, credit shocks

and the central bank’s long bond portfolio are irrelevant for the equilibrium dynamics of

output and inflation.

Our four equation New Keyneian model consists of (2.1)-(2.2), together with policy rules

for the short-term interest rate rst and central bank’s long bond portfolio qet. Simple rule-

based policies are specified in Subsection 2.3 for positive analyses, whereas we discuss optimal

policies in Section 3.

2.2 Derivation of the Four Equation Model

In this subsection, we present, from first principles, the economic environment giving rise to

the linearized four equation model laid out in Subsection 2.1. The economy is populated by

the following agents: two types of households (parent and child), a representative financial

intermediary, production firms, and a central bank. We discuss the problems of each below.

Note that we make several simplifying assumptions in this section in order to get the

system to reduce to just four equations. This is intentional and for tractability. Neverthe-

less, the quantitative implications of our small-scale model are similar to more complicated

models. For example, the dynamics of the child’s consumption in our model are in-line with

the behavior of investment in Sims and Wu (2021). In online Appendix F, we show some

3In our model, ζ = χ(1−z)+σ
1−z , where χ is the inverse Frisch labor supply elasticity for the parent. If z = 0,

ζ would be identical to the textbook three equation model.
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quantitative results when we relax a few of the assumptions that allow the system to reduce

to four equations.

2.2.1 Parent

A representative parent receives utility from consumption, Ct and disutility from labor, Lt.

It discounts future utility flows by β ∈ (0, 1). Its lifetime utility is:

Vt = max Et
∞∑
j=0

βj

[
C1−σ
t+j − 1

1− σ
− ψ

L1+χ
t+j

1 + χ

]
. (2.3)

σ > 0 is the inverse elasticity of intertemporal substitution, χ ≥ 0 is the inverse Frisch

elasticity, and ψ > 0 is a scaling parameter.

The nominal price of consumption is Pt. The parent earns nominal income from labor,

with a wage of Wt, receives dividends from ownership in firms and financial intermediaries,

Dt and DFI
t , respectively, and receives a lump sum transfer from the fiscal authority, Tt.

It can save via one-period nominal bonds, St, that pay gross nominal interest rate Rs
t . In

addition, it makes a transfer, Xb
t , to the child each period, as well as a transfer, XFI

t , to

financial intermediaries; though time-varying, neither of these are choice variables. The

parent’s budget constraint is:

PtCt + St ≤ WtLt +Rs
t−1St−1 + PtDt + PtD

FI
t + PtTt − PtXb

t − PtXFI
t . (2.4)

The objective is to pick a sequence of consumption, labor, and one-period bonds to

maximize (2.3) subject to the sequence of (2.4). The optimality conditions are standard:

ψLχt = C−σt wt, (2.5)

Λt−1,t = β

(
Ct
Ct−1

)−σ
, (2.6)

1 = Rs
t Et Λt,t+1Π−1

t+1. (2.7)

In (2.5), wt = Wt/Pt is the real wage; and in (2.7), Πt = Pt/Pt−1 is gross inflation. Λt−1,t

is the parent’s stochastic discount factor.
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2.2.2 Child

The child gets utility from consumption, Cb,t, and does not supply labor. Its flow utility

function is the same as the parent, but it discounts future utility flows by βb < β; i.e. it is

less patient than the parent. Its lifetime utility is:

Vb,t = Et
∞∑
j=0

βjb

[
C1−σ
b,t+j − 1

1− σ

]
. (2.8)

The child can borrow/save through long-term bonds, the new issuance of which is de-

noted by NBt. These bonds are structured as perpetuities with decaying coupon payments.

Coupon payments decay at rate κ ∈ [0, 1]. Issuing one unit of bonds in period t obligates

the issuer to a coupon payment of one dollar in t+ 1, κ dollars in t+ 2, κ2 dollars in t+ 3,

and so on. The total coupon liability due in t+ 1 from past issuances is therefore:

Bt = NBt + κNBt−1 + κ2NBt−2 + . . . . (2.9)

The attractive feature of these decaying coupon bonds is that one only needs to keep

track of the total outstanding bonds, Bt, rather than individual issues. In particular:

NBt = Bt − κBt−1. (2.10)

New issuances in period t trade at market price Qt dollars. Because of the structure of

coupon payments, the prices of bonds issued at previous dates are proportional to the price

of new issues; i.e. bonds issued in t − j trade at κjQt in t. The total value of the bond

portfolio can therefore conveniently be written as QtBt.

The nominal value of consumption plus coupon payments on outstanding debt cannot

exceed the value of new bond issuances plus the nominal value of the transfer from the

parent. The flow budget constraint facing the child is therefore:

PtCb,t +Bt−1 ≤ Qt (Bt − κBt−1) + PtX
b
t . (2.11)

Define the gross return on the long bond as:
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Rb
t =

1 + κQt

Qt−1

. (2.12)

The optimality condition for the child is an Euler equation for long-term bonds, where

Λb,t−1,t denotes its stochastic discount factor:

-

Λb,t−1,t = βb

(
Cb,t
Cb,t−1

)−σ
, (2.13)

1 = Et Λb,t,t+1R
b
t+1Π−1

t+1. (2.14)

2.2.3 Financial Intermediaries

A representative financial intermediary (FI) is born each period and exits the industry in the

subsequent period. This is a special case of Gertler and Karadi (2011, 2013), and Sims and

Wu (2021), who allow financial intermediaries to live for multiple periods and exit randomly.

We make this simplifying assumption because it allows us to reduce the system into four

equations. The FI receives an exogenous amount of net worth from the parent household,

PtX
FI
t . This equity transfer is comprised of two components – new real equity that is fixed

at X̄FI , along with the stock of outstanding long bonds held by previous intermediaries,

which are valued at κQt:

PtX
FI
t = PtX̄

FI + κQtB
FI
t−1 (2.15)

The intermediary also attracts deposits, SFIt , from the parent household. It can hold

long bonds issued by the child, BFI
t , or reserves on account with the central bank, REFI

t .

The FI is structured as a special case of intermediaries in Sims and Wu (2021) and Gertler

and Karadi (2011, 2013), with intermediaries exiting after each period with probability one.

Because the probability of exit after each period is unity, we can think of there being a

(newly born) representative FI each period.

The balance sheet condition of the FI is:
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QtB
FI
t +REFI

t = SFIt + PtX
FI
t . (2.16)

The FI pays interest, Rs
t , on short-term debt, earns interest, Rre

t , on reserves, and earns

a return on long-term bonds carried from t into t+ 1, Rb
t+1. Note that these are all nominal

rates. Upon exiting after period t, the FI therefore returns a dividend to the parent household

that satisfies:

Pt+1D
FI
t+1 =

(
Rb
t+1 −Rs

t

)
QtB

FI
t + (Rre

t −Rs
t )RE

FI
t +Rs

tPtX
FI
t (2.17)

The FI is subject to a risk-weighted leverage constraint. Long-term bonds receive a risk

weight of unity, while reserves on account with the central bank have a risk weight of zero.

