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This appendix provides additional details and supporting material for “Revisions in Utilization-Adjusted

TFP and Robust Identification of News Shocks”. Section 1 reports additional results on the revisions in

Fernald’s adjusted TFP series. Section 3 describes in more detail the medium-scale DSGE model used in

the paper for Monte Carlo simulations. Section 4 documents the robustness of the max-share identification

approach to alternative measures of productivity, in particular unadjusted TFP and labor productivity.

Section 5 shows additional Monte-Carlo results for the max-share identification.

1 Additional results on revisions in adjusted TFP

To further illustrate that the revisions in adjusted TFP occur primarily because of changes in estimated

utilization and not changes to unadjusted TFP, we create synthetic series of adjusted TFP by combining

different vintages of unadjusted TFP with estimated utilization from a given vintage. Table 1 shows the

results. The correlations of the different synthetic series with the actual series are always above 0.9. In par-

ticular, the correlation of
(
∆ lnTFP 14

t −∆ ln û07
t

)
, respectively

(
∆ lnTFP 16

t −∆ ln û07
t

)
with ∆ lnTFPU,07

t

is 0.91, compared to 0.56 and 0.58 for the actual 2014 and 2016 vintages (i.e. the ones computed with the

2014 and 2016 estimate of utilization). See Table 2 in the main text.
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Table 1: Correlations of synthetic utilization-adjusted TFP series

∆ lnTFP 07
t − ∆ ln û07

t ∆ lnTFP 13
t − ∆ ln û07

t ∆ lnTFP 14
t − ∆ ln û07

t ∆ lnTFP 16
t − ∆ ln û07

t

Corr w/ ∆ lnTFPU,07
t 1.00 0.91 0.91 0.91

∆ lnTFP 07
t − ∆ ln û13

t ∆ lnTFP 13
t − ∆ ln û13

t ∆ lnTFP 14
t − ∆ ln û13

t ∆ lnTFP 16
t − ∆ ln û13

t

Corr w/ ∆ lnTFPU,13
t 0.91 1.00 1.00 1.00

∆ lnTFP 07
t − ∆ ln û14

t ∆ lnTFP 13
t − ∆ ln û14

t ∆ lnTFP 14
t − ∆ ln û14

t ∆ lnTFP 16
t − ∆ ln û14

t

Corr w/ ∆ lnTFPU,14
t 0.93 1.00 1.00 1.00

∆ lnTFP 07
t − ∆ ln û16

t ∆ lnTFP 13
t − ∆ ln û16

t ∆ lnTFP 14
t − ∆ ln û16

t ∆ lnTFP 16
t − ∆ ln û16

t

Corr w/ ∆ lnTFPU,16
t 0.92 1.00 1.00 1.00

Notes: ∆ lnTFPU,jt is the quarterly log change expressed in annualized percentage points of Fernald’s adjusted TFP series for vintages
j = 07, 13, 14 or 16. All correlations are rounded to the nearest hundredth. The sample period for each of the statistics is 1947q3-2007q3.

To illustrate the effects of bi-weight filtering industry hours per worker in Fernald’s construction of

utilization, we compare it to utilization constructed without filtering hours per worker. Specifically, we take

Fernald’s replication code for the 2013 vintage and construct utilization as

∆ ln ût =
∑
i

κiβ̂i∆ lnhcit, (1)

where lnhcit is either bi-weight filtered or not filtered. Figure 1 shows the resulting demeaned utilization

series. The unfiltered series is above the bi-weight filtered series until the mid-1960s and then declines below

the bi-weight filtered series between the mid-1970s and the early 1990s. Aside from this very slow-moving

difference, the quarter-to-quarter changes in the two series are almost identical. This is especially apparent

for the last ten years of the sample. Indeed, the correlation between bi-weight filtered ∆ ln ût and unfiltered

∆ ln ût is 0.999. In other words, all that bi-weight filtering of hours does is to remove very slow-moving

trends.

