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1 Overview

This note describes the celebrated Bernanke, Gertler, and Gilchrist (1999) financial accelerator

paper. The paper is in the tradition of Bernanke and Gertler (1989, AER) and Carlstrom and

Fuerst (1997, AER). But it departs in a couple of important ways. First, it is a New Keynesian

model with sticky prices (in contrast to the RBC model of Carlstrom and Fuerst and the simplified

neoclassical OLG model in Bernanke and Gertler). Second, it applies the agency friction to the

financing of the entire capital stock, whereas in Carlstrom and Fuerst it is only new investment

that is subject to the agency friction. This has the effect of resulting in more amplification. A

third more minor difference is that the loan over which there are agency frictions is intertemporal

as opposed to intratemporal in Carlstrom and Fuerst.

Below I proceed somewhat non-linearly. BGG do not do a very good job laying out the details

of their model, so it is very difficult to recreate from scratch (better expositions are in Christiano,

Motto, and Rostagno 2014, AER, and Carlstrom, Fuerst, and Paustian 2016, AEJ: Macro). As

such, I’m going to simply start with the linearized equilibrium conditions that BGG have. The key

equation is as follows:

Et rkt+1 − rt = ν [nt − (qt + kt+1)] (1)

Here rt is the safe real interest rate, nt is net worth, qt is the price of capital, and kt+1 is the

capital stock accumulated in t available for production in t + 1. Et rkt+1 is the expected return on

capital. The left hand side can be interpreted as an external finance premium, and the right hand

side is the negative of a leverage ratio (i.e. assets, in linearized form, are qt + kt+1, relative to

equity, nt. ν > 0 means that there are agency frictions. The key insight, as in the earlier papers, is

that increases in borrower net worth, nt, reduce agency frictions if ν > 0. This lowers the external

finance premium and stimulates investment and aggregate demand. The notion of the “accelerator”

effect is that expansionary shocks which much asset prices up are more expansionary because they

accordingly improve the balance sheet condition of borrowers, which further leads to a boom and

more asset price appreciation.
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2 Linearized Model

Let lowercase variables with time subscripts donate log-deviations from steady state. The linearized

model is as follows:

yt =
C

Y
ct +

I

Y
it +

G

Y
gt +

Ce

Y
cet (2)

ct = −rt + Et ct+1 (3)

cet = nt (4)

Et rkt+1 − rt = −ν [nt − (qt + kt+1)] (5)

rkt = (1− ε)(yt − kt − xt) + εqt − qt−1 (6)

qt = ϕ(it − kt) (7)

yt = at + αkt + (1− α)Ωht (8)

yt − ht − xt − ct = η−1ht (9)

πt = −κxt + β Et πt+1 (10)

kt+1 = δit + (1− δ)kt (11)

nt = γ
RK

N
(rkt − rt−1) + rt−1 + nt−1 (12)

rnt = ρrnt−1 + ζπt−1 + srεr,t (13)

rnt = rt + Et πt+1 (14)

at = ρaat−1 + saεa,t (15)

gt = ρggt−1 + sgεg,t (16)

(2) is the resource constraint, where the upper-case terms are expenditure shares. (3) is the

linearized Euler equation for bonds, assuming log utility. rt is the real interest rate. Consumption

of entrepreneurs, cet , is just proportional to the net worth of entrepreneurs. Each period, a fixed

fraction of entrepreneurs die and consume their net worth, giving rise to this expression. (5) is sort

of the key relationship, showing a positive relationship between leverage, qt + kt+1 − nt, and the

external finance premium, Et rkt+1 − rt. This is governed by the parameter ν. If ν = 0, there is no

external finance premium and hence no financial accelerator. (6) is the ex-post return on capital –

there is sort of bad notation here with the ε, which is not an elasticity of substitution. (7) is the

linearized first order condition for investment. (2)-(7) constitute the aggregate demand block of

the model.

(8)-(10) constitute the aggregate supply block. (8) is the production function. (9) is the labor

market-clearing condition after having eliminated the wage rate. xt is the markup of price over

marginal cost; equivalently, −xt is real marginal cost. (10) is the Phillips curve.
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(11)-(12) show the evolution of state variables, capital and net worth. γ is the fraction of

surviving entrepreneurs while R, K, and N are steady state values.

(13) is the Taylor rule, while (14) is the Fisher relationship. (15)-(16) describe the evolution of

productivity and government spending.