The leverage constraint is:

QtB
FI
t ≤ ΘtPtX̄

FI . (2.18)

In other words, (2.18) says that the value of long bonds held by the FI cannot exceed a

time-varying multiple, Θt, of the new equity transferred from the parent, PtX̄
FI . We assume

that Θt obeys a known stochastic process and refer to changes in Θt as credit shocks.

The objective of the FI is to maximize the expected one period ahead value of (2.17),

discounted by the nominal stochastic discount factor of the parent household, i.e. Λt,t+1Π−1
t+1,

subject to (2.18). The intermediary can choose the quantity of long bonds and reserves that

it holds. In doing so, it does not take into account that its choice of long bonds to hold

today influences the total equity transfer future intermediaries will receive. In other words,

even though the payouts are discounted because the household owner receives them in the

future, the intermediary’s problem is effectively static. Letting Ωt denote the multiplier on

the leverage constraint, the first order conditions are:

Et Λt,t+1Π−1
t+1

(
Rb
t+1 −Rs

t

)
= Ωt, (2.19)

Et Λt,t+1Π−1
t+1 (Rre

t −Rs
t ) = 0. (2.20)
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(2.20) says that the FI will hold an indeterminate amount of reserves so long as the return

on reserves, Rre
t , equals the cost of funds, Rs

t . Absent a leverage constraint, the FI would

buy long bonds up until the point at which the expected return on long bonds equals the

cost of funds. The constraint being binding, i.e. Ωt > 0, generates excess returns.

2.2.4 Production

The production side of the economy is split into three sectors: final output, retail output,

and wholesale output. There is a representative final good firm and representative wholesale

producer. There are a continuum of retailers, indexed by f ∈ [0, 1].

The final output good, Yt, is a CES aggregate of retail outputs, with ε > 1 the elasticity

of substitution. This gives rise to a standard demand function for each variety of retail

output and an aggregate price index:

Yt(f) =

(
Pt(f)

Pt

)−ε
Yt, (2.21)

Pt =

[∫ 1

0

Pt(f)1−εdf

] 1
1−ε

. (2.22)

Retailers purchase wholesale output at price Pm,t and repackage it for sale at Pt(f). Pm,t

has the interpretation as nominal marginal cost. Retailers are subject to a Calvo (1983)

pricing friction – each period, there is a probability 1−φ that a retailer may adjust its price,

with φ ∈ [0, 1]. When given the opportunity to adjust, retailers pick a price to maximize the

present discounted value of expected profits, where discounting is by the stochastic discount

factor of the parent household. Optimization results in an optimal reset price, P∗,t, that is

common across updating retailers. Letting pm,t = Pm,t/Pt denote real marginal cost, the

optimal reset price satisfies:

P∗,t =
ε

ε− 1

X1,t

X2,t

, (2.23)

X1,t = P ε
t pm,tYt + φEt Λt,t+1X1,t+1, (2.24)

X2,t = P ε−1
t Yt + φEt Λt,t+1X2,t+1. (2.25)
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The wholesale firm produces output, Ym,t, according to a linear technology in labor:

Ym,t = AtLt. (2.26)

At is an exogenous productivity disturbance obeying a known stochastic process. Letting

wt = Wt/Pt denote the real wage, the optimality condition is standard:

wt = pm,tAt. (2.27)

2.2.5 Central Bank and Fiscal Authority

The central bank can hold a portfolio of long bonds, Bcb
t . It finances this portfolio via the

creation of reserves, REt. Its balance sheet condition is:

QtB
cb
t = REt. (2.28)

We will refer to the real value of the central bank’s bond portfolio as QEt = Qtb
cb
t , where

bcbt = Bcb
t /Pt, and shall assume that the central bank may freely choose this (equivalently, it

can freely choose reserves). The central bank potentially earns an operating surplus and then

remits it to the fiscal authority. The fiscal authority then returns this revenue to the parent

household via a lump sum transfer. When the surplus is negative, the transfer becomes a

lump sum tax. This transfer satisfies:

PtTt = Rb
tQt−1B

cb
t−1 −Rre

t−1REt−1. (2.29)

In our model, we abstract from government bonds. As shown in Sims and Wu (2021),

the effect of purchasing government bonds via QE would be qualitatively the same as private

bonds, but quantitatively smaller by a constant fraction.

2.2.6 Aggregation and Equilibrium

Market-clearing requires that REt = REFI
t and St = SFIt (i.e. the FI holds all reserves

issued by the central bank and all one period bonds issued by the parent household), while

Bt = BFI
t +Bcb

t (i.e. the total stock of long-term bonds issued by the child must be held by
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the FI or the central bank). Some algebraic substitutions give rise to a standard aggregate

resource constraint:

Yt = Ct + Cb,t. (2.30)

Aggregating across retailers gives rise to the aggregate production function, where vpt is

a measure of price dispersion:

Ytv
p
t = AtLt. (2.31)

We assume that the transfer from parent to child, Xb
t , is time-varying in a way that

represents a complete payoff of outstanding debt obligations each period:

PtX
b
t = (1 + κQt)Bt−1. (2.32)

Neither the parent nor the child behaves as though it can influence the value of Xb
t .

The particular assumption embodied in (2.32) implies that, even though the child solves

a dynamic problem and has a forward-looking Euler equation, (2.14), its consumption is

effectively static:

PtCb,t = QtBt. (2.33)

This assumption on the parent-child transfer allows us to eliminate a state variable and

simplifies the system to four equations, although it is not crucial for the qualitative or

quantitative properties of the model. We refer to this assumption as a “full bailout” because,

each period, the parent pays off the child’s debt. We show, in online Appendix F, that

dropping the full bailout assumption, and instead considering a fixed transfer each period

between parent and child, does not fundamentally alter the behavior of the model in response

to shocks.

At and Θt obey conventional AR(1) processes in the log. We define potential output,

Y ∗t , as the equilibrium level of output consistent with price flexibility (i.e. φ = 0) and where

the credit shock is constant, i.e. Θt = Θ. The natural rate of interest, R∗t , is the gross real

short-term interest rate consistent with this level of output. Xt = Yt/Y
∗
t is the gross output
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gap. The full set of equilibrium conditions are contained in online Appendix A. The system

can be greatly simplified, and the equilibrium conditions log-linearized about a zero inflation

steady state can be reduced to the four equation system presented at the beginning of this

section; i.e. (2.1)-(2.2) along with rules for the short-term policy rate and the central bank’s

long bond portfolio. Details of the linearization may be found in online Appendix B.

