Consumption
 ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims
University of Notre Dame

Spring 2018

Readings

- GLS Ch. 8

Microeconomics of Macro

- We now move from the long run (decades and longer) to the medium run (several years) and short run (months up to several years)
- In long run, we did not explicitly model most economic decision-making - just assumed rules (e.g. consume a constant fraction of income)
- Building blocks of the remainder of the course are decision rules of optimizing agents and a concept of equilibrium
- Will be studying optimal decision rules first
- Framework is dynamic but only two periods (t, the present, and $t+1$, the future)
- Consider representative agents: one household and one firm
- Unrealistic but useful abstraction and can be motivated in world with heterogeneity through insurance markets

Consumption

- Consumption the largest expenditure category in GDP (60-70 percent)
- Study problem of representative household
- Household receives exogenous amount of income in periods t and $t+1$
- Must decide how to divide its income in t between consumption and saving/borrowing
- Everything real - think about one good as "fruit"

Basics

- Representative household earns income of Y_{t} and Y_{t+1}. Future income known with certainty (allowing for uncertainty raises some interesting issues but does not fundamentally impact problem)
- Consumes C_{t} and C_{t+1}
- Begins life with no wealth, and can save $S_{t}=Y_{t}-C_{t}$ (can be negative, which is borrowing)
- Earns/pays real interest rate r_{t} on saving/borrowing
- Household a price-taker: takes r_{t} as given
- Do not model a financial intermediary (i.e. bank), but assume existence of option to borrow/save through this intermediary

Budget Constraints

- Two flow budget constraints in each period:

$$
\begin{aligned}
C_{t}+S_{t} & \leq Y_{t} \\
C_{t+1}+S_{t+1}-S_{t} & \leq Y_{t+1}+r_{t} S_{t}
\end{aligned}
$$

- Saving vs. Savings: saving is a flow and savings is a stock. Saving is the change in the stock
- As written, S_{t} and S_{t+1} are stocks
- In period t, no distinction between stock and flow because no initial stock
- $S_{t+1}-S_{t}$ is flow saving in period $t+1 ; S_{t}$ is the stock of savings household takes from t to $t+1$, and S_{t+1} is the stock it takes from $t+1$ to $t+2$
- $r_{t} S_{t}$: income earned on the stock of savings brought into $t+1$

Terminal Condition and the IBC

- Household would not want $S_{t+1}>0$. Why? There is no $t+2$. Don't want to die with positive assets
- Household would like $S_{t+1}<0$ - die in debt. Lender would not allow that
- Hence, $S_{t+1}=0$ is a terminal condition (sometimes "no Ponzi")
- Assume budget constraints hold with equality (otherwise leaving income on the table), and eliminate S_{t}, leaving:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}
$$

- This is called the intertemporal budget constraint (IBC). Says that present discounted value of stream of consumption equals present discounted value of stream of income.

Preferences

- Household gets utility from how much it consumes
- Utility function: $u\left(C_{t}\right)$. "Maps" consumption into utils
- Assume: $u^{\prime}\left(C_{t}\right)>0$ (positive marginal utility) and $u^{\prime \prime}\left(C_{t}\right)<0$ (diminishing marginal utility)
- "More is better, but at a decreasing rate"
- Example utility function:

$$
\begin{aligned}
u\left(C_{t}\right) & =\ln C_{t} \\
u^{\prime}\left(C_{t}\right) & =\frac{1}{C_{t}}>0 \\
u^{\prime \prime}\left(C_{t}\right) & =-C_{t}^{-2}<0
\end{aligned}
$$

- Utility is completely ordinal - no meaning to magnitude of utility (it can be negative). Only useful to compare alternatives

Lifetime Utility

- Lifetime utility is a weighted sum of utility from period t and $t+1$ consumption:

$$
U=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)
$$

- $0<\beta<1$ is the discount factor - it is a measure of how impatient the household is.

