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Abstract

We identify monetary policy shocks by exploiting variation in the central bank’s
information set. To be specific, we use differences between nowcasts of the output
gap and inflation with final, revised estimates of these series to isolate movements in
the policy rate unrelated to economic conditions. We then compute the effects of a
monetary policy shock on the aggregate economy using local projection methods. We
find that a contractionary monetary policy shock has a limited negative effect on output
but a persistent negative impact on prices. In contrast to alternative identification
approaches, we do not observe a price puzzle when analyzing the period from 1987
to 2008. Further, we validate the identification approach in a simple New Keynesian
model, augmented by the assumption that the central bank observes the ingredients of
the Taylor rule with error.
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1 Introduction

What is the effect of a monetary policy shock on the real economy? Policymakers and
economists alike continue to have an ongoing interest in understanding the effects of
monetary policy on prices and output. Theoretically, in a world with nominal rigidities,
a temporary increase in the policy interest rate should lead to drops in both prices and
output in the short run. In spite of this theoretical prediction, empirical evidence remains
inconclusive, particularly so for the effect of policy shocks on inflation and the price level.

At the core of this issue is an endogeneity problem. To the extent that interest rates
are set by central banks in response to aggregate economic conditions, it is difficult to
discern the causal effects of policy rate changes on the macroeconomy. The literature
has attempted to solve this identification problem in a number of ways; the recursive
approach in vector autoregressions using timing restrictions (e.g., Christiano et al., 1999);
the narrative approach using policy statements to isolate plausibly exogenous monetary
policy changes (e.g., Romer and Romer, 2004); and the partial identification approach
imposing sign restrictions (e.g., Uhlig, 2005). For analyzing the effects of monetary policy
in more recent periods, the literature has also employed high-frequency financial market
data around policy meetings to identify monetary policy shocks (Faust et al., 2003, 2004;
Cochrane and Piazzesi, 2002; Gertler and Karadi, 2015; Nakamura and Steinsson, 2018).
As we show below, the recursive and narrative approaches often result in a so-called price
puzzle – that is, an increase in the price level in response to a monetary tightening – at least
for some periods in the post-war U.S. economy.1 A price puzzle stands in contrast to basic
predictions from theory, and calls into question whether the various approaches heretofore
employed in the literature have successfully dealt with the endogeneity problem.

This paper proposes a new identification approach that exploits the fact that the central
bank has imperfect information at the time it must make decisions. Specifically, the central
bank observes advance estimates and nowcasts of economic data, such as output and
inflation. These nowcasts reflect a noisy measure of the actual state of the economy, which
we assume is measured correctly by the final revised official statistics. Our empirical
framework separates the part of the policy response that is due to the nowcast error
and uses this to isolate exogenous variation in the monetary policy interest rate. To
the extent that the central bank reacts to the nowcast error about economic conditions,

1In the original paper of Christiano et al. (1999) there is a mild price puzzle for most specifications. In
Romer and Romer (2004) prices do not respond for almost two years after the shock.
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the monetary impulse should be exogenous to economic conditions at the time of the
impulse. In other words, we assume that the difference between real-time and final, revised
estimates is unknown and unpredictable for the policymaker when setting policy. This
identification approach comes with the advantage of not relying on (i) timing assumptions
or (ii) potentially subjective interpretation of policymakers’ statements.

To implement our empirical approach, we use historical data from the Federal Reserve Bank
of Philadelphia Greenbook Data Set to approximate the Federal Reserve’s information set in
real-time from 1987:Q3 to 2008:Q2.2 The analysis, consistent with many standard Taylor
rule specifications, focuses on the nowcast errors in the output gap, output growth, and
inflation as perceived by the Federal Reserve during the Federal Open Market Committee
(FOMC) policy decision meetings. Our approach takes those nowcast errors as exogenous
predictors for monetary policy in a two-step procedure. To identify the shock, we estimate
the policy rate response due to nowcast errors. We then take the monetary policy response
due to nowcast errors and estimate its effects on contemporaneous and future output and
inflation based on local projection methods (Jordà, 2005).

We find that the proposed identification procedure works well in the data and that our
results are robust to a number of implementation details. Applying our procedure to U.S.
data shows that a 25 basis point increase in the policy rate leads to a brief decline in output
and a persistent decline in prices. After four quarters, output reaches its peak decline of
about 0.03 percent, and prices drop by about 0.05 percent. In particular, we do not find the
price puzzle that arises when applying other identification approaches in the literature
for the same time period, such as the narrative (Romer and Romer, 2004) and recursive
approaches (Christiano et al., 1999).3

Finally, using a simple theoretical model, we validate our identification approach for a
specific yet canonical data-generating process. We build on the New Keynesian (NK) model
from Ireland (2004) and relax the assumption that the central bank observes economic
variables in real-time without error. We therefore augment the Taylor rule with nowcast
errors. We conduct a simulation exercise and show that our approach recovers the true
reactions of output and prices in the model. We then evaluate the identification approach
by comparing the results to established alternatives in the literature, such as the narrative
(Romer and Romer, 2004) and recursive approaches (Christiano et al., 1999), and conclude
that our approach performs better.

2Our baseline analysis starts with the first Greenbook output gap estimate in 1987 and ends in 2008 before
the zero lower bound period. We provide robustness checks for an extension to 2015 in Appendix A.1.

3Sims (1992) mitigates the price puzzle by adding commodity prices. Our approach does not rely on this.
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Related Literature. Our paper fits into a large literature on the identification of monetary
policy shocks.4 Our paper is most closely related to a subset of this broader literature
that investigates the importance of measurement error for monetary policy. A number of
papers have taken seriously the fact that policy decisions must be made in real-time subject
to potentially mismeasured data. One of the most prominent papers in this literature
is Orphanides (2001), who argues that data revisions are important and that analyzing
simple policy rules (such as the canonical Taylor rule) using ex-post data can lead to
misleading conclusions about the desirability of such rules. Orphanides and Williams
(2005) argue that the Fed reacted too much to perceived unemployment gaps based on
poor real-time data in the 1970s, contributing to the subsequent Great Inflation. More
generally, they caution against activist policies that react strongly to noisy real-time data.
In a similar vein, Lubik and Matthes (2016) argue that the Fed may have inadvertently
induced equilibrium indeterminacy in the 1970s. They analyze a model similar to our own,
where the central bank reacts to perceived economic conditions (which are noisy measures
of true conditions). Differently from us, they analyze an optimal policy problem, in which
policy reaction coefficients change period-by-period. Similarly, Cukierman and Lippi
(2005) study an optimal policy problem in which the central bank is uncertain about the
extent to which fluctuations are driven by changes in potential output or cyclical demand
shocks. Orphanides and Williams (2007) argue that in a world with real-time measurement
issues, policy should be more inertial and less reactive to output/unemployment gaps.

On the empirical front, Croushore and Evans (2006) study the importance of using ex-post
versus real-time data for conclusions about the effects of monetary policy shocks. They
conclude that the use of revised data may not be of much practical concern for estimating
the magnitudes and signs of macroeconomic responses to policy shocks using conventional
identification approaches. Croushore (2019) analyzes the properties of revisions to the PCE
deflator series and discusses the implications for monetary policy. More recently, Aruoba
and Drechsel (2022) use machine learning techniques to fully capture the information set
available to monetary policymakers in real-time. They then predict policy rates using their
enhanced information set, identifying policy shocks as residuals from the actual policy
rate in a procedure otherwise conceptually similar to Romer and Romer (2004). They
emphasize that their identified policy shock series is relatively uncontaminated by the
so-called “Fed information effect” (see, e.g., Nakamura and Steinsson, 2018 or Campbell
et al., 2012).

