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1 Introduction

This note works through some simple two-period consumption-saving problems. In this model

households receive an exogenous stream of income and have to decide how much to consume and

save. Two periods is the minimum number of periods to make problems dynamic; it also turns

out that you can usually split infinite horizon problems into two periods (the present and a future

continuation value), so focusing on two periods does not cost us much. The basic consumption-

saving problem is really at the core of modern dynamic macroeconomics, so it’s important to

understand it well.

Focusing on this simple setup allows us to study a couple of different phenomena. First, it

allows us to think about competitive equilibrium in a simple framework. I like to call economies

such as this “endowment economies” – since total income is exogenous (and hence fixed), there is

no production, and in equilibrium total consumption must equal total income. Hence, equilibrium

price adjustment will undo all of the consumption smoothing motives you’ve previously learned

about – aggregate consumption will have to equal aggregate income, and prices will adjust to make

this consistent with agent optimization. Second, the two period setup allows us to think about the

role of heterogeneity and risk-sharing. If markets are “complete” in a sense to be defined below,

agents can have stochastic idiosyncratic income draws but their consumption will be independent

of their idisoyncratic income and will be perfectly correlated with the aggregate endowment. Such

a setup helps motivate the use of representative agent assumptions in macroeconomics.

2 One Type of Agent

Suppose there are sufficiently many agents who have identical preferences and endowments. As

long as the number of agents is sufficiently many such that agents behave as price-takers, we can

normalize the number of agents to 1.

An agent wakes up in period t and expects to live for two periods, t and t+1. The agent receives

an exogenous and deterministic endowment of income each period, Yt and Yt+1. The agent can
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borrow or save in period t by buying/selling bonds, Bt. These bonds cost qt units of consumption

(which serves as the numeraire); Bt units of bonds brought into period t + 1 pays out Bt units of

income in period t+ 1. Bt can be positive or negative; a positive value means that the agent saves,

a negative value means that the agent borrows. The agent begins time with no stock of bonds, and

must die with no stock of bonds either (an agent wouldn’t choose to die after period t + 1 with

positive wealth left over; the agent would like to die in debt, but we rule this out). The agent faces

two flow budget constraints for each period:

Ct + qtBt ≤ Yt

Ct+1 ≤ Yt+1 +Bt

The agent wants to maximize the expected present discounted value of flow utility, where

consumption, Ct and Ct+1, maps into utilits by lnCt and lnCt+1. Agents discount future utility

flows by 0 < β < 1. The optimization problem of the agent is then:

max
Ct,Bt,Ct+1

lnCt + β lnCt+1

s.t.

Ct + qtBt ≤ Yt

Ct+1 ≤ Yt+1 +Bt

We can form a Lagrangian:

L = lnCt + β lnCt+1 + λ1 (Yt − Ct − qtBt) + λ2 (Yt+1 +Bt − Ct+1)

The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λ1 (1)

∂L
∂Ct+1

= 0⇔ β
1

Ct+1
= λ2 (2)

∂L
∂Bt

= 0⇔ qtλ1 = λ2 (3)

If we combine these, we are left with the Euler equation:

qt
1

Ct
= β

1

Ct+1
(4)

This condition has an intuitive interpretation: saving one fewer unit (i.e. reducing Bt by 1)

increases current consumption by qt, the marginal utility of which is qt
1
Ct

; saving one fewer unit

today means you can consume one fewer unit tomorrow, which reduces utility tomorrow by 1
Ct+1

,
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which discounted into period t utils is β 1
Ct+1

. At an optimum, the extra benefit and extra cost of

saving a little more must be equal – at the optimum, you’re indifferent.