Figure 1: Estimated Utilization with Bi-weight and No Filtering

Utilization

1950 1960 1970 1980 1990 2000

-0.1

-0.05

0

0.05

2013 vintage BW filtered
2013 vintage unfiltered

Notes: The figure plots the log levels of estimated utilization computed with the 2013 vintage of Fernald’s data using bi-weight
filtered industry hours (black solid line) and unfilterd industry hours (red dashed lines). The grey shaded bars show NBER recessions.

The sample period for each of the series is 1947q3-2007q3.

To illustrate the effects of detrending hours per worker with either the bandpass filter or the bi-weight
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filter discussed in Section 2 of the main text, consider aggregate weekly hours. As shown in the top panel of

Figure 2, log aggregate weekly hours in the U.S. non-farm business sector display a secular decline from the

mid-1960s to the mid-1980s. The bi-weight filter removes a very slowing trend from this series whereas the

bandpass filter removes a much more close fitting trend that contains much of the high-frequency fluctuations

in weekly hours. As shown in the bottom panel, the detrended series resulting from bandpass filtering is

much less volatile and smoother than the one resulting from bi-weight filtering. While industry hours per

worker in Fernald’s data do not all display the same secular trend as aggregate hours per worker (indeed,

in some industries, hours per worker increase over time), this illustrates the effects that the two filtering

methods have.

The Figure also provides an intuitive explanation for the results above: since the bi-weight filter removes

a very smooth trend, essentially the only difference between estimated utilization constructed with bi-weight

filtered hours and estimated utilization constructed with unfiltered hours is this smooth trend. Quarter-to-

quarter changes in the two series are almost identical.

Figure 2: Effects of Detrending Hours per Worker

Log weekly hours

1950 1960 1970 1980 1990 2000
4.6

4.65
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4.8
log weekly hours
CF 8-32 trend
BW 48 trend

CF-filtered and BW-filtered log weekly hours
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-0.02
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Notes: The top panel plots the log of weekly average hours in the U.S. non-farm business sector (red solid line) as well as the trends
obtained with the Christiano-Fitzgerald 8-32 quarter bandpass filter (black solid line) and the bi-weight 48 quarter filter (blue solid

lines). The bottom panel plots the resulting detrended series. The grey shaded bars show NBER recessions. The sample period for all
the series is 1947q3-2007q3.

2 Business Cycle Correlations Implied by Different News Shocks

Table 2 shows the median business cycle statistics for consumption growth, total hours growth and inflation

in the data and as implied by the four-variable Bayesian VAR estimates in the main text conditional on the
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Barsky-Sims news shock. As discussed in the Section 3 of the main text, when the VAR is estimated with

the 2007 vintage of adjusted TFP, the news shock implies that consumption and hours growth are negatively

correlated. When the VAR is estimated with the 2016 vintage of adjusted TFP instead, the news shock

implies that consumption and hours growth are positively correlated. These correlations are significantly

different zero.

Table 2: Business Cycle Corrleations Implied by Barsky-Sims Shock

sdev(∆lnCt) sdev(∆ lnHt) sdev(πt) corr(∆ lnCt,∆lnHt) corr(∆ lnCt, πt)

Data 0.68 0.79 1.13 0.42 -0.09

Barsky-Sims shock (TFP 2007) 0.36 0.30 0.39 -0.56 -0.73

Barsky-Sims shock (TFP 2016) 0.44 0.18 0.27 0.27 -0.75

Notes: The sample period for each of the statistics is 1960q1-2007q3. The model statistics pertain to medians from the posterior
distribution of each data series implied by the Barsky-Sims news shock. All results are rounded to two digits after the decimal point.

Table 3 shows the median business cycle statistics for consumption growth, total hours growth and

inflation in the data and as implied by the four-variable Bayesian VAR estimates in the main text conditional

on the max-share shock. As discussed in Section 5 of the main text, the correlation between consumption

and hours growth is negatively correlated independent of the vintage of adjusted TFP used.

Table 3: Business Cycle Moments Implied by Max-Share Shock

sdev(∆lnCt) sdev(∆ lnHt) sdev(πt) corr(∆ lnCt,∆lnHt) corr(∆ lnCt, πt)

Data 0.68 0.79 1.13 0.42 -0.09

Max-share shock (TFP 2007) 0.43 0.25 0.60 -0.23 -0.73

Max-share shock (TFP 2016) 0.39 0.26 0.53 -0.34 -0.71

Notes: The sample period for each of the statistics is 1960q1-2007q3. The model statistics pertain to medians from the posterior
distribution of each data series implied by the max-share shock. All results are rounded to two digits after the decimal point.