4It is beyond the scope of this paper to review that entire literature; for a comprehensive survey, see
Ramey (2016).
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Our paper differs from these in that we exploit real-time informational issues directly for
the identification of policy shocks. The papers discussed above either analyze the implica-
tions of noisy measurement for the design of optimal rules (Orphanides, 2001 and Lubik
and Matthes, 2016), analyze the effects of real-time versus ex-post macroeconomic time
series for the performance of existing identification strategies (Croushore and Evans, 2006),
or augment existing identification approaches with more data (Aruoba and Drechsel, 2022).
We are unaware of any paper in the monetary policy literature that uses mismeasurement
of real-time fundamentals as a way to identify exogenous variation in the policy rate. There
are papers that make use of a this basic approach to identification in other areas, however.
Our identification approach is very similar, for example, to Chodorow-Reich et al. (2019),
who decompose state-level variation in the duration of unemployment benefit extensions
into two parts – actual differences in economic conditions and measurement errors in the
real-time data, concluding that exogenous benefit extensions have only a small impact on
state-level macroeconomic outcomes.5 Similarly, Enders et al. (2021) use nowcast errors
about output growth to identify belief shocks. We view our paper as providing a bridge
between the empirical approach pioneered in Chodorow-Reich et al. (2019) to the monetary
policy literature that focuses on challenges for policymaking in real-time but which has
not heretofore used nowcast errors for the purposes of shock identification.

The remainder of this paper is structured as follows: Section 2 explains the empirical strat-
egy, Section 3 presents our findings using U.S. macroeconomic data, and Section 4 validates
the identification approach using a simple NK model augmented with nowcast errors and
evaluates its performance against other popular empirical strategies. Section 5 concludes.
Details, robustness checks, and additional results are available in the appendices.

2 Empirical strategy

Our empirical strategy is based on a two-step approach to overcome the inherent endogene-
ity problem when estimating the impact of monetary policy on the aggregate economy.
Recall that the endogeneity problem arises because the central bank sets its monetary
policy interest rate in response to the state of the economy, summarized, for example, by
output or inflation. In this way, the policy rate and economic conditions become contem-
poraneously interdependent. To filter out the policy rate response to economic conditions,

5The critique by Hagedorn et al. (2016) of this approach does not apply to our setting, as we do not have
to exploit discontinuities for identification.
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and highlight only exogenous movements in policy, we propose using a set of nowcast
errors in the central bank’s macroeconomic target variables. While nowcast errors in the
central bank’s targets are obviously correlated with the interest rate decision, they are
unlikely to be correlated with economic outcomes through any channel other than the
policy rate.

A stylized model. To illustrate the intuition behind our approach, consider a stylized
model. Though only meant for illustrative purposes, the simple, static model conveys
the logic behind our approach of estimating the effects of a monetary policy shock using
nowcast errors.

Suppose that the central bank sets its policy rate, it, as a function of perceived macroeco-
nomic conditions at time t, denoted by xtt:6

it = ψix
t
t + νt. (1)

In (1), ψi 6= 0 represents the central bank’s response to perceived economic conditions. νt
is a conventional monetary policy shock.

The central bank’s perceived nowcast of current conditions, xtt, is a noisy measure of actual
economic conditions, xTt , plus a nowcast error, ut:

xtt = xTt + ut. (2)

We assume that actual economic conditions, xTt , react to the policy rate via the parameter
ψx 6= 0, as well as to a non-monetary shock, εt:

xTt = ψxit + εt. (3)

In (1)-(3), the exogenous shocks νt, ut, and εt are assumed to be mean-zero and i.i.d with
known variances.

6For illustrative purposes, we suppose that perceived and actual economic conditions are described by
scalars. It would be straightforward to extend the analysis to where xtt is instead a vector.
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The parameter ψx measures the effect of an exogenous change in the interest rate on actual
macroeconomic conditions. Suppose a researcher interested in estimating this parameter
were to run a regression of xTt on the policy rate, it. This would not correctly recover the
parameter of interest. In particular, so long as var(εt) 6= 0, there would be simultaneity
bias – εt would both directly affect xTt and indirectly affect it through the policy rate. This
is the basic endogeneity problem described above.

In Appendix A.2, we show that the following two-step procedure will correctly uncover
ψx. We assume that ut can be measured as the difference between final release data, which
we take to be a measure of xTt , and a real-time estimate, xtt, as in (2). In the first step, we
regress the policy rate, it, on this nowcast error. This gives a fitted value, ît. In the second
step, we regress the final release data, xTt , on the fitted value. This procedure correctly
uncovers the parameter of interest. The identifying assumption is that ut only affects xTt
through its impact on the policy rate. We do not require that ut be orthogonal to xTt . In
fact, it is precisely through the impact of ut on the policy rate, and hence on economic
conditions, that we can uncover the parameter ψx.

Data sources. To approximate the information set of the Federal Reserve in real time, we
use the Federal Reserve Bank of Philadelphia Greenbook (Greenbook) and the Output Gap and
Financial Assumptions from the Board of Governors.7 For each FOMC meeting, the Greenbook
includes real-time estimates and projections by the staff of the Board of Governors (1987-
2015). We combine this data set with (i) the Federal Reserve Bank of Philadelphia “Real-Time
Data Set,”8 which contains GDP and GDP deflator estimates of several vintages,9 and, most
importantly for our purposes, the final value for each variable that allows us to construct
the Federal Reserves nowcast errors; and (ii) the Congressional Budget Office (CBO) final
estimates of the output gap. Our analysis focuses on nowcast (current quarter) estimates
of the following variables:

• Growth rate of real gross domestic product (GDP): g

• Growth rate of GDP deflator: π

• Output gap, that is, actual minus potential GDP divided by potential GDP: x.
7To be clear, the output gap nowcasts were neither published nor mentioned in the Greenbook until

January 2004. The output gap nowcasts that are now included in the Philadelphia Fed’s dataset are from an
internal output gap measure used by the staff of the Federal Reserve Board, as discussed by Orphanides
(2001). We are grateful to an anonymous referee for pointing this out to us. Our results do not rely on the
inclusion of the output gap. Appendix A.3 provides robustness checks using the inflation nowcast only.

8The Federal Reserve Bank of Philadelphia collects the U.S. Bureau of Economic Analysis (BEA) estimates
across vintages over time.

9We use the GDP deflator for our analysis since alternative inflation measures like the one based on
personal consumption expenditures (PCE) started to appear in the Greenbook data only in 2000.
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Nowcast error construction. We construct the nowcast error, ut, for each variable X ∈
{g, π, x} at time t by taking the difference between the nowcast estimate of value X t

t at
point t and the final (true) value XT

t at point T , each denoted by the superscript t and T :

uXt = X t
t︸︷︷︸

nowcast

− XT
t︸︷︷︸

final

,

where the final value corresponds to the “most recent” value in the data set of the Federal
Reserve Bank of Philadelphia (retrieved in June 2021) for GDP growth and GDP deflator
inflation, and to the most recent value from the CBO for the output gap. Our analysis
starts with the first Greenbook output gap estimate in 1987:Q3 and ends in 2008:Q2 before
the financial crisis and the beginning of the zero lower bound period.10 This has the added
advantage that our final values are unlikely to be subject to further revisions. Throughout
this paper, we work at the quarterly frequency. Therefore, following Orphanides (2001),
we convert the Greenbook forecasts to quarterly values by using only beginning-of-quarter
values and thus focusing on fixed months (January, April, ...) instead of averaging. This
has the advantage that time intervals are evenly spaced.11

Analysis of the nowcast error series. Our analysis builds on the assumption that these
nowcast errors are unknown to policymakers in real-time. In theory, this assumption
should be satisfied because we observe the central bank’s expectations reflected by the
Greenbook nowcast unless these expectations were formed untruthfully or strategically.
From a practical standpoint, the values of most macroeconomic variables get revised many
times throughout the years, mainly due to updated statistical information. To illustrate this
point, Panels (a) and (b) of Figure 1 present the estimates of GDP growth and GDP deflator
inflation for two data points, the beginning and the end of our sample, across several
vintages. The corresponding Greenbook nowcast is marked with a dot at the beginning of
the time series graph. We observe that, over time, the nowcasts get revised many times, at
least for 10 years, before converging to a final value. The figure also demonstrates that the
Greenbook forecast can substantially deviate even from the first BEA vintage. This makes
it implausible that the Federal Reserve would know these nowcast errors in real time.