Overall,
{
yt, ct, it, gt, c

e
t , rt, nt, r

k
t , qt, xt, kt, ht, πt, r

n
t , at

}
constitute a linear system with 15 vari-

ables and 15 equations.

2.1 Aside: Where Do These Come From?

The following are the agents in the model:

1. Household

2. Retailers

3. Wholesale producers

4. Government

The household sector is standard. Retailers are just a trick to introduce Calvo price-setting.

The government conducts policy via a Taylor rule and consumes an exogenous amount of output.

The action is really on the wholesale firm side. Each period, the wholesalers have to get a loan

to finance the entirety of next period’s capital stock, subject to idiosyncratic returns to capital, as

capture by a variable ωt. This is like the setup in Carlstrom and Fuerst (1997), except the agency

friction applies to the producers of output, rather than the producers of new investment goods.

The loan contract is also intertemporal as opposed to intratemporal. In what follows below, I will

briefly describe how to get to the linearized conditions described above. I will then spend some

more time on the formal contracting problem.

The household problem is standard. There is an Euler equation for deposits/bonds and an

intratemporal labor supply condition:

1

Ct
= βRt Et

1

Ct+1
(17)

ξ

1−Ht
=
Wt

Ct
(18)

Taking logs of these and letting zt = d lnZt for generic variable Zt:

− lnCt = lnβ + lnRt − Et lnCt+1

ct = −rt + Et ct+1

Which is (3). For the labor supply condition:
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ln ξ − ln(1−Ht) = lnWt − lnCt

1

1−H
dHt = wt − ct

H

1−H
ht = wt − ct

Which is (9) when you define η = 1−H
H as the Frisch elasticity and note the definition of the

wage from the wholesale producer problem (see below).

The capital accumulation equation is:

Kt+1 = Φ

(
It
Kt

)
Kt + (1− δ)Kt (19)

The function Φ(·) is defined where Φ(0) = 0, Φ(δ) = 1, and Φ′(δ) = 1. Take logs and totally

differentiate:

lnKt+1 = ln

[
Φ

(
It
Kt

)
Kt + (1− δ)Kt

]
kt+1 =

1

K

[
Φ

(
I

K

)
dKt + Φ′

(
I

K

)
dIt − Φ′

(
I

K

)(
I

K

)
dKt + (1− δ)dKt

]
kt+1 = δkt +

I

K
it − δkt + (1− δ)kt

kt+1 = δit + (1− δ)kt

Which is (11).

Now consider the Tobin’s Q relationship. This comes from the optimal choice of investment by

firms subject to the adjustment cost embedded in the accumulation equation above. In nonlinear

form:

Qt =

[
Φ′
(
It
Kt

)]−1

(20)

Take logs and totally differentiating, noting that Q = 1:

lnQt = − ln

[
Φ′
(
It
Kt

)]
qt = − 1

Q

[
Φ′′
(
I

K

)(
dIt
K
− I

K2
dKt

)]
qt = −Φ′′(δ)δ[it − kt]

Then ϕ = −Φ′′(δ)δ. Since Φ′′(·) < 0, this is positive. Their notation on pg. 1362 seems bad

but this seems to gives you the same thing as (7).
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The expected return on holding capital from t to t+ 1 is:

Et[Rkt+1] = Et
RRt+1 + (1− δ)Qt+1

Qt
(21)

Where RRt is the implicit rental rate on capital/marginal product of capital. Rather simply, if

you buy an additional unit of capital available for production tomorrow, Kt+1, you pay Qt today.

You get RRt+1 tomorrow and have (1 − δ) left over, which is valued at Qt+1. Take logs, ignoring

expectation operators, and totally differentiate:

lnRkt+1 = ln [RRt+1 + (1− δ)Qt+1]− lnQt

Et rkt+1 =
1

RR+ (1− δ)
[dRRt+1 + (1− δ)dQt+1]− qt

Et rkt+1 =
RR

RR+ (1− δ)
Et rrt+1 +

1− δ
RR+ (1− δ)

Et qt+1 − qt

Define ε = 1−δ
RR+(1−δ) . Then we have:

1− ε =
RR+ (1− δ)
RR+ (1− δ)

− 1− δ
RR+ (1− δ)

=
RR

RR+ (1− δ)

Hence, we can write:

Et rkt+1 = (1− ε)rrt+1 + εEt qt+1 − qt

Which is (5) when you take into account the definition of the rental rate as being the marginal

product of capital.