3 A Medium Scale DSGE Model

For the Monte Carlo experiments considered in the paper, we use as a laboratory a conventionally specified

medium scale DSGE model. The model features sticky prices and wages, capital accumulation, habit forma-

tion in consumption, an investment adjustment cost, variable capital utilization, and a central bank which

implements monetary policy according to a Taylor rule. The model is very similar to Christiano, Eichen-

baum, and Evans (2005), Smets and Wouters (2007), and Justiniano, Primiceri, and Tambalotti (2010). So

as to be consistent with the assumptions underlying Fernald’s adjusted TFP series, the model is amended

so as to allow for three different margins of labor adjustment – an extensive and intensive margin as well as

labor effort. We only list the full set of equilibrium conditions here, rather than fully laying out the decision

problems of each type of agent in the model.

The functional forms for the different adjustment costs are:

a(zt) = γ1(zt − 1) +
γ2

2
(zt − 1)2 (2)
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The full set of equilibrium conditions are listed below. A brief discussion follows.

λt = νt (Ct − bCt−1)
−1 − βbEtνt+1 (Ct+1 − bCt)−1

(5)

λt = βEtλt+1RtΠ
−1
t+1 (6)

rkt = γ1 + γ2(zt − 1) (7)

θνtκ3e
κ4−1
t = λtwtht (8)

θνtκ1h
κ2−1
t = λtwtet (9)

λt

[
1 + ϕ

(
It
Kt
− δ

)]
= ξtµt (10)

ξt = βEt

[
λt+1

(
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2
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2
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Kt+1
− δ

)
+ ϕ
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It+1
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(11)
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(
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κ1

κ2
hκ2
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κ3

κ4
eκ4
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(12)

Λt,t−1 = β
λt
λt−1

(13)

w#
t =

εw
εw − 1

f1,t

f2,t
(14)

f1,t = wt(w
l
t)
εwLd,t + θwEt

[
Λt,t+1g

−εw−1
Y Π−εwγw

t Π−εw(1−γw)Πεw
t+1f1,t+1

]
(15)

f2,t = (wlt)
εwLd,t + θwEt

[
Λt,t+1g

−εw
Y Π

(1−εw)γw
t Π(1−εw)(1−γw)εwΠεw−1

t+1 f2,t+1

]
(16)
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rkt = αmctAtK
α−1
s,t L1−α

s,t (17)
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Kt+1 = µtIt + (1− δ)Kt (24)
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Ks,t = ztKt (28)

Lt = ethtNt (29)

1 = (1− θp)(Π#
t )1−εp + θpΠ

γp(1−εp)
t−1 Π(1−γp)(1−εp)Π

εp−1
t (30)

(
wlt
)1−εw

= (1− θw)(w#
t )1−εw + θwg

1−εw
Y Π

γw(1−εw)
t−1 Π(1−γw)(1−εw)Πεw−1

t

(
wlt−1

)1−εw
(31)

Rt = R(1−ρR)

[(
Πt

Π

)φπ(
Yt/Yt−1

gY

)φy]1−ρR

exp(sRεR,t) (32)

lnµt = ρµ lnµt−1 + sµεµ,t (33)

ln νt = ρν ln νt−1 + sνεν,t (34)

lnSt = ρS lnSt−1 + sSεS,t (35)

ln Γt − ln Γt−1 = (1− ρΓ) ln g + ρΓ (ln Γt−1 − ln Γt−2) + sgεg,t−q (36)

At = StΓt (37)