The problem as laid out above is a decision problem: it generates an optimality condition telling

us how the agent should behave given prices. We are now in a position to define a competitive

equilibrium for this economy. A generic definition of a competitive equilibrium is a set of prices

and allocations such that agents are behaving optimally (behaving according to their decision rules)

and all markets simultaneously clear. Here the price is qt, and the allocations will be Ct, Ct+1,

and Bt. What is the market-clearing condition in this economy? The market-clearing condition in

this economy is that Bt = 0. Why is this the market-clearing condition? Market-clearing means

that demand for saving must equal supply of borrowing. Since there is only one type of agent, if

that agent wanted to save, there would be no borrowing supply; similarly, if that agent wanted to

borrow, there would be no saving supply. Hence, it must be the case that Bt = 0. Equivalently,

from the first period budget constraint, this means that Yt = Ct: all income must be consumed.

What will make this market-clearing condition hold? The price of the bond, qt. A generic

definition of a competitive equilibrium is a set of prices and allocation such that (i) the allocations

solve the agents’ decision problems and (ii) all markets clear. Here the allocations are Ct and Ct+1

and the price is qt; the decision problem is given above, and the market-clearing condition is Bt = 0.

Since Bt = 0 implies Ct = Yt and Ct+1 = Yt+1, and the Yt and Yt+1 are exogenous, we can plug

these into the Euler equation to solve for the equilibrium price of bonds:

qt = β
Yt
Yt+1

(5)

Hence, the equilibrium is characterized by the price qt = β Yt
Yt+1

, and the allocations Ct = Yt,

Ct+1 = Yt+1, and Bt = 0. If I were to assume that the endowment were constant across time, with

Yt = Yt+1, we would simply have qt = β.

We can do some interesting comparative static exercises here, and compare them to the predic-

tions of the partial equilibrium permanent income hypothesis. First of all, consider what happens

if Yt increases. We know from basic PIH theory that households would like to smooth their con-

sumption intertemporally – hence, they would like to save some of the increase in current income

to be able to increase both Ct and Ct+1. But we know from the market-clearing condition that

they cannot do this in equilibrium: we must have Ct = Yt and Ct+1 = Yt+1. In other words, in

equilibrium, the household must consume all of the extra endowment in period t. What makes

them willing to do this? The price of bonds increases – we can see this from (5); when Yt goes up,

qt must also go up. Intuitively, what’s going on here is that, when Yt goes up, there is an increase

in demand for Bt (households want to save so as to increase consumption in the future). But, in

equilibrium here, there can be no bond holding – effectively, the supply of bonds is 0. The increase

in demand therefore just drives up the price of bonds. We can see this in a simple supply-demand

graph:
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Next, consider the case of an increase in the future endowment, Yt+1. We know that this

makes people want to increase consumption immediately in the present. Doing so requires either

borrowing or saving less. But in equilibrium, current consumption cannot change, since current Yt

is unchanged. We can see from the expression for equilibrium qt that qt will fall. Effectively, what

is going on is that the increase in the future endowment reduces demand for bonds, which drives

down their equilibrium price given that the supply of bonds in equilibrium is fixed at zero. We can

see this in the figure below:
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qt 
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What we see here is that there is no way for agents in the model in equilibrium to smooth their

consumption relative to the aggregate endowment. This happens because even though bonds exist

in this model, in equilibrium they are not held if everyone is the same. In other words, agents are

unable to “insure” themselves against aggregate income “risk” here – I put “insure” and “risk” in

quotations because the model as laid is deterministic, but you should hopefully get the point.
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2.1 Alternative Treatment of Bond Payouts

In writing the problem above, I assumed that you purchased bonds in period t at a price qt; these

bonds pay out 1 unit of consumption in period t+1. We saw in the example economy above with a

constant endowment across time that qt = β < 1; with the price less than one and the future payout

one unit of consumption, sometimes we call these instruments “discount” bonds – they (typically)

sell at a discount relative to “face” (the amount the bond will pay out in period t+ 1).