The wholesale firm optimality conditions for capital and household labor are, respectively, to

hire up until the point where the marginal products equal the product of the factor prices and the

markup of price over marginal cost, Xt:

XtRRt = α
Yt
Kt

(22)

XtWt = Ω(1− α)
Yt
Ht

(23)

Log-linearizing, we get:

rrt = yt − kt − xt
wt = yt − ht − xt

Subbing these in for rrt and wt in the capital demand curve and labor market-clearing conditions

give the linearized conditions in the paper.
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The aggregate production function is:

dtYt = AtK
α
t H

Ω(1−α)
t (He

t )(1−Ω)(1−α) (24)

dt is price dispersion. It satisfies:

dt = (1− θ)(Π∗t )−ε + θΠε
tdt−1 (25)

This is going to be second order and hence can be ignored. Linearizing therefore gives (noting

that He
t = 1 is constant):

yt = at + αkt + Ω(1− α)ht

Which is (8).

The non-linear price-setting conditions can be written as follows. There is bad notation here

in that they use ε as the price elasticity of demand but then use it again in the expression for the

return on capital. But the price elasticity of demand ends up being irrelevant for the linearized

pricing condition. The optimal relative reset price satisfies:

Π∗t =
ε

ε− 1

x1,t

x2,t
(26)

x1,t = X−1
t Yt + θEt Λt,t+1Πε

t+1x1,t+1 (27)

x2,t = Yt + θEt Λt,t+1Πε−1
t+1x2,t+1 (28)

Here Πt = Pt/Pt−1 is gross inflation and Π∗t = P ∗t /Pt is relative reset price inflation. The

aggregate price level evolves according to:

1 = (1− θ)(Π∗t )1−ε + θΠε−1
t (29)

Linearizing all of these and simplifying yields (after a decent amount of work):

πt = −κxt + β Et πt+1

This (10), where κ = (1−θ)(1−θβ)
θ .

The key condition relating net worth to the external finance premium is:

E[Rkt+1] = s

(
Nt

QtKt+1

)
Rt (30)

Take logs, ignoring the expectations operator:

lnRkt+1 = ln

[
s

(
Nt

QtKt+1

)]
+ lnRt
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Totally differentiating:

rkt+1 =
s′(·)
s(·)

[
dNt

QK
− N

Q2K
dQt −

N

QK2
dKt+1

]
+ rt

rkt+1 =
s′ (N/K)

s (N/K)

N

K
[nt − qt − kt+1] + rt

Letting ν = s′(N/K)
s(N/K)

N
K yields (5). More on the formal contracting problem is below.

Each period, a fraction 1−γ of entrepreneurs die and consume their net worth. Hence, aggregate

consumption of entrepreneurs is:

Cet = (1− γ)Vt (31)

Where Vt is entrepenurial equity from the capital holdings. Ignoring the higher order terms:

Vt =
(
Rkt −Rt−1

)
(Qt−1Kt −Nt−1) +Rt−1Nt−1

Net worth at the middle of the period is:

Nt = γVt +W e
t

Where γ is the probability of survival, and W e
t is the entrepreneurial wage. In other words,

surviving entrepreneurs inherit Vt of equity and earn some additional equity from supplying labor,

W e
t . As noted in (31), entrepreneurs who exist just consume their existing equity. Since γ is close

to 1 and W e
t is small, you can treat Vt ≈ Nt+1, which is what gives(4):

cet = nt

Aggregate net worth evolves according to:

Nt = γ
[
(Rkt −Rt−1)Qt−1Kt + ιt(Qt−1Kt −Nt) +Rt−1Nt−1

]
+W e

t (32)

This is (4.13) from the paper, with ι the term involving the integral:

ιt = µ

∫ ω̄t

0
ωtφ(ωt)R

k
tQt−1Ktdωt (33)

Take logs:

lnNt = ln
[
γ
[
(Rkt −Rt−1)Qt−1Kt + ιt(Qt−1Kt −Nt) +Rt−1Nt−1

]
+W e

t

]
Totally differentiate, and ignore the ι term:
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nt =
1

N

[
γQK(dRkt − dRt−1) + γ(Rk −R)dQt−1K + γ(Rk −R)dKt + γdRt−1N + γRdNt−1 + dW e

t

]
nt =

γRK

N

(
dRkt
R
− dRt

R

)
+
γ(Rk −R)

R

RK

N
qt−1 +

γ(Rk −R)