10We provide robustness checks based on the Wu and Xia (2016) shadow rate for 1987:Q3 to 2015:Q4 in
Appendix A.1. The reason the sample ends in 2015:Q4 is because the Greenback data are only available with
a five-year lag.

11Our results are robust to different time aggregation methods and using monthly data. We present the
results based on monthly data in Appendix A.4.
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Figure 1: Estimates across vintages

(a) GDP growth (b) GDP deflator inflation

Notes: Real GDP growth and GDP deflator inflation by vintage for different points in time. The Greenbook
nowcast is indicated with a dot. The x-axis reflects the vintage since the first release of t expressed in quarters.
All values are expressed in percent. Sources: Federal Reserve Bank of Philadelphia, Greenbook.

Empirical model. We implement our identification idea in two steps:

1. Identifying the shock

it = α + ρxu
x
t + ρgu

g
t + ρπu

π
t + εt (4)

To isolate the exogenous part of the monetary policy decision, the policy rate, it,
is regressed on the nowcast errors in the output gap, uxt , output growth, ugt , and
inflation, uπt . This regression yields a fitted value for the policy rate, ît.

2. Local projections
Using local projection methods (Jordà, 2005), we then regress the outcome variables
of interest – output, yt+h, prices, pt+h, and the policy rate, it+h – on the exogenous
part of the policy decision, ît. Specifically, for each horizon h ≥ 0, we estimate the
following regressions:

yt+h = αyh + βyh ît + γyhcontrolst + εyt+h

pt+h = αph + βpĥit + γphcontrolst + εpt+h

it+h = αih + βiĥit + γihcontrolst + εit+h (5)

In the baseline specification, controlst includes four lags of the dependent variable in
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the regressions of output and prices. We verify the robustness of our results using a
broader set of controls in Section 3.3. The coefficients of interest are the βzh coefficients,
for z = y, p, i. We scale the coefficients of interest to correspond to a 25 basis point
increase in the policy rate. Plotting these coefficients across time horizons gives an
estimate of the impulse response function to a policy shock.

3 Empirical results

This section documents our findings based on U.S. data for the period from 1987:Q3 to
2008:Q2, using the two-step identification approach explained above.

3.1 Identifying the shock

We first examine the nowcast errors’ individual and joint relevance as predictors of the
federal funds rate. Table 1 reports the results obtained from estimating equation (4). Each
column shows the coefficients based on a specification using individual or combinations
of nowcast errors: (1) uxt , (2) uπt , (3) ugt , (4) uxt and ugt and uπt , and (5) uxt and uπt . The
columns (5’), (5”), and (5”’) represent robustness checks, explained in detail in Section 3.3.

Table 1: Constructing the shock: results (1987:Q3-2008:Q2)

(1) (2) (3) (4) (5) (5’) (5”) (5”’)
ux 1.62∗∗∗ 1.50∗∗∗ 1.36∗∗∗ 1.07∗∗ 1.04∗ 1.15∗

(0.27) (0.30) (0.28) (0.32) (0.44) (0.45)
uπ 1.08∗∗∗ 0.56∗ 0.67∗∗ 0.75∗∗ 0.76∗ 0.87∗∗

(0.26) (0.26) (0.25) (0.27) (0.29) (0.33)
ug -0.05 -0.15

(0.12) (0.11)
R2 0.300 0.173 0.002 0.374 0.358 0.271 0.150 0.149
F 35.22 17.13 0.20 15.90 22.60 14.90 7.06 6.76
N 84 84 84 84 84 83 83 80

Notes: Regression of the federal funds rate on individual or combinations of nowcast errors: (1) uxt , (2) uπt ,
(3) ugt , (4) uxt and uπ and ugt , (5) uxt and uπt , (5’) uses uπ and the residual of uxt purged to the lagged output
gap as predictors. (5”) and (5”’) use the residual of uxt and uπt purged to its lagged first and four values as
predictors. Standard errors in parentheses. Constant included. * p < 0.05, ** p < 0.01, *** p < 0.001.

The coefficients on the output gap and inflation nowcast errors, uxt and uπt , are individually
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and jointly statistically significant. The signs of these coefficients correspond to standard
Taylor rule logic: positive nowcast errors in the gap and inflation are associated with a
higher policy rate. In contrast, the coefficient on the output growth nowcast error, ugt , is
individually and jointly insignificant in all specifications. We therefore select specification
(5), using only the output gap and inflation nowcast errors, uxt and uπt , as predictors of the
policy rate as our benchmark specification.

3.2 Local projections

We measure output, yt+h, as the log of real GDP and the price level, pt+h, as the log of the
GDP price deflator.12 We present the impulse response functions of output, prices, and the
policy rate to an exogenous monetary policy shock.

Figure 2 shows the impulse response functions to a monetary policy shock scaled to a
25 basis point impact increase in the policy rate. Shaded areas are 95-percent confidence
intervals from a bootstrap.13 In the upper left panel, output declines initially and slowly
recovers over the next eight quarters. Similarly, the price level declines slowly but persis-
tently. The lower panel shows the effect of the policy shock on the interest rate itself, which
lasts about eight quarters. The response of output is statistically significant for a quarter or
two, while the response of the price level is statistically significant at all plotted horizons.

The responses plotted in Figure 2 are consistent with basic theory. A contractionary
monetary policy results in a mild decline in output. There is an immediate reduction in
the price level that is long-lasting. Importantly, there is no price puzzle, wherein the price
level initially reacts positively to a contractionary policy shock.14

12For the local projections, we retrieve the final outcome variables from Federal Reserve Economic
Data (FRED): Real Gross Domestic Product (GDPC1) and Gross Domestic Product: Implicit Price Deflator
(GDPDEF). Our results are the same if we instead use the inflation rate rather than the price level on the left
hand side.

13We implement the bootstrap using a standard fixed design pairs bootstrap following Montiel Olea and
Plagborg-Møller (2021).

14In Appendix A.5, we show that we obtain qualitatively similar results when we instead use an external
instruments approach.
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Figure 2: Local projections
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate
on impact. We use the nowcast error in the output gap and inflation as exogenous predictors for the policy
rate. Regressions of the log of real GDP and the log of the GDP deflator include four lags of the dependent
variable. Shaded areas are 95-percent bootstrap confidence bands.

3.3 Robustness checks

To verify the robustness of our results to different specifications, we present three additional
sets of results. The first robustness check relates to the controls included in the local
projections. The other robustness checks pertain to the question of whether the nowcast
errors are correlated with the business cycle and whether they are unpredictable.

Set of control variables. Although in principle not necessary – if one believes that a shock
on the right hand side of local projection regression is truly exogenous – the literature
often estimates local projections with a large set of controls (e.g., Ramey, 2016, and others).
To confirm the robustness of our results, we estimate the local projections for several
specifications controlling for (i) one lagged value of the shock, (ii) a quadratic time trend,
and (iii) for four lagged values of log real GDP and log GDP deflator in all equations.
Figure 3 presents the results.15

15Figure 15 in Appendix A.6 provides error bands for all individual responses.
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Figure 3: Local projections with controls
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate.
The black, solid lines reflect the baseline results for the specification controlling for four lagged values of
the dependent variables in the regression of the log of real GDP and the log of the GDP deflator; the red,
dashed lines additionally control for one lagged value of the monetary policy shock; the blue, dotted lines
additionally control for a quadratic time trend, and the green, dash-dotted lines control for four lagged
values of log of real GDP and log of the GDP deflator in all regressions. Shaded areas are 95-percent bootstrap
confidence bands.