Household Problem

- Technically, household chooses C_{t} and S_{t} in first period. This effectively determines C_{t+1}
- Think instead about choosing C_{t} and C_{t+1} in period t

$$
\max _{C_{t}, C_{t+1}} U=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)
$$

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}
$$

Euler Equation

- First order optimality condition is famous in economics - the "Euler equation" (pronounced "oiler")

$$
u^{\prime}\left(C_{t}\right)=\beta\left(1+r_{t}\right) u^{\prime}\left(C_{t+1}\right)
$$

- Intuition and example with log utility
- Necessary but not sufficient for optimality
- Doesn't determine level of consumption. To do that need to combine with IBC

Indifference Curve

- Think of C_{t} and C_{t+1} as different goods (different in time dimension)
- Indifference curve: combinations of C_{t} and C_{t+1} yielding fixed overall level of lifetime utility
- Different indifference curve for each different level of lifetime utility. Direction of increasing preference is northeast
- Slope of indifference curve at a point is the negative ratio of marginal utilities:

$$
\text { slope }=-\frac{u^{\prime}\left(C_{t}\right)}{\beta u^{\prime}\left(C_{t+1}\right)}
$$

- Given assumption of $u^{\prime \prime}(\cdot)<0$, steep near origin and flat away from it

Budget Line

- Graphical representation of IBC
- Shows combinations of C_{t} and C_{t+1} consistent with IBC holding, given Y_{t}, Y_{t+1}, and r_{t}
- Points inside budget line: do not exhaust resources
- Points outside budget line: infeasible
- By construction, must pass through point $C_{t}=Y_{t}$ and $C_{t+1}=Y_{t+1}$ ("endowment point")
- Slope of budget line is negative gross real interest rate:

$$
\text { slope }=-\left(1+r_{t}\right)
$$

Optimality Graphically

- Objective is to choose a consumption bundle on highest possible indifference curve
- At this point, indifference curve and budget line are tangent (which is same condition as Euler equation)

Consumption Function

- What we want is a decision rule that determines C_{t} as a function of things which the household takes as given $-Y_{t}$, Y_{t+1}, and r_{t}
- Consumption function:

$$
C_{t}=C^{d}\left(Y_{t}, Y_{t+1}, r_{t}\right)
$$

- Can use indifference curve - budget line diagram to qualitatively figure out how changes in Y_{t}, Y_{t+1}, and r_{t} affect C_{t}

Increases in Y_{t} and Y_{t+1}

- An increase in Y_{t} or Y_{t+1} causes the budget line to shift out horizontally to the right
- In new optimum, household will locate on a higher indifference curve with higher C_{t} and C_{t+1}
- Important result: wants to increase consumption in both periods when income increases in either period
- Wants its consumption to be "smooth" relative to its income
- Achieves smoothing its consumption relative to income by adjusting saving behavior: increases S_{t} when Y_{t} goes up, reduces S_{t} when Y_{t+1} goes up
- Can conclude that $\frac{\partial C^{d}}{\partial Y_{t}}>0$ and $\frac{\partial C^{d}}{\partial Y_{t+1}}>0$
- Further, $\frac{\partial C^{d}}{\partial Y_{t}}<1$. Call this the marginal propensity to consume, MPC

Increase in r_{t}

- A little trickier
- Causes budget line to become steeper, pivoting through endowment point
- Competing income and substitution effects:
- Substitution effect: how would consumption bundle change when r_{t} increases and income is adjusted so that household would locate on unchanged indifference curve?
- Income effect: how does change in r_{t} allow household to locate on a higher/lower indifference curve?
- Substitution effect always to reduce C_{t}, increase S_{t}
- Income effect depends on whether initially a borrower ($C_{t}>Y_{t}$, income effect to reduce C_{t}) or saver $\left(C_{t}<Y_{t}\right.$, income effect to increase C_{t})

Borrower

- Sub effect: $\downarrow C_{t}$. Income effect: $\downarrow C_{t}$
- Total effect: $\downarrow C_{t}$

Saver

- Sub effect: $\downarrow C_{t}$. Income effect: $\uparrow C_{t}$
- Total effect: ambiguous

The Consumption Function

- We will assume that the substitution effect always dominates for the interest rate
- Qualitative consumption function (with signs of partial derivatives)

$$
\left.C_{t}=C \underset{+}{Y_{t}}, \underset{+}{Y_{t+1}},{\underset{r}{t}}^{r_{t}}\right) .
$$

- Technically, partial derivative itself is a function
- However, we will mostly treat the partial with respect to first argument as a parameter we call the MPC