R

RK

N
kt−1 + γRrt−1 + γRnt−1 +

W e

N
wet

nt =
γRK

N
(rkt − rt)−

γRK

N
rkt +

γK

N
dRkt + γ

K

N

(
Rk

R
− 1

)
qt−1 + γ

K

N

(
Rk

R
− 1

)
kt + γR(rt−1 + nt−1) +

W e

N
wet

nt =
γRK

N
(rkt − rt) + γR(rt−1 + nt−1) + γ

K

N

(
Rk

R
− 1

)
(rkt + qt−1 + kt) +

W e

N
wet

Now this is almost exactly what they have for (4.24) in the text. They have a coefficient of 1

multiplying rt−1 + nt−1, whereas I have γR. I am assuming that they are simply approximating

γR ≈ 1. γ will be slightly less than 1, and R slightly greater than 1, so this is probably fine.

The other terms relate to the “higher order terms” (which don’t actually seem to be higher

order but which are nevertheless small). I still think there is an error or two. If you look at φnt
on pg. 1362, this is basically what I have with a few exceptions. First, it seems there should be a

γ multiplying the first term in φnt . Second, they seem to be missing a parentheses on the −xt at

the end of that expression – it should be weighted by W e/N . But, again, quantitatively they are

not missing much by keeping these terms out. Rk

R = 1.020.25 (a 200 basis point annualized spread).

Hence, Rk

R − 1 ≈ 0. So they are just dropping these terms, which seems fine. Finally, since W e is

very small, W e/N ≈ 0 so the last term drops out as well in a loose approximate sense.

The exogenous processes and policy rule are already log-linear.

2.2 The Formal Contracting Problem

Where does the formal contracting problem come from? Basically, we want to understand where

the condition relating the interest rate spread to firm leverage comes from. For completeness, the

linearized condition is below:

Et rkt+1 − rt = −ν [nt − (qt + kt+1)]

The formal problem is not very well laid out by BBG. A better exposition can be found in

Christiano, Motto, and Rostagno (2014, AER) or Carlstrom, Fuerst, and Paustian (2016, AEJ:

Macro.

Because all firms end up with the same optimality conditions, I am going to drop firm-specific

superscripts in what follows so as to ease up on the notation a bit. A firm gets a loan from

an intermediary to finance the entirety of its next-period stock of capital (this is different than

Carlstrom and Fuerst 1997, where you just finance the production of investment). The firm has

net worth of Nt and wishes to purchase QtKt+1 of new capital at the end of period t. It hence

borrows QtKt+1 −Nt from the intermediary. Suppose that the loan rate is Zt+1 (gross). After the

borrower makes the loan decision, he receives an idiosyncratic shock to the return, ωt+1 (note to be
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completely correct this should have a firm-specific superscript on it, but we are going to ignore that

for now). Let Rkt+1 be the aggregate return on capital on capital, over which there is uncertainty

because of aggregate shocks; the borrowers’ specific return is ωt+1R
k
t+1. Average across firms, the

ωt+1 = 1. A particular firms gets to keep ωt+1R
k
t+1, and has to pay back Zt+1(QtKt+1−Nt) in the

event of no default. The borrower will default if his net return is negative. This implies a cutoff

value of ωt+1, call it ω̄t+1, below which he will choose to default. This is implicitly defined by:

Zt+1(QtKt+1 −Nt) = ω̄t+1R
k
t+1QtKt+1 (34)

Note that ω̄t+1 depends on the realization of Rkt+1. It is convenient to write this cutoff in terms

of a leverage ratio, Lt = QtKt+1

Nt
. Then we see that the loan rate satisfies:

Zt+1 = ω̄t+1R
k
t+1

Lt
Lt − 1

(35)

The ωt+1 that each entrepreneur draws is distributed log-normal, with CDF Φ(ωt+1), density

φ(ωt+1), and E[ωt+1] = 1 (this expectation is across entrepreneurs; there is no aggregate uncertainty

on ωt+1). Let us calculate the expected shares of the payout from the project the entrepreneur and

lender each get to keep, respectively. The expected entrepreneurial income from getting a loan is:∫ ∞
ω̄t+1

ωt+1φ(ωt+1)dωt+1R
k
t+1QtKt+1 − (1− Φ(ω̄t+1))Zt+1(QtKt+1 −Nt) (36)

The first term is the expected payout conditional on not defaulting, i.e. drawing ωt+1 ≥ ω̄t+1.