Solid lines show our benchmark estimated responses, while colored dashed lines include
additional controls. Including additional controls in the local projection regression has no
important qualitative effects on the impulse response functions. One noticeable difference
is that controlling for lagged shocks (dashed, red line) results in a more significant and
persistent decline in output vis-à-vis our benchmark; in contrast, controlling for a trend
(dotted, blue line) results in a slightly smaller decline in output and prices vis-à-vis our
benchmark.

Possible correlation with the business cycle. Our identification strategy requires that
the nowcast errors are independent of the true state of the business cycle, other than
through any effect operative through the policy rate. Table 2 presents the results of
regressing the output gap and inflation nowcast errors, uxt and uπt , on the final vintage
measures of lagged inflation, πt−1, lagged output growth, gt−1, and the lagged output gap,
xt−1.16

16We use the lagged values of these variables as a measure of the state of the business cycle because, of
course, their contemporaneous values are influenced by monetary policy, which is the relationship we are
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Table 2: Correlation with lagged business cycle

ux uπ

πt−1 0.23 -0.19
(0.35) (0.42)

gt−1 -0.17 -0.20
(0.16) (0.19)

xt−1 0.18∗∗ 0.04
(0.05) (0.06)

R2 0.130 0.016
F 3.89 0.43
N 82 82
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We find that the lagged output gap is a statistically significant predictor for the current
output gap nowcast error, whereas lagged output growth and inflation are not. This
suggests that the output gap nowcast error may be predictable, potentially posing a threat
to our identification. We note, however, that ex-post predictability for the econometrician
does not necessarily imply real-time predictability for the policymaker.

These observations suggest the following two robustness checks to our baseline results.
First, we can investigate how, and to what extent, our results change when using only
the inflation nowcast error in the first step as predictor for the policy rate. Second, we
can replace the output gap nowcast error, uxt , with its residual, ux,∗t , from a projection
on the lagged output gap, xt−1, which by construction is orthogonal to the true state of
the business cycle.17 This transforms our baseline two-step procedure into the following
three-step procedure:

1. Purging step: regress uxt on xt−1 to get innovation ux,∗t .

2. First step: regress it on ux,∗t and uπt to get ît.

3. LP step: regress yt+h, pt+h, and it+h on ît for different horizons, h.

Column (5’) of Table 1 reports the results from estimating (4) with this modified procedure.
The purged residual from the output gap remains a significant predictor of the policy rate,
although the F statistic is lower.

attempting to estimate in this paper.
17Appendix A.7 provides a robustness check in which we first project nowcast errors on lagged final

values of all three series (inflation, the output gap, and output growth). Our results are similar.
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Figure 4: Taking into account business cycle endogeneity
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent)
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest
rate. The baseline specification uses the nowcast errors in output gap and inflation as exogenous predictors.
u∗,xuπ purges the output gap nowcast errors to the lagged output gap and uses the residuals as predictors
for the policy rate. uπ uses the inflation nowcast errors only as predictors for the policy rate. Regressions of
the log of real GDP and the log of the GDP deflator include four lags of the dependent variables. Shaded
areas are 95-percent bootstrap confidence bands.

Figure 4 plots impulse responses estimated from the local projections of real GDP, the
aggregate price level, and the policy rate to a monetary policy shock using both robustness
exercises.18 The impulse responses with the inflation nowcast error as the single predictor
of the policy rate are depicted with short-dashed, blue lines; the impulse responses from
the three-step procedure are depicted with long-dashed, red lines. For comparison, we
include the baseline impulse responses in solid black.

We find that the impulse responses from the three-step procedure are nearly identical
to the baseline, suggesting that, while being a theoretical concern, a dependence of the
nowcast errors on the state of the business cycle is of little practical relevance. The results
with only the inflation nowcast error as a single predictor are qualitatively similar to the
baseline but with some deviations, suggesting that the (purified) output gap nowcast error
contains relevant information for the identification of monetary policy shocks.

18Figure 16 in Appendix A.6 provides error bands to all responses.

15



Controlling for lagged nowcast errors. A second threat to identification would be if the
Federal Reserve could predict its own nowcast errors. We have already shown in Figure 1
that the data revision process takes a long time in practice, so that it is unlikely that the
Federal Reserve knows its nowcast errors in real time. Nevertheless, we can ask what
happens if the Federal Reserve observed its past nowcast errors and used them to predict
its current nowcast errors?

To potentially correct for forecastability, we propose another three-step procedure. In
particular, we regress the nowcast errors on their own lags, and then use the residual from
this regression to isolate exogenous movement in the policy rate. We do this by postulating
an AR(1) or an AR(4) structure.19 Specifically,

1. Purging step: regress uxt and uπt on
∑1(4)

j=1 u
x
t−j and

∑1(4)
j=1 u

π
t−j to get the innovations,

u
x,AR1(4)
t and u

π,AR1(4)
t , respectively.

2. First step: regress it on ux,AR1(4)
t and u

π,AR1(4)
t to get ît.

3. LP step: regress yt+h, pt+h, and it+h on ît for different horizons, h.

Columns (5”) and (5”’) of Table 1 report the results using the nowcast errors residuals,
from, respectively, an AR(4) and AR(1), as predictors for the policy rate. The estimated
coefficients are of smaller magnitude than the baseline model, but remain significant and
have the same signs. The dotted, blue lines in Figure 5 plot impulse responses from a local
projection where the shock variable is constructed using nowcast error residuals from an
AR(1). The dash-dotted, green lines do the same for nowcast error residuals from an AR(4).

We observe only minor differences when comparing the baseline without controls in solid
black to the specifications controlling for forecastability. The most significant differences
appear for output, where we find that the output response is more significant when
purging the nowcast errors to their lagged values. The other specifications are almost
indistinguishable from the baseline, which leads us to conclude that our results are robust
to controlling for these factors.

19The partial autocorrelations show that the nowcast errors are statistically significant at the five percent
level up to one lag for the output gap nowcast error and up to four lags for the inflation nowcast error.
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Figure 5: Controlling for lagged nowcast errors
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the impact interest
rate. In the baseline specification, we use the nowcast errors in output gap and inflation as predictors for the
policy rate. AR(4) purges from the nowcast errors the last four lags and uses the residuals as predictors for
the policy rate. AR(1) purges from the nowcast errors the first lag and uses the residuals as predictors for the
policy rate. Shaded areas are 95-percent bootstrap confidence bands.

Local projections versus VAR method. To what extent do our results depend on the
estimation technique? We present the results of our identification approach based on a VAR
instead of local projection methods to verify that the estimation technique does not drive
our results. Similar to before, we first identify the shock using the output gap and inflation
as predictors of the policy rate. In the second step, however, we estimate a recursive
VAR, ordering the shock variable first. This ordering implies that the shock can directly
impact output and prices. The VAR is estimated for the same sample 1987:Q3-2008:Q2 and
includes four lags.

Figure 6 shows the impulse responses of output, prices, and the policy rate to an identified
policy shock using the output gap and inflation nowcast errors as exogenous predictors
for the policy rate. The recursive VAR results (in dashed red) indicate a brief contraction of
output and a persistent decline in the price level, both of which are in line with the local
projection results (in solid black). We conclude that our approach based on nowcast errors
robustly produces theory-consistent reactions of output and the aggregate price level to
monetary policy shocks.
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Figure 6: VAR results

Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock based on local projections (LP) and a recursive
VAR including four lags (VAR). The exogenous monetary policy shock is ordered first in the VAR. Shaded
areas are 95-percent bootstrap confidence bands.