In these equations λt is the Lagrange multiplier on the flow budget constraint of a household and ξt
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is the Lagrange multiplier on the capital accumulation equation. Ct denotes consumption, Yt output, It

investment, Kt physical capital, and Ls,t aggregate labor services used in production. Lt is aggregate labor

services supply (the product of effort, hours, and physical units of labor); labor services supply and demand

potentially differ due to wage dispersion, vwt . wt is the real wage received by the household and rkt is the

real rental rate on capital services. mrst is the wage received by households from supplying labor services

to labor unions. zt denotes capital utilization, with Ks,t = ztKt denoting capital services. Πt is the gross

inflation rate and Rt is the gross nominal interest rate. Π#
t is the optimal relative reset price of updating

firms, and vpt is a measure of price dispersion across firms. x1,t and x2,t are auxiliary variables related to

price-setting. mct is real marginal cost. wlt is the aggregate real wage paid by production firms. w#
t is the

reset real wage for a labor union given the opportunity to adjust its wage in a given period. f1,t and f2,t

are auxiliary variables related to optimal wage-setting. St is a stationary technology shock, while Γt is a

non-stationary technology shock. At is technology, which is the product of these two terms. µt is a shock to

the marginal efficiency of investment and νt is an intermporal preference shock. Xt is a trend factor, to be

discussed below. gY is the steady state gross growth rate of output. Variables without time subscripts (e.g.

Π or R) denote non-stochastic steady state values.

(5) defines λt, the shadow value on the flow budget constraint facing a household. The parameter b

measures internal habit formation and β is a discount factor. (6) is the Euler equation for bonds, which

prices the gross nominal interest rate, Rt. (7) is the first order condition for capital utilization. The cost of

capital utilization is a resource cost. (8) is the first order condition for effort and (9) is the optimal condition

for hours; together these imply that effort is perfectly correlated with hours. (10) is the first order condition

for investment; one can interpret the ratio of multipliers on the budget and capital accumulation constraints

as Tobin’s qt, i.e. qt = ξt/λt. (11) is the Euler equation for capital. The optimal condition for employment is

(12). The household’s stochastic discount factor is defined in (13). (14)-(16) describe optimal wage-setting

by labor unions. 1− θw is the probability a wage can be adjusted in any period, and εw is the elasticity of

substitution across different unions’ labor. Non-updated wages can be fully indexed to trend output growth,

gY . They are indexed to lagged inflation via the parameter γw ∈ [0, 1] and to trend inflation, Π, via 1− γw.

Cost-minimization by firms gives rise to factor demand curves for capital and labor in (17)-(18). α is the

exponent on capital services in the production function, with 1 − α the exponent on labor. Because firms

face the same factor prices, they all have the same real marginal cost and hire capital and labor in the same

ratio. Each period, firms face a 1− θp probability of being able to adjust their price. Optimal price-setting

for updating firms is characterized by (19)-(21). εp measures the extent of monopoly power in price-setting.

ζp is a parameter measuring how much non-updated prices are indexed to lagged inflation; otherwise prices

are indexed to trend inflation via 1 − γp. The aggregate production function is given by (22). F is a fixed

cost of production, scaled by Xt, which measures the economy’s trend growth. vpt is a measure of price

dispersion, the evolution of which is given by (23).

Physical capital accumulates according to the law of motion given in (24). The relationship between

labor services supply and demand is given by (25); (26) describes the evolution of wage dispersion. The
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aggregate resource constraint is given by (27). There are physical resource costs to adjusting physical units

of labor, physical units of capital, and capital intensity. The evolution of inflation and the aggregate real

wage are governed by (30) and (31), respectively. Monetary policy is governed by a Taylor rule, (32). The

exogenous processes for the marginal efficiency of investment shock, the intertemporal preference shock,

and the stationary technology shock are given by (33)-(35). Each follows a stationary AR(1) process with

steady state levels normalized to unity. The permanent productivity process is a stationary AR(1) in the

growth rate and is given by (36). g denotes the steady state growth rate. The innovation is dated t− q, for

q ≥ 0. q = 0 means that the technology improvement materializes immediately. q > 0 means that agents

observe the shock before it impacts productivity. Composite technology is the product of the stationary and

non-stationary terms, given in (37).

Many of the variables in the model inherit the stochastic trend from Γt. It is straightforward to show

that the stochastic trend factor is Xt = Γ
1

1−α
t . Re-scaling trending variables by this factor renders the

model stationary, and permits solution of the model using standard techniques. We solve the model via

linearization about the non-stochastic steady state in the re-scaled variables. The steady state gross growth

rate of output is gY = g
1

1−α .