The second term is the expected repayment, which is the probability of non-default, 1 − Φ(ω̄t+1),

times the repayment, Zt+1(QtKt+1 −Nt). But from (34), we can get rid of the Zt+1 term:∫ ∞
ω̄t+1

ωt+1φ(ωt+1)dωt+1R
k
t+1QtKt+1 − (1− Φ(ω̄t+1))ω̄t+1R

k
t+1QtKt+1 (37)

But then this reduces to:[∫ ∞
ω̄t+1

ωt+1φ(ωt+1)dωt+1 − (1− Φ(ω̄t+1))ω̄t+1

]
Rkt+1QtKt+1 (38)

Now define f(ω̄t+1) as the term inside the brackets, which is the share of the returns the firm

expects to keep:

f(ω̄t+1) =

∫ ∞
ω̄t+1

ωt+1φ(ωt+1)dωt+1 − (1− Φ(ω̄t+1))ω̄t+1 (39)

The borrower is exposing his net worth, Nt, to earn (38). The total return is the ratio. Using

the definition of leverage above, we can write the firm’s expected return as:

f(ω̄t+1)Rkt+1Lt (40)

Now, let’s think about the lender’s expected return from the project. It is:
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∫ ω̄t+1

0
ωt+1(1− µ)Rkt+1QtKt+1φ(ωt+1)dωt+1 + (1− Φ(ω̄t+1))Zt+1(QtKt+1 −Nt) (41)

The first term is what the lender expects to keep in the event of default. He gets to keep

(1 − µ)Rkt+1QtKt+1 times the expected value of ωt+1 conditional on the entrepreneur defaulting,

i.e. ωt+1 < ω̄t+1. µ ≥ 0 is a bankruptcy cost. The second term is just the probability of no default

times the return on making a loan in that case. But again using (34), we can write this as:[
(1− µ)

∫ ω̄t+1

0
ωt+1φ(ωt+1)dωt+1 + (1− Φ(ω̄t+1))ω̄t+1

]
Rkt+1QtKt+1 (42)

Define the term in brackets as the lender’s expected share of the return:

g(ω̄t+1) = (1− µ)

∫ ω̄t+1

0
ωt+1φ(ωt+1)dωt+1 + (1− Φ(ω̄t+1))ω̄t+1 (43)

The entrepreneur is exposing QtKt+1 −Nt (i.e. the amount of the loan), to get back (42). The

expected return is therefore:

g(ω̄t+1)Rkt+1QtKt+1

QtKt+1 −Nt
(44)

Using the definition of leverage, this can be written:

g(ω̄t+1)Rkt+1

Lt
Lt − 1

(45)

Now we can write the formal contracting problem. The entrepreneur wants to pick a leverage

ratio, Lt, and cutoff value of ω̄t+1, to maximize his expected return subject to a participation

constraint for the lender. The lender is assumed risk neutral, and hence faces an opportunity cost

of funds of the safe gross interest rate, Rt. Hence, the formal problem for the entrepreneur is:

max
ω̄t+1,Lt

EtRkt+1f(ω̄t+1)Lt

s.t.

Rkt+1g(ω̄t+1)
Lt

Lt − 1
≥ Rt

As Calrstrom, Fuerst, and Paustian (2016, AEJ: Macro) emphasize, the lender’s return is

predetermined. It is Rt, the safe (gross) interest rate. This means that ω̄t+1 is state-contingent –

it moves with Rkt+1 such that the participation constraint will always hold and the lender gets Rt.

We can characterize the optimum using a Lagrangian. Let Λt+1 be the multiplier on the

constraint. The Lagrangian is:

L = Et

{
Rkt+1f(ω̄t+1)Lt + Λt+1

[
Rkt+1g(ω̄t+1)Lt −Rt(Lt−1)

]}
The FOC are:
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∂L
∂ω̄t+1

= Et

{
Rkt+1f

′(ω̄t+1)Lt + Λt+1R
k
t+1g

′(ω̄t+1)Lt

}

∂L
∂Lt

= Et

{
Rkt+1f(ω̄t+1) + Λt+1

[
Rkt+1g(ω̄t+1)−Rt

]}
∂L

∂Λt+1
= Rkt+1g(ω̄t+1)Lt − (Lt − 1)Rt

Setting these equal to zero and simplifying somewhat yields:

Et

{
Rkt+1f

′(ω̄t+1) + Λt+1R
k
t+1g

′(ω̄t+1)

}
= 0 (46)

Et

{
Rkt+1f(ω̄t+1) + Λt+1

[
Rkt+1g(ω̄t+1)−Rt

]}
= 0 (47)

Rkt+1g(ω̄t+1)Lt = (Lt − 1)Rt (48)

Note that (48) holds for all possible realization of Rkt+1 – i.e. ω̄t+1 is state-contingent and

adjusts to ensure that the lender’s return is always predetermined.