3.4 Alternative identification approaches

Next, we compare our identification approach to two alternatives common in the litera-
ture: the recursive approach used by Christiano et al. (1999) and the narrative approach
pioneered by Romer and Romer (2004).20 We follow the spirit of their methodologies and
apply them to our sample period (1987:Q3-2008:Q2) using our three variables – real GDP,
the GDP deflator, the federal funds rate.21 To facilitate comparison to our approach, we
continue to estimate local projections.22

20The Romer and Romer (2004) paper is a continuation of their earlier Romer and Romer (1989) paper that
uses textual analysis to identify certain dates on which policy exogenously changed.

21Our implementation of the narrative approach, while similar, nevertheless differs from Romer and
Romer (2004)’s VAR approach along a couple of dimensions: Romer and Romer (2004) use (i) monthly
data, (ii) the producer price index for finished goods, (iii) a lag length of three years, (iv) the cumulative
shock series, and (v) additionally impose a recursive ordering of the variables. Coibion (2012) shows that
integrating the narrative shock series in a VAR instead of single-equation regressions and using a shorter
lag length decreases the estimated output contraction in response to a monetary tightening. This brings the
estimated output effects closer to the smaller size of our estimates.

22For the narrative approach, we use an updated Romer and Romer (2004) shock series as the forcing
variable in the local projections regression. We thank Max Breitenlechner and Johannes Wieland. For the
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Figure 7: Local projection results across identification approaches
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest
rate based on local projection methods (Jordà, 2005). Regressions of the log of real GDP and the log of the
GDP deflator include four lags of the dependent variable. Shaded areas are 95-percent bootstrap confidence
bands.

Figure 7 compares the results. In both alternative approaches, the recursive approach (red,
dashed lines) and the narrative approach (dotted, blue lines), a contractionary monetary
policy shock has no real effects (if anything it expands real GDP initially) and features a
mild price puzzle. Similarly, in the original paper of Christiano et al. (1999) there is a mild
price puzzle for most specifications, but the negative output response is consistent with
basic theory. In Romer and Romer (2004) prices do not respond at all for almost two years
after the monetary policy shock, while the output response is negative. It is also the case
that the quantitative magnitudes of the output responses that we present here (regardless
of whether we use our approach or mimic other approaches) are smaller than in either
Christiano et al. (1999) or Romer and Romer (2004). These differences are mainly due to
the different samples: 1987-2008 in our analysis versus 1965-1995 in Christiano et al. (1999)
and 1969-1996 in Romer and Romer (2004).

recursive approach, we estimate first a recursive VAR (Christiano et al., 1999) and use the identified monetary
policy shock series in the local projection as shock series.
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Figure 8: VAR results across identification approaches

Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock based on a recursive VAR (including four
lags). We replace the federal funds rate with the monetary policy shock series when applying the narrative
and our identification approach and order the shock first. The recursive approach ordering is: log real GDP,
log GDP deflator, the federal funds rate. Shaded areas are 95-percent bootstrap confidence bands.

Figure 8 shows that an initial output expansion and mild prize puzzle in the recursive
and narrative approaches are, if anything, more pronounced when we use a recursively
identified VAR instead of local projection methods to compute the impulse response
functions.23

23A further difference between our empirical specification and Christiano et al. (1999) is that the latter
include commodity prices and a number of monetary aggregates into their VAR. Comparing their original
and our sample shows that, for the output response this difference is immaterial: no matter whether one
estimates their VAR with our three variables, our three variables plus an index of commodity prices, or
their original seven variables (which include three monetary aggregates), the real effects of a monetary
policy shocks are zero or mildly positive when estimated on our more recent sample and negative and larger
in the original, older sample. For the response of prices, the inclusion of commodity prices in the VAR
mitigates but does not eliminate the price puzzle. Compared to Christiano et al. (1999)’s original sample
period (1965:Q3-1995:Q2), the output response using their approach in our sample period, 1987:Q3-2008:Q2,
is much closer to zero.
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4 Simulation results

To demonstrate the suitability of our approach to identifying monetary policy shocks, we
build upon the simple yet canonical New Keynesian (NK) model by Ireland (2004), and
relax the assumption that the central bank observes the economy in real time without error.
We implement this by augmenting the central bank’s macroeconomic target variables in
the Taylor Rule with error terms. We then conduct a simulation exercise and show that our
proposed estimation procedure works well with the simulated data.

The full model consists of a representative household with decisions over consumption,
labor, bonds and money holdings, an intermediate good sector, a final good sector, and
a central bank following a Taylor rule. Ireland (2004) describes the full model in detail.
Appendix A.8 presents the linearized equilibrium conditions. For comparability with the
empirical part, we compute the price level as the accumulated sum of the inflation rates.
For a more detailed description, we refer the reader to his work and only highlight the key
differences.

4.1 The Taylor rule

Conventional NK models such as Ireland (2004) assume that the central bank observes the
state of the economy without noise. We depart from this assumption and postulate that the
state of the economy as measured by output growth, gt, inflation, πt, and the output gap,
xt, is observed in real time t (denoted in the subscripts) with an orthogonal noise term, uit
for i ∈ {x, π, g}, for each. The augmented Taylor rule then takes the following form:24

it = it−1 + ρππ
t
t + ρgg

t
t + ρxx

t
t + νt, (6)

where the policy rate, it, is a function of the lagged policy rate, it−1, nowcast output growth,
gtt , nowcast inflation, πtt , and the nowcast output gap, xtt, and the monetary policy shock
proper, νt. The policy reaction is governed by the Taylor rule coefficients ρg, ρπ, and ρx.
The nowcasts denoted by the superscript t are a function of the true state denoted with
the superscript T (and measured by the final vintage value of these variables) plus an

24Ireland (2004) assumes a coefficient of unity on the lagged interest rate in the Taylor rule. Replacing this
assumption with a more conventional AR parameter (e.g. 0.85, or even zero) yields similar results to what
follows.
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orthogonal error term, ujt ∀; j; ∈ {x, g, π}:

xtt = xTt + uxt , gtt = gTt + ugt , πtt = πTt + uπt . (7)

Combining (6) and (7) allows us to decompose the Taylor rule into the original part and
the nowcast error part:

it = it−1 + ρππ
T
t + ρgg

T
t + ρxx

T
t + νt + ρπu

π
t + ρgu

g
t + ρxu

x
t (8)

where the first five terms on the right-hand side are standard and equivalent to the Taylor
rule by Ireland (2004), and the subsequent terms correspond to the weighted nowcast
errors. Note that the nowcast errors, uπt , ugt , and, uxt , enter the Taylor Rule linearly, which
leads us to conclude that, up to a scaling parameter, the augmented nowcast error terms
are isomorphic to the decision noise, νt.

4.2 Specification of error processes

We consider two different specifications of the error process underlying the nowcast errors.
Our baseline calibration assumes that the error terms are independently and identically
distributed (i.i.d.), that is, in particular, they are uncorrelated with each other. In a second
specification, we allow for a more flexible covariance matrix.25

1. Baseline calibration: error terms are i.i.d and uncorrelated.

Σ =

 σ2
ux 0 0

0 σ2
uπ 0

0 0 σ2
ug



Σ =

 0.00005272 0 0

0 0.00000423 0

0 0 0.00002295


25The values presented below are based on the non-annualized, quarterly data in absolute terms (not

percent).
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2. Correlation calibration: flexible structure on error term covariance.