2.3 The Four vs. the Three Equation Model

Before turning to normative optimal policy analysis in Section 3, we first explore the positive

properties of the linearized model as described above in Subsection 2.1.

For the purpose of studying positive properties of the model, we suppose that the short-

term rate follows a Taylor-type rule while the long bond portfolio obeys an exogenous process:

rst = ρrr
s
t−1 + (1− ρr)

[
φππt + φxxt

]
+ srεr,t, (2.34)

qet = ρqqet−1 + sqεq,t. (2.35)

r∗t and θt, the natural rate of interest and credit shock, respectively, obey stationary

AR(1) processes:

r∗t = ρfr
∗
t−1 + sfεf,t, (2.36)

θt = ρθθt−1 + sθεθ,t. (2.37)

When we assume that the central bank’s long bond portfolio is exogenous, as in (2.35),

and close the model with a conventional Taylor rule for the policy rate, as in (2.34), the

requirements for a unique rational expectations equilibrium are the same as in the standard

three equation model. We show this formally in online Appendix C.

A full description and justification of the underlying parameter values of the non-linear

model is provided in online Appendix E. Here, we focus only on the parameter values nec-

essary for solving the linearized model. These parameter values are listed in Table 1. The

discount factor and elasticity of substitution take on standard values. The child-share of
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total consumption, z, is set to one-third. This is loosely calibrated to match the share of

durable consumption and private investment in aggregate private non-government domestic

expenditure.4 The dynamics of the child’s consumption in our model are roughly in-line with

the behavior of investment in a larger model with physical capital accumulation (e.g. Sims

and Wu 2021). In online Appendix F, we present impulse responses with different values of

z. Given our calibrations of other steady state parameters, we have b̄FI = 0.7 and b̄cb = 0.3.

The elasticity of inflation with respect to real marginal cost is γ = 0.086 and the elasticity

of the output gap with respect to real marginal cost is ζ = 2.49, implying a slope of the

Phillips curve of 0.21. The parameters of the Taylor rule are standard. The autoregressive

parameters in the exogenous processes are all set to 0.8.

Figure 1 displays impulse responses to shocks in our model. Panel (a) considers a one

percent positive shock to potential output.5 The solid black lines are responses in our baseline

four equation model, whereas the dashed blue lines depict responses in the conventional three

equation model (i.e. our model imposing z = 0). These responses are familiar and do not

differ much in our model compared to the more standard three equation model. Output

increases but by less than potential, resulting in a negative output gap. This puts downward

pressure on inflation, which is met with policy accommodation with the short-term interest

rate declining. Relative to three equation model, output reacts slightly less on impact in our

model, though this difference is not large.

Panel (b) of Figure 1 plots impulse responses to a conventional monetary policy shock.

The size and sign of the shock are chosen to generate the same impact response of output

4In 2020Q3, the latest period for which we have data, these two categories composed 30 percent of

non-government private domestic expenditure.
5As written, the linearized model presented in Subsection 2.1 writes the exogenous process in terms of

the natural rate of interest. As shown in online Appendix B, there is a mapping between the natural rate of

interest and potential output. When comparing the four equation to the three equation model, the mapping

between the natural rate of interest and potential output is not identical due to the presence of z in the four

equation model. The comparison is more natural for an equal sized shock to potential output rather than

the natural rate of interest.
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to the potential output shock in the four equation model. Output (and hence the output

gap) rises on impact before reverting to its pre-shock value. Inflation rises and follows a

similar dynamic path as output. As in the case of the potential output shock, there is little

meaningful difference in the responses of variables in our four equation model relative to the

baseline three equation model.

Panel (c) plots impulse responses to a credit (θt) or QE (qet) shock. Because these differ

only according to scale in the linear system (i.e. b̄FI 6= b̄cb), because we have assumed equal

AR parameters (0.8), and because the shock sizes are normalized to produce the same impact

response of output, the IRFs of endogenous variables to a credit or QE shock are identical.

We therefore only show one set of impulse responses.

Unlike responses to the other shocks, in panel (c), there is a meaningful difference between

the four equation model and the three equation model. In the three equation model, both

shocks are irrelevant for the dynamics of endogenous variables. In our four equation model,

an increase in leverage (equivalently a central bank purchase of long bonds) is expansionary

for output. In the current calibration, such an expansion also results in an increase in

inflation and a resulting increase in the short-term interest rate. That financial shocks have

economic effects in-line with the traditional understanding of an aggregate demand shock

and the fact that there is scope for QE policies represent a key advancement in our four

equation model relative to the standard three equation model. These properties are critical

for understanding the post-Crisis economy.

2.4 Discussion

It is fairly standard in macro models to include reduced-form credit shocks as residuals in the

IS equation (Smets and Wouters 2007). Our structural four equation model has this feature

as well. But in our model, QE and credit shocks also appear as residuals in the Phillips

Curve, which leads to a breakdown in the Divine Coincidence and results in potentially

important policy tradeoffs.
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Why do credit shocks appear as an endogenous cost-push wedge in the Phillips curve?

Our model’s Phillips curve written in terms of marginal cost is the same as in the standard

three equation model:

πt = γp̂m,t + β Et πt+1, (2.38)

where p̂m,t is real marginal cost linearized about the steady state, which is in turn equal to

the log difference between the real wage and the marginal product of labor. See derivations

in online Appendix B.

Holding the aggregate level of output fixed, favorable credit conditions reallocate re-

sources from the parent (the saver) to the child (the borrower). In our model, the parent

supplies labor, similar to many other models of financial frictions where workers save and

supply variable labor while entrepreneurs borrow and either do not supply labor or do so

inelastically (e.g. Carlstrom and Fuerst 1997). The reallocation of resources when credit

conditions are favorable therefore induces a negative wealth effect for the parent that puts

downward pressure on the wage, and hence real marginal cost, for a given level of output.

This manifests itself as the endogenous cost-push term in the Phillips curve relation written

in terms of the output gap.

The credit/QE shocks appearing as an endogenous cost-push wedge in the Phillips curve

gives rise an important implication of our model. In our model, a QE shock is less inflationary

than a conventional monetary policy rate cut. This finding is inline with the results in the

richer model of Sims and Wu (2021, 2020b), and empirically consistent with the lack of

inflationary pressures from the expansive QE operations in the US and other parts of the

world in the wake of the Great Recession. The qet term enters in both the IS, (2.1), and

Phillips curves, (2.2). In particular, qet enters with a positive sign in the IS relationship, and

hence serves as a positive demand shock, but with a negative sign in the Phillips curve. Both

of these channels make QE expansionary for output, but have competing effects on inflation.