Now let’s linearize these about the steady state. I will use no time subscripts to denote steady

state values. To first order, we needn’t worry about the expectations operator either. Start with

(46). Note that we can drop the Rkt+1 now:

f ′′(ω̄)dω̄t+1 + g′(ω̄)dΛt+1 + Λg′′(ω̄)dω̄t+1 = 0

To ease notation, define ω̂t+1 = dω̄t+1

ω̄ . For other variables, lowercase letters denote percentage

deviations. We then have:

ω̄f ′′(ω̄)ω̂t+1 + Λg′(ω̄)λt+1 + Λω̄g′′(ω̄)ω̂t+1 = 0

We know that, in steady state, we must have:

Λ = −f
′(ω̄)

g′(ω̄)
(49)

Hence:

ω̄f ′′(ω̄)ω̂t+1 − f ′(ω̄)λt+1 − ω̄f ′(ω̄)
g′′(ω̄)

g′(ω̄)
ω̂t+1 = 0

Divide both sides by f ′(ω̄). We then have:

λt+1 =

[
ω̄f ′′(ω̄)

f ′(ω̄)
− ω̄g′′(ω̄)

g′(ω̄)

]
ω̂t+1

Define Ψ = ω̄f ′′(ω̄)
f ′(ω̄) −

ω̄g′′(ω̄)
g′(ω̄) . We can then write the log-linear version of (46) as:
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Ψω̄t+1 = λt+1 (50)

Before log-linearizing the (47), combine (48), noting that Rkt+1g(ω̄t+1) = Lt−1
Lt

Rt, with it to

write:

Et

{
Rkt+1f(ω̄t+1)− Λt+1

Rt
Lt

}
= 0

But ignoring the expectations operator, we can write this as:

Rkt+1f(ω̄t+1) = Λt+1
Rt
Lt

Take logs:

lnRkt+1 + ln f(ω̄t+1) = ln Λt+1 + lnRt − lnLt

Totally differentiate:

rkt+1 +
f ′(ω̄)

f(ω̄)
dω̄t+1 = λt+1 + rt − Lt

Which can be written:

rkt+1 +
ω̄f ′(ω̄)

f(ω̄)
ω̂t+1 = λt+1 + rt − Lt

Define Θf = ω̄f ′(ω̄)
f(ω̄) . We can then write:

rkt+1 − rt + lt + Θf ω̂t+1 = λt+1 (51)

Now let’s linearize (48). Take logs first:

lnRkt+1 + ln g(ω̄t+1) + lnLt = lnRt + ln(Lt − 1)

Totally differentiate:

rkt+1 +
g′(ω̄)

g(ω̄)
dω̄t+1 + lt = rt +

1

L− 1
dLt

Which can be written:

rkt+1 +
ω̄g′(ω̄)

g(ω̄)
ω̂t+1 + lt = rt +

L

L− 1
lt

Now define Θg = ω̄g′(ω̄)
g(ω̄) . We therefore have:

rkt+1 − rt + Θgω̂t+1 =
1

L− 1
lt (52)
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The three linearized conditions are then repeated here for convenience:

Ψω̄t+1 = λt+1 (53)

rkt+1 − rt + lt + Θf ω̂t+1 = λt+1 (54)

rkt+1 − rt + Θgω̂t+1 =
1

L− 1
lt (55)

Now let’s combine these in such a way as to eliminate ωt+1 and λt+1.