The alternative setup (and actually the setup I use most often), is to instead normalize the price

of the bond in period t to be 1; the bond then pays out 1 + rt units of consumption in period t+ 1,

where we interpret rt as the interest rate. These setups turn out to be identical, and we’ll have

1 + rt = 1
qt

, but it’s worth seeing them both. In this setup, we would write the budget constraints

as:

Ct +Bt ≤ Yt

Ct+1 ≤ Yt+1 + (1 + rt)Bt

Setting up the optimization problem leads to the following Euler equation:

1

Ct
= β(1 + rt)

1

Ct+1
(6)

As noted above, this is the same as we had before if you interpret 1 + rt = 1
qt

. The equilibrium

allocations will be identical. If you consider the two thought experiments I considered above –

separately, an increase in Yt or Yt+1 – we can figure out what ought to happen to rt. In the case

of an increase in Yt, we saw that qt would go up, which means rt falls. The opposite happens in

the case of an increase in Yt+1. Basically, what is happening in the case of an increase in Yt is that

people want to save more (they want to increase their consumption by less than their income) –

since consumption must equal income, the real interest rate must fall in equilibrium to dissuade

this extra saving. In the case of an increase in Yt+1, the real interest rate rises in equilibrium –

households want to reduce saving/increase borrowing, but this cannot happen in equilibrium, so

the real interest rate adjusts to dissuade this. A useful rule of thumb that emerges here is that

the equilibrium real interest rate ends up being a measure of how “good” the future looks relative

to the present – if the future looks brighter (bigger endowment), the real interest rate will rise in

equilibrium to offset this (fully in this endowment economy case, partially in a model with some

means to transfer resources intermporally like capital accumulation). Also, we see that the price,

qt, and interest rate, rt, on bonds move opposite one another.

2.2 Stochastic Aggregate Endowment

Suppose instead of being deterministic the future endowment is stochastic. Suppose there are two

states of the world: Yt+1(1) and Yt+1(2) (i.e. think of state 1 as being the high state, 2 being the

low state). These states will occur with probabilities p and 1− p, with 0 ≤ p ≤ 1.
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The problem in this setup is not fundamentally different but does need to be modified. The

household still has access to the bond, but assume that its payout does not depend on the future

state of the world (more on this below). First, with stochastic future income, future consumption

will be stochastic. This means that the household will want to maximize expected utility. Second,

with two states of the world in the future, there will effectively be two budget constraints for period

t + 1. Note that the budget constraints must hold in an ex-post sense (not just ex-ante), so we

need to write separate budget constraints for each state of the world. Call Ct+1(1) and Ct+1(2) the

amount of consumption the agent will do in the two states of the world. We can write the problem

of the agent as:

max
Ct,Bt,Ct+1(1),Ct+1(2)

lnCt + pβ lnCt+1(1) + (1− p)β lnCt+1(2)

s.t.

Ct + qtBt ≤ Yt

Ct+1(1) ≤ Yt+1(1) +Bt

Ct+1(2) ≤ Yt+1(2) +Bt

Form a Lagrangian:

L = lnCt + pβ lnCt+1(1) + (1− p)β lnCt+1(2) + λ1 (Yt − Ct − qtBt) + . . .

· · ·+ λ2 (Yt+1(1) +Bt − Ct+1(1)) + λ3 (Yt+1(2) +Bt − Ct+1(2))

The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λ1 (7)

∂L
∂Bt

= 0⇔ qtλ1 = λ2 + λ3 (8)

∂L
∂Ct+1(1)

= 0⇔ pβ
1

Ct+1(1)
= λ2 (9)

∂L
∂Ct+1(2)

= 0⇔ (1− p)β 1

Ct+1(2)
= λ3 (10)

If we combine these, we get:

qt
1

Ct
= β

(
p

1

Ct+1(1)
+ (1− p) 1

Ct+1(2)

)
(11)

The term inside the parentheses is just the expected marginal utility of future consumption

(which is not the same thing as the marginal utility of expected consumption). Hence, we can

write this Euler equation as:
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qt
1

Ct
= βEt

1

Ct+1
(12)

This looks identical to (4), but it is the expected future marginal utility of consumption on the

right hand side instead of the realized marginal utility of future consumption.