As parameterized, an expansionary QE shock in our model is nevertheless inflationary, albeit
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less so than a conventional monetary policy shock. There also exist parameterizations in

which an expansionary QE shock can be deflationary.

Another important difference between a QE shock and a conventional policy shock in

our model concerns how each affects the yield curve. Though a long-term interest rate does

not appear in the baseline four equation model in Subsection 2.1, one is operating in the

background in an alternative representation of the IS curve (see online Appendix B):

yt = Et yt+1 −
1

σ
(rst − Et πt+1)− z

σ

(
Et rbt+1 − rst

)
. (2.39)

Et rbt+1 is the expected return on the long bond in the model. Hence, the last term in (2.39)

can be interpreted as an excess return of the long bond over the short-term rate.

A conventional expansionary monetary policy shock results in a steepening of the yield

curve (i.e. an increase in the long rate relative to the short rate). In contrast, a stimulative

QE shock results in a flattening of the yield curve. QE works by freeing up space on the FI’s

balance sheet to purchase long bonds, thereby pushing the price of these bonds higher and

the yield lower. There is no direct effect on the short-term rate except through the policy

rule. As calibrated, the short rate actually rises modestly (due to the slightly inflationary

nature of a QE shock under the current calibration). Impulse responses of the long-short

spread to both a conventional policy shock and a QE shock are depicted in Figure 2.

3 Optimal Monetary Policy

In this section, we explore the design of optimal monetary policy in the context of our four

equation NK model. Credit shocks generate an endogenous cost-push term in the Phillips

curve, so they lead to a non-trivial tradeoff for a central bank wishing to solely implement

policy via adjustment of the short-term interest rate. As such, heretofore unconventional

policies like quantitative easing ought to be used even when the short rate is unconstrained

by the ZLB. Further, quantitative easing policies can be a useful (albeit imperfect) substitute

for conventional policy when the short-term rate is constrained by the ZLB.
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Given policymakers’ emphasis on the so-called dual mandate, we focus on a policy-

relevant quadratic loss function in inflation and the output gap:

L = µx2
t + π2

t . (3.1)

µ ≥ 0 is the relative weight attached to fluctuations in the output gap. An expression

like (3.1) can be motivated as the micro-founded welfare criterion for a central bank in the

standard three equation NK model under certain assumptions.6,7 The central bank’s welfare

objective is a present discounted value of the period loss function given in (3.1). For the

remainder of this section, we consider optimal policy under discretion, and so focus only on

the period loss function.

3.1 Unconstrained Optimal Discretionary Policy

We begin by studying optimal monetary policy when both policy instruments are available.

We start with an impossibility result spelled out formally in Theorem 1:

Theorem 1 It is not possible to completely stabilize both inflation and the output gap with

the adjustment of a single policy instrument when both credit and natural rate shocks are

present.

Proof : See online Appendix G.1.

6In particular, in the benchmark three equation model (3.1) would be the micro-founded loss function

when a Pigouvian tax is in place to undo the steady state distortion associated with monopolistic competition;

see, e.g., Woodford (2003). The optimal weight on the output gap would satisfy µ = γζ
ε , where γζ is the slope

of the Phillips curve and ε is the elasticity of substitution across varieties of retail goods. For conventional

calibrations, this weight would be quite low.
7In our four equation model, a fully micro-founded loss function would be more complicated due to the

two types of households, and would depend on arbitrary welfare weights on each. We instead choose to focus

on a policy-relevant loss function like (3.1) and consider a variety of different values of µ. One can motivate

targeting y∗t as the appropriate output level in a version of a social planner’s problem where the planner

wishes to completely smooth the consumption of the child household. See online Appendix D.
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This result can be viewed as a straightforward application of Tinbergen (1952). But the

result is particularly interesting and useful in our setting because the credit shock breaks

the “Divine Coincidence” (Blanchard and Gaĺı 2007), in which case one policy instrument

is sufficient to hit both targets. In our model, it is not possible to simultaneously stabilize

inflation and the output gap with only the short-term policy rate.

Given the impossibility result of Theorem 1, the central bank should use both the short-

term rate and its long bond portfolio as policy instruments. Each period, the central bank

minimizes its loss function in (3.1) with respect to the two policy instruments (rst and qet)

subject to the IS and Phillips curves in (2.1) - (2.2). As shown formally in online Appendix

G.1, the optimal solution features πt = xt = 0; i.e., the central bank hits both of its targets.

In equilibrium, simultaneously hitting both targets leads to the following optimal paths

of the central bank’s instruments:

Proposition 1 With both instruments available, the central bank achieves πt = xt = 0, and

the equilibrium paths for the policy instruments are rst = r∗t and qet = − b̄FI

b̄cb
θt.

The proof of Proposition 1 is simple. From the Phillips curve, inflation and the output

gap always equaling zero implies that qet = − b̄FI

b̄cb
θt. Then, from the IS equation, we must

have rst = r∗t . The novel implication of Proposition 1 is that QE-type policies in principle

ought to always be used as long as there are credit shocks, not only when the short-term

policy rate is constrained by the ZLB.

3.2 Optimal QE at the ZLB

Although QE type policies should always be used to offset credit market disturbances in our

model, they only became popular when short-term interest rates were pushed to the ZLB in

the wake of the Financial Crisis and ensuing Great Recession. In this section, we study how

QE policies might be used to mitigate the consequences of a binding ZLB.

We approximate the effects of a binding ZLB in our linearized model following Eggertsson

and Woodford (2003) and Christiano, Eichenbaum and Rebelo (2011). Suppose that a central
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bank has been following the jointly optimal policy described in Proposition 1. But then in

period t, suppose the natural rate of interest falls below zero, so that rst = 0. Suppose that it

will stay there in each subsequent period with probability α ∈ [0, 1), where this probability

is invariant over time. The expected duration of the ZLB is therefore 1/(1−α). This means

that interest rate policy can be characterized as follows:

rst = 0 (3.2)

Et rst+1 = 0 with probability α (3.3)

Faced with a ZLB, the central bank will pick qet to minimize its loss function, but is

unable to pick the policy rate. The optimal choice of qet leads to the following “lean against

the wind condition”:

πt = − µ(1− z)

γζ(1− z)− γσ
xt. (3.4)

Proposition 2 describes the evolution of targets and instruments while the ZLB is binding.

Proposition 2 When the short rate is constrained by the ZLB, which will continue to bind

in the next period with probability α, with QE being the only viable policy instrument, the

optimal targeting rule is characterized by (3.4). In equilibrium, the paths for inflation, output

gap, and QE are

πt = ω1r
∗
t (3.5)

xt = ω1ω2r
∗
t (3.6)

qet = τr∗t −
b̄FI

b̄cb
θt, (3.7)
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where

ω1 =
γ(1− z)

γσ(1− αρf )ω2 − αγρf (1− z) + (1− z)(1− αρf )(1− γζω2 − αβρf )
(3.8)

ω2 = −γζ(1− z)− γσ
µ(1− z)

(3.9)

τ = −(1− γζω2 − αβρf )(1− z)

zγσb̄cb
ω1 (3.10)

Proof : See online Appendix G.2.