Plug (53) into (54). This gives:

rkt+1 − rt + lt = (Ψ−Θf ) ω̂t+1

Now, from (55), we can solve for ω̂t+1 as:

ω̂t+1 =
1

Θg(L− 1)
lt −

1

Θg
(rkt+1 − rdt )

Combine this with the above expression:

rkt+1 − rt + lt = (Ψ−Θf )

[
1

Θg(L− 1)
lt −

1

Θg
(rkt+1 − rdt )

]
Which can be written:[

1 +
Ψ−Θf

Θg

]
(rkt+1 − rt) =

[
Ψ−Θf

Θg(L− 1)
− 1

]
lt

Which can be written:

Θg −Θf + Ψ

Θg
(rkt+1 − rt) =

Ψ−Θf −Θg(L− 1)

Θg(L− 1)
lt

Or:

rkt+1 − rt =
Ψ−Θf −Θg(L− 1)

(Ψ + Θg −Θf )(L− 1)
lt (56)

Now, before stopping, we can note that there is a relationship between Θf and Θg. In the

steady state, combining (48) with (47), we have:

Rkf(ω̄) + Λ

[
Rkg(ω̄)−Rkg(ω̄)

L

L− 1

]
= 0

The Rk drop, leaving:

f(ω̄) + Λg(ω̄)

(
1− L

L− 1

)
= 0

Which is:

13



f(ω̄) +−Λg(ω̄)

L− 1
= 0

But we know that Λ = −f ′(ω̄)
g′(ω̄) . So:

f(ω̄) +
f ′(ω̄)g(ω̄)

g′(ω̄)

1

L− 1
= 0

Divide both sides by f ′(ω̄):

f(ω̄)

f ′(ω̄)
+
g(ω̄)

g′(ω̄)

1

L− 1
= 0

But f(ω̄)
f ′(ω̄) = ω̄

Θf
and similarly for the terms involving g(·). Hence:

ω̄

Θf
+

ω̄

Θg

1

L− 1
= 0

Which implies:

Θg(L− 1) = −Θf

But making use of this in (56), we get:

rkt+1 − rt =
Ψ

Ψ(L− 1)−ΘfL
lt (57)

Since lt = qt+kt+1−nt, (57) is the same (5), where ν = Ψ
Ψ(L−1)−ΘfL

. The important point here

is that there is a positive relationship between entrepreneur leverage, lt, and the lending spread,

rkt+1 − rt.
Now, recall from above that:

Ψ = ω̄

(
f ′′(ω̄)

f ′(ω̄)
− g′′(ω̄)

g′(ω̄)

)
We have that these shares must sum to (this is always, not just at steady state, but I’m

evaluating it at steady state):

f(ω̄) + g(ω̄) = 1− µ
∫ ω̄

0
ωφ(ω)dω

Note: if µ = 0 (no bankruptcy cost), then we have f(ω̄) = −g(ω̄). But this then would mean

that Ψ = 0 – i.e. ν = 0, and there would be no relationship between leverage and external finance

premium!

2.3 Calibration

I’m not going to go into great depth on calibrating the model. For the purposes of the linearization,

all that really matters are a few steady state ratios and a few key parameters (such as ν, the
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sensitivity of the interest rate spread to leverage).

I’m going to follow most of what they report. Some parameters they don’t fully report, so I’m

just going to pick values that are reasonable and will look at sensitivity of the model’s IRFs to those

parameters. First, set “standard” parameters as follows: β = 0.99, η = 3.0 (the Frisch elasticity),

α = 0.35, and (1− α)(1− Ω) = 0.64 (this implies that the entrepreneurial labor share is very low

at 0.01). We have δ = 0.025. They set G
Y = 0.2. They set the capital adjustment cost parameter

to ϕ = 0.25. They have 1− γ = 0.0272.

They set the Calvo pricing parameter to θ = 0.75, the smoothing parameter in the interest rate

rule to ρ = 0.9, and the coefficient on inflation of 0.11 (the long run response of the interest rate to

inflation is ζ/(1−ρ), so 1.1, consistent with the Taylor principle). The parameter ε which shows up

in the linearized capital Euler equation is ε = 1−δ
RR+(1−δ) , where RR is the steady state value of the

marginal product of capital. This parameter is therefore 0.96. I’m going to assume a consumption

share of income of 0.51 and an investment share of 0.18, which implies an entrepreneurial share of

consumption of 0.12.

They discuss the parameters related to the financial frictions in depth on pg. 1368. The key

parameter is ν = 0.2. I’ll show responses under different values. We can think about the no frictions

case as being ν = 0 – in this case, the risk spread would just be constant.

The government spending shock is calibrated with ρg = 0.95. They assume that ρa = 1 –

this turns out to be important for whether the financial accelerator amplifies or dampens the

productivity shock response.