Σ =

 σ2
ux σux,uπ σux,ug

σux,uπ σ2
uπ σuπ ,ug

σux,ug σuπ ,ug σ2
ug



Σ =

 0.00005272 0.00000519 0.00000873

0.00000519 0.00000423 −0.00000192

0.00000873 −0.00000192 0.00002295



The baseline variance-covariance matrix is calibrated to match the standard deviation
of the nowcast errors based on the baseline sample (1987:Q3-2008:Q2).The correlation
calibration considers the correlation between the three nowcast errors observed in the data.
The correlation between the output gap nowcast error and the inflation nowcast error
is 0.3476, the correlation between the output gap nowcast error and the output growth
nowcast error is 0.2510, and the correlation between the output growth nowcast error and
the inflation nowcast error is -0.1950.

4.3 Simulation

In addition to the covariance matrix of the nowcast errors described above, we calibrate
the main model parameters to the post-1980 parameter estimates of Ireland (2004). We
re-estimate, however, the shock processes for the sample from 1987:Q3 to 2008:Q2 in order
to account for the lower aggregate volatility during the Great Moderation period (see
Table 5 in Appendix A.9 for all the parameter values). For both model specifications, we
simulate a sample of 10,000 periods and then apply our estimation approach, as well as
estimations with a recursive identification and a narrative identification, respectively, on
these simulated data.

4.3.1 Our identification approach

We present the impulse responses of output, prices, and the interest rate to a monetary
policy shock based on our identification approach using local projection methods, esti-
mated on the simulated data from the calibrated NK model specified above. Similar to
the empirical part, we use the nowcast errors individually and jointly as predictors for
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the policy rate to obtain the monetary policy shock series. Specifically, we consider the
following specifications, using (i) only the inflation nowcast error, uπ (pink, circles), (ii) the
output gap nowcast error and inflation nowcast error, ux and uπ (red, asterisks), which
corresponds to our empirical baseline specification, and, (iii) all three nowcast errors, ux,
uπ and ug (blue, squares), as predictors for the interest rate. To validate our identification
approach, we compare our results to the theoretical impulse response functions (black,
solid). Panels (a) and (b) of Figure 9 show the estimated impulse responses based on the
baseline and the correlation calibration. Similar to the empirical specification, the local
projections include four lags of the dependent variable in the regressions of output and
prices.

Figure 9: Local projections based on simulated data
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Notes: Impulse responses to a contractionary monetary policy shock scaled to a 25 bp increase in the interest
rate. uπ (pink, circles) uses the inflation nowcast error as the predictor for the interest rate, ux, uπ (red,
asterisks) uses the output gap nowcast error and inflation nowcast error as predictors for the interest rate,
ux, uπ, ug (blue, squares) uses the output gap nowcast error, the inflation nowcast error, and the output
growth nowcast error as predictors for the interest rate. Model denotes the model-implied theoretical impulse
response function. Regressions of output and the price level include four lags of the dependent variable.
On the left-hand side of the regressions, we use the true macroeconomic variables, not the ones with
measurement errors, as in our empirical exercises. The 95-percent bootstrap confidence bands correspond to
our baseline specification: ux, uπ (red, asterisks).

We find that the estimated impulse responses based on the simulated data are close to the
theoretical impulse response functions, both for the baseline and correlation calibrations.
Further, the 95-percent confidence interval includes the model-implied responses for
all variables and time horizons. We conclude that our procedure is able to recover the
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true reactions of output, the price level, and the interest rate in the model well. We can
also see that our baseline empirical specification, which uses the inflation and output
gap nowcast errors as predictors, performs slightly better than a specification using only
the inflation nowcast error, which provides an additional justification for our empirical
baseline. Adding the output growth nowcast error does not change the estimated impulse
response functions, again consistent with the data.

4.3.2 Alternative identification approaches

In addition, we evaluate our identification and estimation approach by comparing it with
the results from established alternatives in the literature: (i) the narrative approach (Romer
and Romer, 2004), and (ii) the recursive approach (Christiano et al., 1999). We explain next
the implementation of each alternative identification and estimation approach in detail:

1. Narrative approach (Romer and Romer, 2004)
The narrative approach identifies monetary policy shocks by analyzing individual
FOMC decisions, and obtains the exogenous monetary policy shock series by purging
the change in the intended federal funds rate to observed, current and future eco-
nomic conditions. The residual of this regression represents the narrative monetary
policy shock. Romer and Romer (2004) attribute these monetary policy shocks to
(i) beliefs of policymakers, (ii) time-varying operational procedures, and (iii) goals
of the federal reserve. We implement their approach by estimating the following
regression model using simulated data:

it = α + βit−1 +
0∑

i=−1

γx,ix
obs
t,i +

0∑
i=−1

γg,ig
obs
t,i + γπ,−1π

obs
t,i + εt (9)

where it reflects the interest rate, it−1 the lag of the interest rate, xobst,i for i ∈ {−1, 0}
the lag and nowcast of the output gap, gobst,i for i ∈ {−1, 0} the lag and nowcast of
output growth, and πobst,i for i ∈ {−1} the lag of inflation.26 We then take the residual
from Equation (9) as the shock variable in the local projection.

2. Recursive identification approach
The recursive identification approach identifies monetary policy shocks using timing

26Romer and Romer (2004) also include the one- and two-period ahead forecasts of the macroeconomic
variables. In the model, the nowcast and these further-ahead forecasts are multicollinear. Hence, we only
include model nowcasts to compute the model-implied narrative shocks.
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assumptions. To break the contemporaneous relationship, Christiano et al. (1999)
assume that output and prices do not react contemporaneously to the interest rate.
We therefore estimate a VAR with a recursive ordering of output, prices, and the
policy interest rate on the simulated data, using four lags of the dependent variables.

Figure 10 compares the impulse responses across all identification approaches, (a) our
approach, (b) the recursive approach, and (c) the narrative approach, to the theoretical
impulse response function.

Figure 10: Comparison of identification approaches (baseline)
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Notes: Impulse responses to a contractionary monetary policy shock scaled to a 25 bp impact increase in the
interest rate. Our Approach reflects our identification approach using the nowcast error in output growth
and inflation as predictors for the policy rate; Narrative is the narrative approach (Romer and Romer, 2004);
Recursive is the recursive approach (Christiano et al., 1999); and Model is the model-implied theoretical
impulse response function. The regressions of output and the price level in (a) and (c) include four lags of
the dependent variable. On the left-hand side of the regressions, we use the true macroeconomic variables,
not the ones with measurement errors, as in our empirical exercises. 95-percent bootstrap confidence bands.

The recursive and narrative approaches, shown in Panels (b) and (c) of Figure 10, fail
to recover the theoretically implied model responses in contrast to our identification
approach, shown in Panel (a). Both alternative approaches significantly underestimate
the model-implied impulse responses, that is, estimate a more muted response of output
and prices to a monetary policy shock. The alternative approaches fail to identify the
model-implied impulse responses because the restored monetary policy shock turns out
to be a combination of all the shocks in the model. More precisely, the correlation of the
derived “monetary policy shock” with the preference, cost-push, and technology shocks is
significantly different from zero. Moreover, note that it is not the presence of the nowcast
errors that is responsible for failing to recover the model-implied impulse responses, but
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rather the presence of the other shocks in the model. In fact, when the variances of the
preference and cost-push shocks are set to zero, the narrative approach accurately recovers
the model-implied impulse responses. Although we cannot recover the model-implied
impulse responses using the recursive approach, we can improve the performance by
aligning the expectation structure, i.e., assuming that prices and output are determined
before the realization of the monetary policy shock, as shown in Carlstrom et al. (2009).
However, the estimated impulse responses based on the modified expectation structure
still underestimate the model-implied responses.