It turns out that we could re-write the problem in the first place and will arrive at the same

place. In particular, note that pβ lnCt+1(1) + (1 − p)β lnCt+1(2) = βEt lnCt+1. Note also that

the budget constraint must hold in both states of the world, but it also must hold in expectation.

Hence, we could write the problem as:

max
Ct,Bt,Ct+1

lnCt + βEt lnCt+1

s.t.

Ct + qtBt ≤ Yt

EtCt+1 ≤ EtYt+1 +Bt

A Lagrangian is:

L = lnCt + βEt lnCt+1 + λt (Yt − Ct − qtBt) + Etλt+1 (Yt+1 +Bt − Ct+1)

Here instead of numbering the Lagrange multipliers I instead have dated them, and I have an

expectation operator in front of future flow utility and on front of the future flow budget constraint

(noting that the multiplier in t+ 1 is not known at time t either). The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λt (13)

∂L
∂Bt

= 0⇔ qtλt = Etλt+1 (14)

∂L
∂Ct+1

= 0⇔ βEt
1

Ct+1
= Etλt+1 (15)

Combing these yields:

qt
1

Ct
= βEt

1

Ct+1
(16)

This is the same as before. So when dealing with aggregate uncertainty, I typically won’t specific

specific states of the world and probabilities and such, but it will just be implicit that the future is

uncertain, and therefore we will write problems as I have done here.

The implications for equilibrium prices and allocations are not fundamentally affected by the

presence of uncertainty in the aggregate endowment. In equilibrium, consumption will have to

equal income – there can be no bond-holding in equilibrium. An increase in the current endowment

will result in qt rising – the agents would like to save, but can’t in equilibrium, so qt rises to offset
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this. An expected increase in the future endowment will lower the expected marginal utility of

future consumption; since current Ct cannot adjust, this will result in qt falling. In this setup

we can also talk about the effect of uncertainty. Suppose there were a mean-preserving spread

on future endowment realizations – by this I mean that say Yt+1(1) gets bigger and Yt+1(2) gets

smaller, but EtYt+1 is unaffected. Given that third derivative of utility is positive (so marginal

utility is convex), this will induce a precautionary motive – agents would like to increase saving in

the present. This is not possible in equilibrium, so qt will rise. Also, just as in the deterministic

case, agents cannot smooth their consumption relative to the aggregate endowment. Hence, there

is in a sense uninsurable aggregate risk in this model.

3 Two Types of Agents

Instead of just a large number of one type of perfectly identical agents, suppose now that there are

two types of agents. Let’s call them type 1 and type 2 (I will index them by i = 1 or i = 2). They

have identical preferences, but differ somehow in their endowments. The key insight going forward

is that the differences in endowments expose agents to idiosyncratic risk, which can potentially be

gotten rid of through the one period bonds we’ve discussed.

For this whole section, we again focus on a two period setup; this can easily be generalized. We

assume that both types of agents discount the future by β and have log utility over consumption.

There are sufficiently many agents that they behave as price-takers; for simplicity, assume that

there are an equal number of each type of agent (one can relax this). You can call the number of

each type of agent N , but since they’re all the same I’ll normalize to N = 1.

3.1 Deterministic but Heterogeneous Endowments

Suppose that type 1 agents receive one unit of the endowment in period t and none in period t+ 1,

while the opposite is true for type 2 agents. This is perfectly deterministic. That is, the endowment

patterns are:

(Y1,t, Y1,t+1) = (1, 0)

(Y2,t, Y2,t+1) = (0, 1)

The optimization problem faced by each type of agents is identical to the problem faced by

the single agent in the above section. They face a common price of bonds, qt. Hence, the Euler

equation must hold for each type:

1

Ci,t
= β

1

qt

1

Ci,t+1
i = 1, 2 (17)

A useful insight from the Euler equation is the following – each type of agent will have the same

ratio of consumption in the future to consumption in the present. This holds because they face
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the same price on the bond, qt, and have the same discount factor. We can manipulate the Euler

equations for both types to write:

C1,t+1

C1,t
=
C2,t+1

C2,t
(18)