An important and novel implication of Proposition 2 is that the ZLB need not pose a

problem for credit shocks – inflation and the gap can be completely stabilized when only QE

is available, with the QE portfolio adjusting to credit shocks exactly as it would absent the

ZLB.

More importantly, we use the results from Proposition 2 to investigate the extent to which

QE can serve as an effective substitute for conventional monetary policy during periods in

which the short-term interest rate is constrained by zero. This was the original motivation

for the use of QE in countries like Japan and the US when policy rates moved to the ZLB.

We restrict attention to values of α where ω1 > 0, so that reductions in the natural rate

of interest cause inflation and the gap to decline when the ZLB binds.8 In this region, τ < 0,

which means that the central bank provides positive stimulus in the form of bond purchases

when the natural rate of interest declines. We show in online Appendix H that τ is increasing

in α in this region. In other words, QE optimally reacts more aggressively to a natural rate

8As noted in Carlstrom, Fuerst and Paustian (2014), for sufficiently large α, the sign of ω1 can flip from

positive to negative. Where this perverse sign flip occurs depends on the values of other parameters, such

as the slope of the Phillips curve, γζ. We restrict attention to values of α consistent with ω1 being positive.

For our parameterization, the sign flip occurs at an α consistent with an expected ZLB duration of 13 or

more quarters. An alternative experiment would be to make the duration of the ZLB deterministic rather

than stochastic. There would be no sign flip at some sufficiently long duration, but the analytic expression

for ω1 would be significantly more complicated.
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shock the longer is the expected duration of the ZLB.

Figure 3 shows responses to a contractionary natural rate shock when the ZLB binds.

Solid black lines depict responses when QE is unavailable. The ZLB binds for four quarters

in expectation, with α = 3/4. With neither QE nor the policy rate available, the output

gap and inflation both decline significantly in response to a negative natural rate shock. A

binding ZLB entails significant welfare losses.

The colored non-solid lines in Figure 3 plot responses when the ZLB binds but QE is

optimally implemented. We consider different values of µ, the relative weight on fluctuations

in the output gap. When the central bank places no weight on the output gap (i.e. µ→ 0),

inflation is completely stabilized, the output gap increases (rather than decreases), and the

central bank increases the size of its long bond portfolio by a sizeable amount. When virtually

all weight is placed on the gap (µ = 100), in contrast, inflation declines, although much less

than the no-QE benchmark, the gap is completely stabilized, and the increase in the value

of the long bond portfolio is much more modest compared to the µ → 0 case. The case of

equal weight on inflation and the gap is virtually indistinguishable from the case of nearly

all weight being on the gap in the loss function.

The results described in Figure 3 suggest that quantitative easing can be an effective,

albeit imperfect, substitute for conventional policy in response to natural rate shocks at the

ZLB. For example, in the case of equal relative weights (µ = 1), the output gap essentially

does not react to the natural rate shock and inflation falls by about two-thirds of a percent

given optimal QE policy. In comparison, with no endogenous QE at the ZLB, the output

gap would decline by nearly a full percentage point and inflation would fall by about three

times as much. Endogenous QE therefore entails a sizeable welfare improvement over doing

nothing at the ZLB. This will be true regardless of the value of µ.

The response of the central bank’s bond portfolio to a natural rate shock is always

opposite the shock, but the magnitude depends on the relative weight the central bank

places on the output gap in its loss function, µ. For a central bank concerned solely with
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stabilizing inflation, it is optimal to adjust the long bond portfolio quite strongly in response

to natural rate shocks. For a central bank more concerned with gap stabilization, the optimal

QE response remains sizeable but is nevertheless quite a bit smaller than for values of µ close

to zero. See online Appendix H for a figure plotting the optimal τ as a function of µ.

3.3 Optimal Policy without QE

Next, consider an operating framework similar to the one prevailing in the US prior to the

Great Recession in which the central bank uses the short-term interest rate as its sole policy

instrument. The ZLB does not bind. This subsection studies the optimal adjustment of the

short-term rate in this scenario.

As shown in online Appendix G.3, the optimal choice of the policy rate satisfies

πt = − µ

γζ
xt. (3.11)

Note that (3.11) is the same as the “lean against the wind condition” for the policy rate

for optimal policy under discretion as in the canonical three equation model. With (3.11)

characterizing optimal policy, the equilibrium paths of endogenous variables are given by:

Proposition 3 With the short rate being the only policy instrument, the optimal targeting

rule is characterized by (3.11). In equilibrium, the paths for inflation, the output gap, and

the policy rate are

πt = ϕθt (3.12)

xt = −γζ
µ
ϕθt (3.13)

rst = r∗t + ηθt (3.14)
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where

ϕ = − µ

γ2ζ2 + µ(1− βρθ)
zγσ

1− z
b̄FI (3.15)

η = ρθϕ+
σ(1− ρθ)

1− z
γζ

µ
ϕ+

(1− ρθ)σzb̄FI

1− z
. (3.16)

Proof : See online Appendix G.3.

The optimal policy described in Proposition 3 completely stabilizes the output gap and

inflation in response to natural rate shocks. This is not true conditional on credit shocks.

Figure 4 plots the responses of the output gap and inflation to a credit shock for different

values of µ, taking our baseline calibration of other parameters.

When there is no weight placed on the output gap, (shown with the blue dashed lines

corresponding to µ → 0), the central bank raises the short-term interest rate in response

to a positive credit shock (i.e. η > 0). This completely stabilizes inflation but results in a

sizeable increase in the output gap. In contrast, if the relative weight on the output gap is

large (µ = 100, shown in the red dashed lines), the central bank optimally cuts the policy

rate in response to the credit shock (i.e. η < 0). This stabilizes the output gap but results in

a significant decline in inflation. For equal weights on the output gap and inflation (µ = 1,

depicted via pink dashed lines), the policy rate decreases slightly, but the output gap rises

and the inflation rate falls.