In Appendix A.10, Figure 18 displays the simulation results for the correlation calibration
that are qualitatively similar to the baseline calibration. In sum, the results of our simu-
lation exercise indicate that our approach to identifying monetary policy shocks works
well on a standard NK model as the data-generating process, and better than narrative
and recursive approaches.

5 Conclusion

We propose a new identification approach to estimate the effects of exogenous monetary
policy shocks. In particular, we exploit the central bank’s imperfect information at the
point of decision making. We isolate the part of the policy response reaction due to the
central bank’s nowcast errors with respect to inflation and the output gap and use these
as predictors for the interest rate. Our approach performs well in the data as well as in
simulation exercises. Using the model from Ireland (2004), we confirm the viability of
our identification approach. When we apply our identification approach to U.S. data, we
find, in response to a 25 basis point increase in the policy rate, a brief decline in output,
and a persistent decline in prices. In particular, we do not find the price puzzle that often
plagues the empirical monetary policy literature.
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A Appendix

A.1 Extended sample (1987:Q3-2015:Q4)

This section shows the results for the extended sample (1987:Q3-2015:Q4). We replace the
federal funds rate with the Wu and Xia (2016) shadow rate during the zero lower bound
(ZLB) period. To control for discontinuities, we include a dummy for the ZLB period
in the local projection regression. The modified local projection regression equation is:
yt+h = αyh + βyh ît + γyhcontrolst + ηyhZLBt + εyt+h.

Table 3: Constructing the shock: results (1987:Q3-2015:Q4)

(1) (2) (3) (4) (5) (5’) (5”) (5”’)
ux 1.80∗∗∗ 1.90∗∗∗ 1.82∗∗∗ 1.02∗∗ 0.81 0.74

(0.21) (0.22) (0.23) (0.36) (0.50) (0.51)
uπ 0.70 -0.10 -0.08 0.28 0.41 0.35

(0.35) (0.28) (0.30) (0.37) (0.38) (0.40)
ug -0.30∗ -0.40∗∗∗

(0.15) (0.11)
R2 0.390 0.034 0.035 0.453 0.390 0.098 0.039 0.030
F 71.53 3.92 4.02 30.37 35.50 5.96 2.26 1.68
N 114 114 114 114 114 113 113 110

Notes: Regression of the shadow rate on individual or combinations of nowcast errors: (1) uxt , (2) uπt , (3) ugt ,
(4) uxt and uπ and ugt , (5) uxt and uπt , (5’) uses uπ and the residual of uxt purged to the lagged output gap as
predictors. (5”) and (5”’) use the residual of uxt and uπt purged to its lagged first and four values as predictors.
Standard errors in parentheses. Constant included. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 11: Local projections: Baseline vs. additional controls (extended sample)
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the shadow rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate
based on local projection methods (Jordà, 2005). The black, solid lines reflect the results for the specification
controlling for four lagged values of the dependent variables in the regression of the log of real GDP and
the log of the GDP deflator; the red, dashed lines additionally control for one lagged value of the monetary
policy shock; the blue, dotted lines additionally control for a quadratic time trend, and the green, dash-dotted
lines control for four lagged values of log of real GDP and log of the GDP deflator in all regressions. Shaded
areas are 95-percent bootstrap confidence bands.
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A.2 Analytics in the Stylized Model

Consider the stylized model characterized by (1)-(3). It is straightforward to express the
endogenous variables (it, xtt, and xTt ) as functions of exogenous shocks (νt, ut, and εt),
which we assume are all i.i.d:

xTt =
1

1− ψxψi
[ψxψiut + ψxνt + εt] (10)

xtt =
ψx

1− ψxψi
νt +

1

1− ψxψi
εt +

1

1− ψxψi
ut (11)

it =
1

1− ψxψi
νt +

ψi
1− ψxψi

εt +
ψi

1− ψxψi
ut (12)

An econometrician would like to identify ψx, the partial effect of an exogenous change in
the interest rate on economic conditions. So long as var(εt) 6= 0, a regression of xTt on it

will not correctly uncover this parameter. εt both directly affects xTt and indirectly affects it
through the policy rate, so there is a classic simultaneity problem.

Since the shocks are mutually uncorrelated, looking at (12), in a sufficiently large sample,
a regression of it on ut will result in a fitted value of:

ît =
ψi

1− ψxψi
ut (13)

Now, suppose one estimates a regression of xTt on ît:

xTt = α̂it + et (14)

Using (13), we can write this as:

xTt = α
ψi

1− ψxψi
ut + et (15)
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Hence, the regression in (15) is a regression of xTt on a scaled version of ut. But, from (10),
in a sufficiently large sample we know that a regression of xTt on ut will yield a coefficient
of ψxψi

1−ψxψi . Hence, we will have:

α
ψi

1− ψxψi
=

ψxψi
1− ψxψi

, (16)

which implies that:

α = ψx (17)

In other words, in this simple, stylized model our two-step procedure correctly uncovers
the effect of a change in the interest rate on economic conditions, ψx. The nowcast error is
not orthogonal to economic conditions; if it were, this procedure would not work. What
we require is that the nowcast error only affects economic conditions through its influence
on the policy rate.
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A.3 Inflation nowcast error as predictor for the policy rate

Figure 12 demonstrates the validity of the main results using inflation nowcast errors as
the single predictor of the policy rate. The results are qualitatively similar to using both
the output gap nowcast error and inflation nowcast error as predictors. While the output
response is slightly smaller quantitatively and more transitory, the effect on prices remains
significant and of similar magnitude.

Figure 12: Local projections: Inflation nowcast error as predictor
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest
rate. The black, solid lines reflect the results for the specification controlling for four lagged values of
the dependent variables in the regression of the log of real GDP and the log of the GDP deflator; the red,
dashed lines additionally control for one lagged value of the monetary policy shock; the blue, dotted lines
additionally control for a quadratic time trend, and the green, dash-dotted lines control for four lagged
values of log of real GDP and log of the GDP deflator in all regressions. Shaded areas are 95-percent bootstrap
confidence bands.
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A.4 Monthly data

This section presents the results using monthly data (1987:M7-2008:M8). To implement
the monthly approach, we first obtain the shock series by regressing the federal funds rate
on the nowcast errors at the FOMC meeting level (shown in Table 4) and taking the fitted
values as the monetary shock series.27 We then estimate the response of output and prices
to an exogenous monetary policy shock from the first stage using local projections. We
measure output, yt+h, as the log of Industrial Production, and prices, pt+h, as the log of the
Consumer Price Index.28

Table 4: Constructing the shock: results (1987:M7-2008:M8)

(1) (2) (3) (4) (5) (5’) (5”) (5”’)
ux 1.62∗∗∗ 1.53∗∗∗ 1.39∗∗∗ 1.14∗∗∗ 0.81 0.83

(0.20) (0.21) (0.21) (0.23) (0.43) (0.44)
uπ 1.02∗∗∗ 0.51∗∗ 0.61∗∗ 0.68∗∗∗ 0.65∗∗ 0.61∗

(0.19) (0.19) (0.18) (0.19) (0.24) (0.25)
ug -0.10 -0.19∗

(0.09) (0.08)
R2 0.277 0.142 0.007 0.346 0.323 0.254 0.069 0.060
F 64.06 27.65 1.24 29.12 39.55 28.07 6.16 5.18
N 169 169 169 169 169 168 168 165

Notes: Regression of the federal funds rate on individual or combinations of nowcast errors: (1) uxt , (2) uπt ,
(3) ugt , (4) uxt and uπ and ugt , (5) uxt and uπt , (5’) uses uπ and the residual of uxt purged to the lagged output
gap as predictors. (5”) and (5”’) use the residual of uxt and uπt purged to its lagged first and four values as
predictors. Standard errors in parentheses. Constant included. * p < 0.05, ** p < 0.01, *** p < 0.001.