We can re-arrange this to get:

C2,t

C1,t
=
C2,t+1

C1,t+1
(19)

This tells us something neat right away – the ratio of type 2 to type 1 consumption is the

same in both periods. Note that this holds regardless of the endowment patterns. Type 1 agents

may have more (or less) consumption than type 2 agents, but their relative consumption will be

constant across time. For the particular endowment pattern I’ve assumed here, this means that

type 2’s relative consumption in period t is no different than his consumption relative to type 1 in

period t+ 1, even though type 2 has no income in period 1. Effectively, what is going on is a sort

of risk-sharing between the two types of agents, allowing them to smooth their consumption across

states of the world.

This setup of the model has a slightly different market-clearing condition. Since there are two

types, it is conceivable that they could borrow/lend with one another (indeed, since their relative

consumption is constant across time, if their endowment patterns are not the same across time,

they will have to borrow/lend with one another). On net, aggregate borrowing/lending must be

zero, but the individual agents can borrow/lend. Hence, we have:

B1,t +B2,t = 0 (20)

Intuitively, if type 1 saves (B1,t > 0), then type 2 must borrow in an equal amount (B2,t =

−B1,t). If we impose this condition and sum the flow budget constraints together, we get:

C1,t + C2,t = Y1,t + Y2,t = 1 (21)

C1,t+1 + C2,t+1 = Y1,t+1 + Y2,t+1 = 1 (22)

In other words, aggregate consumption must equal the aggregate endowment, which I’ve set up

to be fixed. You can see where this is going – since aggregate consumption is fixed, and the Euler

equations tell us that relative consumption is also fixed, it’s going to be the case that consumption

is going to be constant across time for both agents. In particular, solve for C2,t and C2,t+1 in terms

of C1,t and C1,t+1 from the constraints:

C1,t = 1− C2,t

C1,t+1 = 1− C2,t+1
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Plug these in to the condition above that consumption is the same ratio across agents in both

periods:

1− C2,t

C2,t
=

1− C2,t+1

C2,t+1

Simplifying this equation implies that C2,t = C2,t+1 – as predicted, consumption will be equal

across time. Similarly, we will have C1,t = C1,t+1. If you go to the Euler equation, this then implies

that qt = β. To solve for the values of consumption of each type, combine the budget constraints,

yielding:

Ci,t + qtCi,t+1 = Yi,t + qtYi,t+1

Imposing that qt = β and that consumption is equal across time, we have:

Ci,t =
1

1 + β
(Yi,t + βYi,t+1)

Plugging in the endowment streams, we get:

C1,t =
1

1 + β
= C1,t+1 (23)

C2,t =
β

1 + β
= C2,t+1 (24)

We can use these to back out saving behavior to check our work. Noting that Bi,t = 1
q (Yi,t−Ci,t),

we have:

B1,t =
1

β

(
1− 1

1 + β

)
=

1

1 + β

B2,t =
1

β

(
− β

1 + β

)
= − 1

1 + β

As we imposed originally, we have B1,t +B2,t = 0.

Hence, we observe that consumption is constant across time for both agents (though it isn’t

the same for both agents – type 1 consumes more, which ends up being by virtue of getting an

endowment of 1 in the first period instead of having to wait until period t+ 1). What is important

to note here is that consumption of an agent doesn’t depend on whether his/her income is high

or low – it is the same in both periods. Effectively, the bond serves as an insurance mechanism –

if I have lots of income in the first period but little in the second, I save in the first period and

vice-versa. In doing so I can smooth out my consumption relative to my income.

While in this setup agents can eliminate their idiosyncratic income variability through the saving

instrument, as in the problem of a single type of agent, the agents here cannot smooth out aggregate

income changes. Suppose, for example, that I gave type 1 agents 2 units of the endowment in period

t instead of just 1. They would like to smooth their consumption across time, but will not be able
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to do that. It will still be the case that the relative consumption of type 1 to type 2 agents will

be the same in both periods, but the levels of consumption will be different than in the baseline

setup. The important point here is that agent’s consumption patterns depend on the aggregate

endowment, not their idiosyncratic endowment.