An interesting result from Figure 4 is that the sign of the optimal policy rate response

to a credit shock depends on the relative weight placed on the output gap. A central bank

mostly concerned with stabilizing output ought to cut the policy rate in the face of a positive

credit shock, whereas it should raise the policy rate if it is mostly concerned with stabilizing

inflation. In online Appendix H, we plot η as a function of µ. Consistent with what is

observed in Figure 4, η is positive when µ is very small and turns negative as µ gets bigger,

crossing zero at around µ = 1. For central banks facing a dual mandate, this tradeoff between

stabilizing inflation or the output gap can be eliminated if they can deploy QE.
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4 Implementable Policy Rules

In Section 3, we explored optimal monetary policy under discretion. We derived first order

conditions for a central bank facing a standard welfare function. These first order conditions

are optimal targeting rules that imply paths of the short-term policy rate and the central

bank’s long bond portfolio. With both instruments available, it is possible to completely

stabilize both inflation and the gap. In equilibrium, the policy rate moves one-for-one with

the natural rate of interest and the long bond portfolio moves opposite credit shocks.

While optimal targeting rules have a long tradition in the monetary policy literature,

there is also significant interest in the design of instrument rules where instruments react

to fluctuations in endogenous variables. In this section, we therefore consider the optimal

design of “simple and implementable” rules for both the short-term policy rate and the

central bank’s long bond holdings (Schmitt-Grohe and Uribe 2007). We assume that the

short-term policy rate obeys a standard Taylor rule, (2.34). We further allow for the central

bank’s long bond portfolio to obey a similar Taylor-type rule that reacts to inflation and the

output gap:

qet = ρqqet−1 − (1− ρq) [λππt + λxxt] + sqεq,t. (4.1)

In postulating (4.1), which we refer to as a “QE rule,” we assume that λπ ≥ 0 and

λx ≥ 0. The negative sign in front reflects the fact that, a priori, we think that the central

bank would want to move its bond holdings opposite the direction of how it would adjust

the policy rate in reaction to movements in both inflation and the output gap.

4.1 Determinacy

An important requirement for instrument rules is that they deliver a determinate rational

expectations equilibrium. As shown in online Appendix C, if there is no endogenous com-

ponent to the QE rule (i.e. λπ = λx = 0), then the restrictions necessary for determinacy

on the coefficients of the Taylor rule for the policy rate are the same as in the standard
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three equation New Keynesian model. This will not necessarily be the case when the central

bank’s bond holdings react to inflation and the output gap. In this subsection, we consider

how endogenous reactions in the QE rule impact equilibrium determinacy.

Let zt =
[
πt xt r

s
t−1 qet−1

]′
be the vector of linearized endogenous variables.9 The system

evolves according to:

Et zt+1 = Azt. (4.2)

With two predetermined states, a unique rational expectations equilibrium requires that

there be exactly two unstable eigenvalues in A.

Because of the additional complexity of a fourth endogenous variable, we only numerically

characterize the portion of the parameter space necessary for determinacy. We fix most

parameter values at those listed in Table 1. We then consider different values of λπ and

λx and search for the minimum combination of φπ and φx needed to generate determinacy,

conditional on those values of λπ and λx.
10

Consider first different values of λπ, fixing λx = 0. We consider values of λπ of 0, 1.5, 5,

and 15. Results are shown graphically in panel (a) of Figure 5. When λπ = λx = 0, we have

the familiar result (shown in the solid black line) that when φx = 0, the central bank must

respond at least one-to-one with inflation in the interest rate rule. As φx rises, the required

value of φπ falls, but determinacy is mostly governed by the response to inflation. When

λπ > 0, so long as φx = 0, it remains the case that the interest rate rule must react more

than one-to-one to inflation for determinacy. There is an interaction effect between λπ and

φx, however. For modestly positive values of λπ, as φx gets bigger, the requisite coefficient

on inflation in the interest rate rule for equilibrium determinacy gets larger, instead of

smaller. This effect is more noticeable the bigger is λπ and seems quantitatively relevant. In

9Please see online Appendix C for more details.
10For these exercises, we set ρr = ρq = 0.8. Results are very similar for different values of these smoothing

parameters.
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particular, suppose that φx = 1. When λπ = λx = 0, the requisite value of φπ is slightly less

than one. But when λπ = 5, the required coefficient on inflation in the interest rate rule is

about 1.3. When λπ = 15, the necessary value of φπ jumps to more than 2.

Our intuition for the above results is as follows. For a determinate equilibrium, the policy

rate must react more than one-for-one to a permanent change in the inflation rate. If the

Taylor rule for the policy rate does not react to the output gap, we have the standard Taylor

principle condition that φπ > 1, regardless of whether the central bank’s long bond portfolio

reacts to inflation. When φx > 0 and QE reacts to inflation, in contrast, the cutoff value

of φπ is bigger than one. When QE reacts negatively to inflation, there exists downward

pressure on the output gap, other factors held constant. When the policy rate also reacts

positively to the output gap, taken together an active QE rule reduces the overall sensitivity

of the policy rate to inflation for a given φπ. The bigger the reaction of QE to inflation, and

the larger the reaction of the policy rate to the gap, the more aggressive must be the direct

response to inflation in the Taylor rule.

Consider next different values of λx, fixing λπ = 0. We again consider values of λx

of 0, 1.5, 5, and 15. Results are depicted graphically in panel (b) of Figure 5. Here the

determinacy results are more in line with the standard three equation model. In particular,

responding more strongly to the output gap in the interest rate rule permits a smaller reaction

to inflation for any value of λx. The required coefficient on inflation in the interest rate rule,

φπ, is larger for each value of φx the bigger is the reaction to the gap in the QE rule, λx. But

the differences in the necessary values of φπ for each φx when λx gets larger are quite small.

There are two noteworthy conclusions from these exercises. First, a QE rule that reacts

aggressively to endogenous variables like inflation and the output gap does not make equi-

librium determinacy more likely in our model. In fact, it makes it less likely – larger values

of λπ or λx reduce, rather than increase, the set of coefficients in the interest rate rule that

yield a unique rational expectations equilibrium. Second, for the purposes of guaranteeing a

determinate equilibrium, reacting to inflation in the QE rule seems more problematic than
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reacting to the output gap. QE responding to the output gap, but not inflation, hardly

has any effect on the set of coefficients in the interest rate rule that result in determinacy.

The QE rule reacting to inflation, in contrast, both introduces a tradeoff between reacting

to the output gap and inflation in the interest rate rule, and significantly increases the re-

quired coefficient on inflation in that rule.11 In practice, central banks have implemented

QE during episodes of low interest rates and inflation, and have primarily used it to target

real variables. In this case, indeterminacy is less likely to be an issue.

4.2 Optimal Implementable Rules

In this subsection, we consider optimal implementable policy rules, of the form (2.34) for

the interest rate rule and (4.1) for the QE rule. There are six policy parameters – ρr, φπ,

and φx for the interest rate rule, and ρq, λπ, and λx for the QE rule. The assumed objective

function of a central bank, (3.1), features two targets (inflation and the output gap). Our

model structure features two instruments (the short-term interest rate and the central bank’s

bond portfolio). With this many parameters and only two targets (inflation and the output

gap), there may in principle be many configurations of these policy parameters that give rise

to desirable outcomes. We focus on one particularly simple and transparent specification

– the interest rate rule ought to react strongly to inflation, while the QE rule should react

aggressively to the output gap. This both ensures equilibrium determinacy given our results

above, and also seems to be the relevant case in practice.