27In line with the literature using high-frequency data (e.g., Nakamura and Steinsson, 2018; Gertler and
Karadi, 2015) and Romer and Romer (2004)’s narrative approach, the shock is zero in months without an
FOMC meeting.

28For the local projections, we retrieve the final outcome variables from Federal Reserve Economic Data
(FRED): Industrial Production (INDPRO), and Consumer Price Index (CPALCY01USM661N).
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Figure 13: Local projections: Baseline vs. additional controls (monthly data)
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Notes: Impulse response functions of the log of Industrial Production (in percent), the log of the Consumer
Price Index (in percent), and the federal funds rate to a contractionary monetary policy shock scaled to a
25 bp increase in the interest rate based on local projection methods (Jordà, 2005). The black, solid lines
reflect the results for the specification controlling for four lagged values of the dependent variables in the
regression of the log of Industrial Production and the log of the Consumer Price Index; the red, dashed lines
additionally control for one lagged value of the monetary policy shock; the blue, dotted lines additionally
control for a quadratic time trend, and the green, dash-dotted lines control for four lagged values of log of
Industrial Production and log of the Consumer Price Index in all regressions. Shaded areas are 95-percent
bootstrap confidence bands.
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A.5 External instrument approach

This appendix produces impulse responses to a policy shock following the external instru-
ment literature; see e.g., Stock and Watson (2012, 2018).

Figure 14: External instrument approach
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent)
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate.
All regressions include the four lagged values of log real GDP, the log GDP deflator, and the interest rate
as controls, using the output gap and inflation nowcast errors as external instruments for the policy rate.
Shaded areas are 95-percent confidence bands.

Figure 14 presents the impulse responses. The responses of real GDP and the price level
are qualitatively similar to our baseline in Figure 2; importantly, there is no price puzzle.
Quantitatively, the responses of output and the price level are much larger (arguably
implausibly so), and have less statistical precision, in the external instrument approach
compared to our baseline.
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A.6 Responses with confidence bands

Figures 15 and 16 provide the error bands for all responses in Figures 3 and 4, respectively.

Figure 15: Local projections with controls
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(b) Lagged shocks
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(d) Lagged output and prices
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest
rate. Panel (a) presents the results for the specification controlling for four lagged values of the dependent
variables in the regression of the log of real GDP and the log of the GDP deflator; Panel (b) additionally
controls for one lagged value of the monetary policy shock; Panel (c) additionally controls for a quadratic
time trend, and Panel (d) controls for four lagged values of log of real GDP and log of the GDP deflator in all
regressions. Shaded areas are 95-percent bootstrap confidence bands.
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Figure 16: Taking into account business cycle endogeneity
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(b) Purged output gap and inflation
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(c) Inflation only

0
.2

.4
.6

.8

0 2 4 6 8 10

log (real GDP)
-.4

-.3
-.2

-.1
0

0 2 4 6 8 10

log (GDP deflator)

-.1
0

.1
.2

.3

0 2 4 6 8 10

Interest rate

Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent)
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate.
Panel (a) uses the nowcast errors in output gap and inflation as exogenous predictors. Panel (b) purges the
output gap nowcast errors to the lagged output gap and uses the residuals as predictors for the policy rate.
Panel (c) uses the inflation nowcast errors only as predictors for the policy rate. Regressions of the log of
real GDP and the log of the GDP deflator include four lags of the dependent variables. Shaded areas are
95-percent bootstrap confidence bands.
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A.7 Business cycle endogeneity (II)

To further verify that the difference between final and real-time data constitutes exogenous
variation that can be exploited for identification, the nowcast errors are purged from their
lagged final values. We use the lagged values of these variables because - by construction -
their contemporaneous values are influenced by monetary policy, which is the relationship
we are attempting to estimate in this paper. Figure 17 shows that our results are unaffected
by controlling for lagged final values.

Figure 17: Taking into account business cycle endogeneity (II)
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Notes: Impulse response functions of the log of real GDP (in percent), the log of the GDP deflator (in percent),
and the interest rate to a contractionary monetary policy shock scaled to a 25 bp increase in the interest rate.
The baseline specification uses the nowcast errors in the output gap and inflation as exogenous predictors.
uown,x and uown,π purge the nowcast errors to their own lagged final vintage values and use the residuals
as exogenous predictors. uall,x and uall,π purge the nowcast errors to the lagged final values of the output
gap output growth and inflation and use the residuals as exogenous predictors. Regressions of the log real
GDP and the log GDP deflator include four lags of the dependent variables. Shaded areas are 95-percent
bootstrap confidence bands.
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A.8 Model equations

We present the linearized set of equations of the augmented NK model based on Ireland
(2004). The nowcasts are denoted with the superscript t. The true state is denoted with the
superscript T .

xTt = αxx
T
t−1 + (1− αx)Et[xTt+1]− (it − Et[πTt+1]) + (1− ω)(1− ρa)at (18)

πTt = β(αππ
T
t−1 + (1− απ)Et[πTt+1]) + ψxTt − et (19)

xTt = yt − ωat (20)

gTt = yt − yt−1 + σzεzt (21)

at = ρaat−1 + σaεat (22)

et = ρeet−1 + σeεet (23)

it = it−1 + ρππ
t
t + ρgg

t
t + ρxx

t
t + νt (24)

νt = σrεrt (25)

xtt = xTt + uxt (26)

πtt = πTt + uπt (27)

gtt = gTt + ugt (28)
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A.9 Model calibration

Table 5: Calibration

Parameter Value
β 0.99
ψ 0.1
ω 0.0581
αx 0.0000
απ 0.0000
ρπ 0.3866
ρg 0.3960
ρx 0.1654
ρa 0.8258 ∗

ρe 0.8363 ∗

σa 0.0175 ∗

σe 0.0006 ∗

σz 0.002 ∗

σr 0.0033 ∗

σx 0.0072
σπ 0.002
σg 0.0048

Notes: ∗ denotes our estimates for the period from 1987:Q3 to 2008:Q2 using the demeaned time series of
real GDP growth, the GDP deflator, the federal funds rate and the output gap at a quarterly frequency. The
parameter values in the upper third section are taken from the post-1980 estimates of Ireland (2004). Sources:
FRED, CBO.
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A.10 Simulation results

This section presents the simulation results for the correlation calibration. We compare our
identification, the narrative approach, and the recursive approach.

Figure 18: Comparison of identification approaches (correlation calibration)
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(b) Recursive approach
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(c) Narrative approach
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Notes: Impulse responses to a contractionary monetary policy shock scaled to a 25 bp impact increase in the
interest rate. Our Approach reflects our identification approach; Narrative is the narrative approach (Romer
and Romer, 2004); Recursive is the recursive approach (Christiano et al., 1999); and Model is the model-implied
theoretical solution. The regressions of output and the price level in (a) and (c) include four lags of the
dependent variable. On the left-hand side of the regressions, we use the true macroeconomic variables, not
the ones with measurement errors, as in our empirical exercises. 95-percent bootstrap confidence bands.

xiv


	Introduction
	Empirical strategy
	Empirical results
	Identifying the shock
	Local projections
	Robustness checks
	Alternative identification approaches

	Simulation results
	The Taylor rule
	Specification of error processes
	Simulation
	Our identification approach
	Alternative identification approaches


	Conclusion
	References
	Appendix
	Extended sample (1987:Q3-2015:Q4)
	Analytics in the Stylized Model
	Inflation nowcast error as predictor for the policy rate
	Monthly data
	External instrument approach
	Responses with confidence bands
	Business cycle endogeneity (II)
	Model equations
	Model calibration
	Simulation results