Labor’s share is calculate as ωL,t =
wltLs,t
Y . Traditional and adjusted TFP are calculated exactly as in

Fernald:

lnTFPt − lnTFPt−1 = (1− ωL,t)(lnKt − lnKt−1) + ωL,t(lnht + lnNt − lnht−1 − lnNt−1) (38)

True factor utilization is:

lnut − lnut−1 = α(ln zt − ln zt−1) + (1− α)(ln et − ln et−1) (39)

Measured factor utilization is:

ln ût − ln ût−1 = β̂(lnht − lnht−1) (40)

Adjusted TFP is then:

lnTFPut − lnTFPut−1 = lnTFPt − lnTFPt−1 − (ln ût − ln ût−1) (41)

The parameters of the model are set to values listed in Table 4 below:
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Table 4: Calibrated Parameters

Description Parameter Value

Discount factor β 0.99

Capital’s share α 1/3

Depreciation δ 0.025

Capital use linear term γ1 0.04

Capital use squared term γ2 0.01

Steady state gross inflation Π 1

TR inflation φπ 1.5

TR output growth φy 0.5

TR smoothing ρR 0.8

Elasticity sub goods εp 11

Elasticity sub labor εw 11

Labor scaling θ 4.19

G(·) constant κ0 0.06

G(·) linear hours κ1 243

G(·) squared hours κ2 6

G(·) linear effort κ3 0.30

G(·) squared effort κ4 1.50

Fixed cost F 0.25

Calvo prices θp 0.75

Calvo wages θw 0.9

Price indexation γp 0.00

Wage indexation γw 1

Habit formation b 0.8

Investment adjustment cost ϕ 2

Labor adjustment cost ψ 2

SS growth of productivity g 1.0033

AR productivity growth ρΓ 0.70

AR stationary productivity ρS 0.90

AR investment ρµ 0.80

AR intertemporal preference ρν 0.90

SD growth shock 100σg 0.2225

SD stationary productivity 100σS 0.0445

SD investment shock 100σµ 0.4450

SD monetary shock 100σR 0.0445

SD preference shock 100σν 4.4500

These parameter values are largely drawn from the literature and are therefore quite standard, with a

few exceptions. As noted in the text, we assume a somewhat higher degree of wage rigidity than is standard.

The fixed cost of production, F , is chosen so that profits are zero in steady state or the fixed cost is set to

0 and the linear term in the utilization adjustment cost is set to normalize steady state capital utilization

to unity. The unit of time, T , is set to one. The scaling parameter on the disutility from labor is set to

normalize total physical labor input of N = 3/5, which is in-line with labor force participation data. The

parameters of the G(·) function are set as follows. We normalize steady state hours to h = 1/3 and target a

steady state value of the function also equal to 1/3. We target a Frisch elasticity of average hours of 1. We

then target an elasticity of effort with respect to hours of 4. Altogether, these targets and normalizations

pin down κj for j = 0, . . . , 4.

Our model features five stochastic shocks. We set the autoregressive parameters in the shock processes
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to conventional values. With the shock standard deviations calibrated as they are, the model generates a

standard deviation of output growth of 1 percent, with the intertemporal preferenc shock accounting for 40

percent of the unconditional variance of output growth, the investment shock 25 percent, the news shock 28

percent, the surprise technology shock 6 percent, and the monetary policy shock less than 1 percent.

4 Robustness of max-share identification to alternative measures

of productivity

In this section we re-estimate the baseline four-variable VAR replacing the utilization-adjusted measure of

TFP with either unadjusted TFP or average labor productivity. We then apply the max-share identification

to these systems to check for robustness of our results.

Figure 3 reports the impulse responses to the max-share shock when unadjusted TFP is used in the VAR.

The results are essentially the same for both the 2007 and the 2016 vintages, confirming that revisions in the

different components of (unadjusted) TFP do not affect the results. The responses of the different variables

also look very similar to the ones reported in the main text based on the VAR with adjusted TFP, thus

confirming the robustness of the max-share identification. The only difference is the short-run response of

unadjusted TFP, due to the fact it is not corrected for utilization. Specifically, as defined in the main text,

lnTFPut = lnTFPt − ln ût.