3.2 Stochastic Heterogeneous Endowments

Now let’s change the setup slightly. Rather than the future endowments being deterministic, let’s

make them stochastic. Assume that current endowments are known, Yi,t for i = 1, 2. For the future

endowments, suppose that there are two states of the world: states 1 and 2. State 1 occurs with

probability p and state 2 occurs with probability 1− p. The period t+ 1 endowment of agent i in

state 1 is Yi,t+1(1), and the endowment in state 2 is Yi,t+1(2). For simplicity, let’s assume that the

aggregate future endowment is 1 regardless of the state: this means Y1,t+1(1) + Y2,t+1(1) = 1 and

Y1,t+1(2) + Y2,t+1(2) = 1. This means that there is no aggregate uncertainty, but the agents face

individual uncertainty.

Given the individual uncertainty faced by agents, we need re-state the problem somewhat. First,

they will want to maximize expected utility (since future income, and hence future consumption,

are uncertain, the future utility flow will be uncertain). Second, I want to augment the description

of bonds. In the setup we’ve worked with so far, there is one bond – you buy the bond today by

giving up qt units of consumption, and it pays out 1 unit of consumption in t+ 1 (equivalently, you

buy the bond today giving up one unit of consumption, and it pays out 1 + rt units of consumption

in t + 1). Now, I want to introduce two bonds which have “state-contingent” payoffs: Bt(1) pays

out 1 unit of consumption in period t + 1 if state 1 materializes, while Bt(2) pays out one unit

of consumption in t + 1 should state 2 materialize. The price of these bonds in terms of period t

consumption are qt(1) and qt(2), respectively. If you buy Bt(1) and state 2 materializes, you get

nothing – the payout on these bonds is state-contingent.

The first period flow budget constraint for household of type i is:

Ci,t + qt(1)Bi,t(1) + qt(2)Bi,t(2) ≤ Yi,t (25)

In words, the household’s consumption plus its purchases of the two state-contingent bonds

cannot exceed income. Note that Bi,t(1) and Bi,t(2) can be negative. The household effectively

faces two separate second period budget constraints – this is because budget constraints must hold

ex-post, not just in expectation. So we will have one period t + 1 constraint for each state of the

world (in this case two). For agent i = 1, 2, these are:

Ci,t+1(1) ≤ Yi,t+1(1) +Bi,t(1) (26)

Ci,t+1(2) ≤ Yi,t+1(2) +Bi,t(2) (27)

Household of type i will want to choose current consumption, purchases of both bonds, and

future state-contingent consumption to maximize the expected discounted value of lifetime utility
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subject to the three flow budget constraints. The problem can be written:

max
Ci,t,Bi,t(1),Bi,t(2),Ci,t+1(1),Ci,t+1(2)

lnCi,t + pβ lnCi,t+1(1) + (1− p)β lnCi,t+1(2)

s.t.

Ci,t + qt(1)Bi,t(1) + qt(2)Bi,t(2) ≤ Yi,t

Ci,t+1(1) ≤ Yi,t+1(1) +Bi,t(1)

Ci,t+1(2) ≤ Yi,t+1(2) +Bi,t(2)

Form a Lagrangian with three constraints:

L = lnCi,t + pβ lnCi,t+1(1) + (1− p)β lnCi,t+1(2) + λi,1 [Yi,t − Ci,t − qt(1)Bi,t(1)− qt(2)Bi,t(2)] + . . .