2.4 Impulse Response Functions

My overall parameterization sort of loosely matches what they report in the paper, albeit not

perfectly. First, consider the responses to the monetary policy shock. Note the scale of the shock –

I am shocking the policy rule by 0.25/4 in the model (which is quarterly), which in turn produces

an annualized policy rate response of 25 basis points on impact.
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Figure 1: IRFs to Policy Shock
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The responses shown above are very similar (if not exact) to the responses shown in Figure 3

of their paper. Solid lines show responses when ν = 0.2, so that there is a financial accelerator

mechanism. Dashed lines fix ν = 0, so that this mechanism is absent. Output and investment go

up (and revert) after an exogenous cut in the policy rate. The financial accelerator in fact amplifies

the effects of the policy shock – both output and investment go up significantly more. The interest

rate spread, or perhaps more precisely the external finance premium, shown in the bottom right of

the figure, declines. This is the source of the amplification.

There is a kind of multiplier effect. The stimulative monetary policy raises the demand for

capital, which raises investment and the price of capital, qt. This increase in asset prices raises net

worth. Higher net worth lowers the external finance premium. But this further stimulates invest-

ment and the price of capital, which further stimulates net worth. This is the “accelerator” idea

– the change in asset prices lowers the external finance premium, which in turn further stimulates

asset prices and real activity.
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Figure 2: IRFs to Productivity Shock
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Impulse responses to the productivity shock are shown above. These are very similar (at least

for output) to what is shown in Figure 4 (where they only show the output response). But there

is a bit of slight of hand going on. This result turns out to be very sensitive to the assumed

autocorrelation of the productivity process. What happens if I assume a more mean-reverting

value, such as ρa = 0.95? The IRFs are shown below:
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Figure 3: IRFs to Productivity Shock, ρa = 0.95 instead of ρa = 1
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In this specification, the financial accelerator actually dampens the responses to the productivity

shock relative to the unconstrained model. What’s driving this is again the price of capital. When

ρa → 1, the productivity shock is much more of a “demand” shock than a supply shock, and with

sticky prices, output is at least partially demand determined. There is a big demand for output,

which puts upward pressure on qt and net worth, and consequently lowers the external finance

premium. But when the shock is (just a little) less persistent, things flip – demand doesn’t rise by

much, qt doesn’t change by much, and the external finance premium actually goes up, not down.

It’s not a formal proof, but in lots of these models, you see that financial frictions amplify demand

shocks but often weaken supply shocks. That is what we see at play here.

Next, consider the government spending shock. The responses are shown below. These are

similar to what they report in the paper. There is amplification from the financial accelerator

mechanism and the external finance premium.
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Figure 4: IRFs to Government Spending Shock
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Finally, consider an exogenous shock to net worth. This is introduced via a shock to the net

worth evolution expression (and an offsetting transfer from households, which does not otherwise

show up in the linearized equilibrium conditions). In particular:

nt = γ
RK

N
(rkt − rt−1) + rt−1 + nt−1 + εn,t (58)

The next figure shows the impulse responses to the net worth shock
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Figure 5: IRFs to Net Worth Shock
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The effects of the shock are pretty easy to understand. When entrepreneurs exogenously get

more net worth, agency frictions decline. This lowers the external finance premium and leads to

a boom. Note that this redistribution would have small, non-zero effects even when ν = 0 (so

no financial accelerator mechanism); this is because more net worth stimulates entrepreneurial

consumption.

2.5 Differences Relative to Carlstrom and Fuerst (1997)

In Carlstrom and Fuerst (1997), the agency friction tends to dampen the response to a productivity

shock but increases propagation. In the Bernanke, Gertler, Gilchrist (1999) setup, we don’t see the

hump-shaped propagation but instead see amplification.

There are some differences in the two setups that end up driving these results. For one,

Bernanke, Gertler, and Gilchrist (1999) have sticky prices and a capital adjustment cost (which,

even absent agency frictions, would result in time-variation in the price of capital, qt). But there

is another subtle difference. In Carlstrom and Fuerst (1997), the agency friction only applies to

entrepreneurs who produce new investment goods. In BGG, the agency friction applies to pro-

duction firms who own the entire capital stock. A simple way to think about this is that in CF

agency frictions apply to producers of new investment goods, whereas in BGG agency frictions

apply to the whole capital stock (which is much bigger than the flow of new investment). See the
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discussion above about the formal contracting problem. Fluctuations in the supply price of capital

therefore have much bigger effects on net worth in the BGG framework and end up being a source

of amplification.
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