Algebraic Example with Log Utility

- Suppose $u\left(C_{t}\right)=\ln C_{t}$
- Euler equation is:

$$
C_{t+1}=\beta\left(1+r_{t}\right) C_{t}
$$

- Consumption function is:

$$
C_{t}=\frac{1}{1+\beta}\left[Y_{t}+\frac{Y_{t+1}}{1+r_{t}}\right]
$$

- MPC: $\frac{1}{1+\beta}$. Go through other partials

Permanent Income Hypothesis (PIH)

- Our analysis consistent with Friedman (1957) and the PIH
- Consumption ought to be a function of "permanent income"
- Permanent income: present value of lifetime income
- Special case: $r_{t}=0$ and $\beta=1$: consumption equal to average lifetime income
- Implications:

1. Consumption forward-looking. Consumption should not react to changes in income that were predictable in the past
2. MPC less than 1
3. Longer you live, the lower is the MPC

- Important empirical implications for econometric practice of the day. Regression of C_{t} on Y_{t} will not identify MPC (which is relevant for things like fiscal multiplier) if in historical data changes in Y_{t} are persistent

Applications and Extensions

- Book considers several applications / extensions:
- You are responsible for this material though we will only briefly discuss these in class

1. Wealth (GLS Ch. 8.4.1):

- Can assume household begins life with some assets other than strict savings (e.g. housing, stocks) and potentially allow household to accumulate more wealth
- Unsurprising implication: increases in value of wealth (e.g. increase in house prices) can result in more consumption/less saving

2. Permanent vs. transitory changes in income (GLS Ch. 8.4.2)

- Household will adjust consumption more (and saving less) to shocks to income the more persistent these are (persistent in sense of change in Y_{t} being correlated with change in Y_{t+1} of same sign)

Consumption Under Uncertainty

- GLS Ch. 8.4.4-8.4.5
- Suppose that future income is uncertain
- Suppose it can take on two values: $Y_{t+1}^{h} \geq Y_{t+1}^{\prime}$. Let $p \in[0,1]$ be the probability of the high state and $1-p$ the probability of the low state. Expected value of income is: $E\left(Y_{t+1}\right)=p Y_{t+1}^{h}+(1-p) Y_{t+1}^{l}$
- Everything dated t is known
- Period $t+1$ budget constraint must hold in both states of the world:

$$
\begin{aligned}
& C_{t+1}^{h} \leq Y_{t+1}^{h}+\left(1+r_{t}\right) S_{t} \\
& C_{t+1}^{\prime} \leq Y_{t+1}^{\prime}+\left(1+r_{t}\right) S_{t}
\end{aligned}
$$

- Uncertainty of future income translates into uncertainty over future consumption

Expected Utility

- Expected lifetime utility:

$$
E(U)=u\left(C_{t}\right)+\beta \times\left[p u\left(C_{t+1}^{h}\right)+(1-p) u\left(C_{t+1}^{\prime}\right)\right]
$$

- This is equivalent to:

$$
E(U)=u\left(C_{t}\right)+\beta E\left[u\left(C_{t+1}\right)\right]
$$

- Key insight: expected value of a function is not equal to the function of expected value (unless the function is linear)

Euler Equation

- Euler equation looks almost same under uncertainty but has expectation operator:

$$
u^{\prime}\left(C_{t}\right)=\beta\left(1+r_{t}\right) E\left[u^{\prime}\left(C_{t+1}\right)\right]
$$

- With log utility:

$$
\frac{1}{C_{t}}=\beta\left(1+r_{t}\right)\left[p \frac{1}{C_{t+1}^{h}}+(1-p) \frac{1}{C_{t+1}^{l}}\right]
$$

- Precautionary saving: if $u^{\prime \prime \prime}(\cdot)>0$, then \uparrow uncertainty over future income results in $\downarrow C_{t}$

Random Walk Hypothesis

- Continue to allow future income to be uncertain
- But instead assume that $u^{\prime \prime \prime}(\cdot)=0$ (no precautionary saving). Further assume that $\beta\left(1+r_{t}\right)=1$. Then Euler equation implies:

$$
E\left[C_{t+1}\right]=C_{t}
$$

- Consumption expected to be constant - simple implication of desire to smooth consumption applied to model with uncertainty
- Consumption ought not react to changes in Y_{t+1} which were predictable from perspective of period t :
- e.g. retirement, Social Security withholding throughout year
- After Hall (1978), this is one of the most tested implications in macroeconomics
- Generally fails - potential evidence of liquidity constraints (GLS Ch. 8.4.6)