· · ·+ λi,2 [Yi,t+1(1) +Bi,t(1)− Ci,t+1(1)] + λi,3 [Yi,t+1(2) +Bi,t(2)− Ci,t+1(2)]

The first order conditions are:

∂L
∂Ci,t

= 0⇔ 1

Ci,t
= λi,1 (28)

∂L
∂Bi,t(1)

= 0⇔ qt(1)λi,1 = λi,2 (29)

∂L
∂Bi,t(2)

= 0⇔ qt(2)λi,1 = λi,3 (30)

∂L
∂Ci,t+1(1)

= 0⇔ pβ
1

Ci,t+1(1)
= λi,2 (31)

∂L
∂Ci,t+1(2)

= 0⇔ (1− p)β 1

Ci,t+1(2)
= λi,3 (32)

Divide (31) by (32):

p

1− p
Ci,t+1(2)

Ci,t+1(1)
=
λi,2
λi,3

(33)

Now divide (29) by (30) to get:

λi,2
λi,3

=
qt(1)

qt(2)
(34)

Since agents face the same prices, this means that
λ1,2
λ1,3

=
λ2,2
λ2,3

– i.e. this ratio of multipliers is

the same for both kinds of agents. Combine this with (23) to get:

p

1− p
Ci,t+1(2)

Ci,t+1(1)
=
qt(1)

qt(2)
(35)
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Since this is the same across agents, we can write this as:

C1,t+1(2)

C1,t+1(1)
=
C2,t+1(2)

C2,t+1(1)
(36)

We can re-arrange terms to get:

C1,t+1(2)

C2,t+1(2)
=
C1,t+1(1)

C2,t+1(1)
(37)

This tells us that the relative consumption across agents in period t + 1 is independent of the

realization of the state – it is the same in state 1 as in state 2. Since I assumed that aggregate

income in states 1 and 2 is the same at 1, and since in equilibrium total consumption will again

have to equal total income, it will be the case that the levels of consumption will be the same in

across states. I’m not going to go through here and solve for all equilibrium prices and allocations,

but it would be straightforward to do so.

What’s going on here is that these state-contingent bonds serve as an insurance mechanism.

In period t, an agent will “buy” bonds (have positive holdings of bonds) for states in which he

expects to have relatively low future income and will “sell’ (negative holdings) bonds that pay out

in states where his future income is relatively high. By doing so, agents can effectively eliminate the

idiosyncratic income risk that they face – as we see above, the relative consumption across agents is

identical in each state, which has the implication that individual consumption is perfectly correlated

with aggregate consumption. If the aggregate endowment is fixed, the levels of consumption for

both types of agents will be the same in both future states (though not necessarily the same across

agents). If the aggregate endowment is higher in one state than the other, then the levels of

consumption for agents in the higher state will be higher than in the low state, but the relative

levels of consumption will still be the same across states.

The setup I have described here is a (simple) description of complete markets: there are state-

contingent securities (bonds) which span the set of possible states, making it possible for agents to

use these securities to eliminate any idiosyncratic income risk. Note that it is not possible to elim-

inate aggregate endowment risks here – the market-clearing condition is always that the aggregate

endowment must equal the aggregate consumption, so if the aggregate endowment fluctuates con-

sumption will fluctuate. But, as we’ve seen above in this simple example, the ratio of consumption

across agents will not vary across states, provided these state-contingent bonds exist. This means

that individual consumption is perfectly correlated with aggregate consumption. The existence of

these complete markets forms the basis for representative agent assumptions in macroeconomics –

if markets are complete, idiosyncratic risks are eliminated and we can treat the economy as though

there is a single type of agent. Finally, note that our setup here does not imply consumption

equalization across agents – it implies that an agent’s consumption only varies with the aggregate

endowment.

Formally, the setup I’ve used here are called Arrow securities – there exists securities in each

period that have state-contingent payouts in the next period, and can be used to eliminate idiosyn-
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cratic risk. Arrow securities are one period securities that pay off in every conceivable idiosyncratic

state in the next period. An alternative arrangement that typically yields identical outcomes is for

trading in securities to being at the beginning of time for all states in all periods – this is often

called the Arrow-Debrue setup. The bottom line here is that the existence of complete markets

(either via the one period Arrow setup or the Arrow-Debrue securities at the beginning of time)

can eliminate idiosyncractic risk, which makes individual consumption perfectly correlated with

aggregate consumption, which helps motivate the use of representative agent economies.
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