For the purposes of the exercises which follow, we set both autoregressive parameters (ρr

and ρq) equal to zero. Results are qualitatively similar for positive values of the smoothing

parameters. We set the coefficient on the output gap in the interest rate rule, φx, and the

coefficient on inflation in the QE rule, λπ, equal to zero. We then show how both targets

11To be clear, by “tradeoff” we mean that, conditional on reacting to inflation in the QE rule, the central

bank must react more to inflation in the interest rate rule the more it reacts to the output gap. In contrast,

in the three equation model, no such tradeoff exists – responding more to the gap in the interest rate rule

necessitates reacting less to inflation.
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and instruments react to exogenous shocks for different values of the coefficient on inflation

in the interest rate rule, φπ, and the coefficient on the output gap in the QE rule, λx.

Panel (a) of Figure 6 shows impulse responses to a shock to potential output. Solid black

lines show the optimal responses discussed in Section 3. Under the optimal policy, inflation

and the output gap are completely stabilized, with the interest rate reacting one-for-one

with the natural rate and the central bank’s bond portfolio unaffected. The dashed blue

lines show the situation in which the interest rate rule reacts to inflation, with φπ = 1.5, but

bond holdings are constant. Relative to the optimal outcome, the interest rate overreacts,

with both inflation and the output gap increasing. The dotted red lines consider the case

where φπ = 1.5 but the QE rule reacts to the output gap, with λx = 1.5. The central

bank’s bond holdings fall, with the output gap and inflation both increasing less than the

case where φπ = 1.5 and λx = 0. The dashed dash-dot green lines consider the case where

φπ = λx = 5. This represents a more noticeable improvement, with both inflation and

the output gap reacting less to the shock. Magenta lines with plus markers consider the

case where φπ = λx = 15. The output gap and inflation both increase, but only slightly.

Furthermore, the paths of the interest rate and central bank bond holdings are closer to

the optimal paths. As φπ = λx → ∞, the responses of all variables – both targets and

instruments – approach their optimal paths.

Panel (b) of Figure 6 is structured similarly, but considers responses to the credit shock,

θt. With the optimal policy, inflation and the output gap are constant, with the central

bank’s bond holdings falling and the interest rate being constant. When the central bank

only reacts using the interest rate, with φπ = 1.5, and λx = 0, both inflation and the output

gap increase, with the interest rate increasing as a result. As the central bank adjusts its

bond portfolio more aggressively to the output gap, these movements are smaller. As in the

case of the natural rate shock, as φπ = λx →∞, the responses of all variables approach their

optimal paths.

In our four equation model, in equilibrium the optimal discretionary policy results in
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the interest rate moving one-for-one with changes in the exogenous natural rate of interest

and the central bank’s bond portfolio moving opposite the credit shock. A central bank can

closely replicate these paths via Taylor-type instrument rules for both the interest rate and

its bond portfolio. Doing so requires aggressively responding to inflation in the interest rate

rule and reacting strongly to the output gap in the QE rule.

4.3 Implementable Rules and the ZLB

In practice, quantitative easing and other forms of unconventional monetary policy have been

deployed primarily as antidotes to conventional policy paralysis at the ZLB. In Section 3,

in the context of optimal targeting rules, we examined how QE could be deployed as a

useful albeit imperfect substitute for conventional policy at the ZLB. In this subsection, we

proceed similarly, but instead focus on an implementable rule for the central bank’s long

bond portfolio of the form (4.1).

We solve the linearized four equation model using a piecewise linear approximation sub-

ject to the constraint that the policy rate be non-negative. In implementing the ZLB, we

follow Guerrieri and Iacoviello (2015). As long as this constraint is not binding, the policy

rate obeys (2.34). To implement a binding ZLB, we subject the economy to a sequence of

natural rate shocks that force the non-negativity constraint to bind, in expectation for two

years (eight quarters). To compute impulse responses, in the first period that the ZLB binds,

we also subject the economy to a small shock to either the natural rate or the credit variable,

where the shock is small enough so as to not change the expected length of time the ZLB is

binding. We compare how the economy reacts to these shocks when QE is fixed versus when

it obeys (4.1).

Panel (c) of Figure 6 plots impulse responses to a potential output shock under three

scenarios. The solid black lines depict responses when there is no ZLB and the policy rate

follows a simple Taylor rule with φπ → ∞; QE is held fixed. As discussed above, a very

large reaction to the inflation rate in the Taylor rule for the policy rate replicates the optimal
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allocations under discretion. The dashed blue lines depict responses when the ZLB binds for

eight quarters and QE is still unavailable. During the period of the ZLB, rst = 0; when the

ZLB lifts, it follows the simple rule with a very large reaction to inflation. The binding ZLB

results in both the output gap and inflation declining substantially while the ZLB binds;

once the ZLB lifts, both return to zero. The red dotted lines consider the case where QE

is not fixed; rather, it follows a rule in which it reacts very strongly to the output gap,

with λx → ∞. This results in complete stabilization of the gap, even during the ZLB.

Inflation still falls, although not as markedly as when the ZLB binds and QE is unavailable.

The central bank’s long bond portfolio must react aggressively to the natural rate shock,

as depicted in the lower right corner of the figure. Note that the responses in panel (c) of

Figure 6 with implementable rules are qualitatively similar to what is shown in Figure 3 for

optimal targeting rules.12

Panel (d) is constructed similarly to panel (c), but considers a contractionary credit shock.

The black solid line shows responses with no ZLB where the policy rate reacts very strongly

to inflation while the central bank’s long bond portfolio is fixed. Inflation is stabilized, but

the output gap falls. The dashed blue lines depict responses where QE is again assumed

to be held constant, but the ZLB on the policy rate is in place for eight quarters. This

results in inflation falling and the gap declining by more than it would absent the ZLB. The

red dashed lines depict responses when the ZLB on the policy rate binds for eight quarters,

but QE follows a rule in which it reacts strongly to the output gap. This necessitates an

increase in the central bank’s long bond portfolio to offset the credit shock, as shown in the

lower-right portion of the figure, but results in both inflation and the gap being completely

stabilized. Similar to our result from Section 3, the ZLB on the policy rate poses no issues

for the central bank with regard to credit shocks if QE is optimally implemented.