Estimated utilization declines slightly on impact and then increases in a humpshaped pattern before gradually

returning to zero. Hence, unadjusted TFP responds less on impact than adjusted TFP but then increases

as a faster pace before leveling out at approximately the same permanently higher long-run level.
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Figure 3: Max-share identification with unadjusted TFP
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Notes: Solid black lines are the posterior median estimates from the eight variable VAR system estimated with the 2016
vintage of adjusted TFP. The gray bands correspond to the 16 to 84 percent posterior coverage intervals. The red dash-dotted
lines are the posterior median estimates for the system estimated with average labor productivity, defined as output per hour
worked in the non-farm business sector. The red dashed lines correspond to the 16 to 84 percent posterior coverage intervals.

Figure 4 reports the impulse responses to the max-share shock when labor productivity is used in the

VAR. Labor productivity is measured either as real GDP divided by total non-farm business hours or as

in Fernald (2014) as the ratio of business output to quality-adjusted total business hours.1 The results are

very similar for the two measures and the responses for consumption, total hours and inflation match very

closely the responses obtained with adjusted TFP in the main text, again confirming the robustness of the

max-share approach.

1Business output is the equally weighted average of expenditure-based and income-based real output. The quality adjustment
for hours is based on wage regressions by Aaronson and Sullivan (2001) and BLS multifactor productivity data. See Fernald
(2014) for details.
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Figure 4: Max-share identification with labor productivity
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Notes: Solid black lines are the posterior median estimates from the four variable VAR system estimated with the 2016 vintage
of adjusted TFP. The gray bands correspond to the 16 to 84 percent posterior coverage intervals. The red dash-dotted lines are
the posterior median estimates for the system estimated with average labor productivity, defined as output per hour worked in

the non-farm business sector. The red dashed lines correspond to the 16 to 84 percent posterior coverage intervals.

The only difference is that labor productivity jumps up significantly on impact and then gradually

increases to a permanently higher level that is about twice as high as for adjusted TFP. The reason for this

difference is capital deepening; i.e.

lnYt − lnLt = lnTFPt − ln ût + (1− ωL,t)(lnKt − lnLt).

On impact, hours decline and capital barely responds. In the long-run, the hours response returns to zero

whereas capital increases permanently. So, there is capital deepening both in the short- and the long-run,

explaining the larger response of labor productivity relative to adjusted TFP (of course, in the short run,

there are also variations in utilization that drive a wedge between adjusted TFP and labor productivity).

This is shown in Figure 5 where we replaced total hours with capital intensity (the difference between capital

stock and quality adjusted total hours, both from Fernald’s data).
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Figure 5: Max-share identification with labor productivity
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Notes: Solid black lines are the posterior median estimates from the four variable VAR system estimated with the 2016 vintage
of adjusted TFP. The gray bands correspond to the 16 to 84 percent posterior coverage intervals. The red dash-dotted lines are
the posterior median estimates for the system estimated with average labor productivity, defined as output per hour worked in

the non-farm business sector. The red dashed lines correspond to the 16 to 84 percent posterior coverage intervals.

5 Additional Monte-Carlo simulation results for max-share iden-

tification

In the main text, we only report Monte-Carlo results for the max-share identication when the proportionality

condition fails to hold. Here we also show results for the case when the proportionality condition holds;

i.e. capital use is constant (σz = 0) and β̂ is exactly correct. This is shown in Figure 6. Similarly to the

Barsky-Sims identication for the case of when the proportionality condition holds, the max-share identication

performs well at replicating the model’s impulse responses regardless of filtering method.
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Figure 6: Simulated Responses to Max-Share Shock when Proportionality Holds
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Notes: Solid lines are the true impulse responses to a news shock in the model. The dashed blue lines are the estimated
responses using the max-share identification based on the simulated data with bandpass filtered hours per worker in the

construction of utilization. The dash-dotted red lines are the estimated responses using the max-share identification based on
the simulated data with bi-weight filtered hours per worker in the construction of utilization.
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