Our analysis in this section using implementable instrument rules reinforces our results

12Note in this exercise the ZLB lasts for eight periods with certainty, whereas in Section 3 the ZLB only

lasted for four quarters in expectation. Hence, the scales in the two sets of figures are not directly comparable.
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from Section 3. In particular, QE can be used as an effective albeit imperfect substitute

for the short-term policy rate conditional on natural rate shocks. Regardless of the relative

weight the central bank attaches on the gap versus inflation, an instrument rule for QE that

aggressively targets the output gap results in welfare improvements. Furthermore, a binding

ZLB on the policy rate need not pose a problem for the central bank conditional on a credit

shock – the same aggressive QE rule can completely stabilize both output and inflation.

5 Conclusion

In this paper, we developed a four equation New Keynesian model with credit shocks, fi-

nancial intermediation, short- and long-term debt, and a channel for central bank long bond

holdings to be economically relevant. The model inherits the tractability and elegance of

the benchmark three equation New Keynesian model. It mainly differs in that credit shocks

appear as wedges in both the IS and Phillips curves. In addition to a rule for the short-term

policy rate, the fourth equation in the model is a rule for QE.

The model allows us to address the consequences of credit market disturbances as well as

the effects of large scale asset purchases. We produce several analytical results concerning

monetary policy design. The presence of credit market frictions breaks the Divine Coinci-

dence, meaning it is not possible to completely stabilize inflation and the output gap with

just one policy instrument. Optimal monetary policy entails adjusting the short-term inter-

est rate to match fluctuations in the natural rate of interest, but manipulating the central

bank’s long bond portfolio so as to neutralize credit shocks. When it is not possible to ad-

just the short-term interest (for example, because of a binding ZLB), credit market shocks

need not result in amplified fluctuations if the central bank adjusts its long bond portfolio

as it would in normal times. In response to natural rate shocks, adjustment of the central

bank’s long bond portfolio can serve as a highly effective, albeit imperfect, substitute for

conventional policy.
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Table 1: Parameter Values of Linearized Model

Parameter Value Description (Target)
β 0.995 Discount factor
z 0.33 Consumption share of child
σ 1 Inverse elasticity of substitution
b̄FI 0.70 Weight on credit in IS/PC curves
b̄cb 0.30 Weight on QE in IS/PC curves
γ 0.086 Elasticity of inflation w.r.t. marginal cost
ζ 2.49 Elasticity of marginal cost w.r.t. gap
ρr 0.8 Taylor rule smoothing
φπ 1.5 Taylor rule inflation
φx 0 Taylor rule gap
ρf 0.8 AR natural rate
ρθ 0.8 AR credit
ρq 0.8 AR QE

Notes : this table lists the values of calibrated parameters of the linearized four equation

model.
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Figure 1: IRFs in Four vs. Three Equation Model

(a) Potential Output Shock (b) Monetary Policy Shock
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(c) Credit / QE Shock
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Notes: Panel (a): IRFs to a one percentage point shock to potential output. Panel (b): IRFs to a

monetary policy shock. Panel (c): IRFs to a leverage/QE shock. Responses of output and the output gap

are expressed in percentage points. Responses of inflation and the interest rate are expressed in annualized

percentage points. Solid black lines shows responses in our four equation model. Dashed blue lines are

responses in the textbook three equation model.
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Figure 2: Response of Excess Return of Long Bond to Monetary and QE Shocks
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Notes: This figures plots the responses of the annualized excess return, i.e. Et rbt+1 − rst ,

inferred from (2.39), to a conventional monetary policy shock (solid black) and a QE shock

(dashed blue). The shocks are normalized so as to generate the same impact increase in

output as in Figure 1.
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Figure 3: IRFs to Natural Rate Shock at the ZLB, Optimal QE, Different µ
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Notes: Black solid lines: IRFs to a one hundred basis point shock to the natural rate of

interest in the four equation model when the short-term interest rate is constrained by the

ZLB for 1/(1 − α) periods in expectation, where α = 3/4, and there is no endogenous QE

to the natural rate shock. The dashed lines plot responses with the optimally chosen τ for

different welfare weights on the output gap, µ. The output gap is expressed in percentage

points, while the responses of inflation and the short-term interest rate are in annualized

percentage points. Blue dashed lines: IRFs to the same-sized natural rate shock in the

baseline three equation NK model.
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Figure 4: IRFs to Credit Shock, Optimal Policy Rate, Different µ
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Notes: This figure plots IRFs to a one percentage point credit shock in the four equation

model. qet = 0, and the interest rate is set according to the optimality condition described

in Proposition 3. The output gap is expressed in percentage points, while the responses of

inflation and the short-term interest rate are in annualized percentage points.
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Figure 5: Policy Coefficients for Determinacy

(a) Reacting to Inflation (b) Reacting to Output Gap

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0.5

1

1.5

2

2.5

3

3.5

 = 0

 = 1.5

 = 5

 = 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

x
 = 0

x
 = 1.5

x
 = 5

x
 = 15

Notes: Panel (a) plots the minimum values of φπ and φx (the reactions to inflation and the output gap,

respectively, in the interest rate rule) necessary for equilibrium determinacy, conditional on different values

of λπ (the reaction to inflation in the QE rule). λx = 0. The solid black line considers the case of λπ = 0,

the dashed blue line the case of λπ = 1.5, the dotted red line the case of λπ = 5, and the dash-dot

magenta line the case of λπ = 15. Values of φπ above each line generate a unique rational expectations

equilibrium. Panel (b) plots the minimum values of φπ and φx (the reactions to inflation and the output

gap, respectively, in the interest rate rule) necessary for equilibrium determinacy, conditional on different

values of λx (the reaction to the output gap in the QE rule). λπ = 0. The solid black line considers the

case of λx = 0, the dashed blue line the case of λx = 1.5, the dotted red line the case of λx = 5, and

the dash-dot magenta line the case of λx = 15. Values of φπ above each line generate a unique rational

expectations equilibrium.
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Figure 6: IRFs with Implementable Rules

(a) Potential Output Shock (b) Credit Shock
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(c) Potential Output Shock, ZLB (d) Credit Shock, ZLB
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Notes: Panels (a) and (b) plot impulse responses to a potential output and credit shock, respectively, with

different configurations of the rule for the short-term interest rate and QE portfolio, respectively. Panels

(c) and (d) do so when the ZLB on the policy rate is binding. For panels (c) and (d), solid black lines show

responses when the policy rate obeys a Taylor rule with φπ →∞ and ρr = φx = 0, while QE is constant.

Dashed blue lines depict responses when the ZLB binds for eight quarters, after which time the policy rate

reverts to the simple rule; QE remains constant. Dotted red lines depict responses when the ZLB binds

for eight quarters but QE follows a simple implementable rule with λx →∞, ρq = 0, and λπ = 0.
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