
Dynamic New Keynesian Model with Government Spending

Eric Sims

June 11, 2020

1 Linearized Equilibrium Conditions

The following are equilibrium conditions after linearization:

ct = Et ct+1 −
1

σ
(it − Et πt+1) (1)

χnt = −σct + wt (2)

wt = mct + at (3)

πt = ζmct + β Et πt+1 (4)

yt = at + nt (5)

yt = (1 − ψ) ct + ψgt (6)

(1) is the linearized Euler equation; σ is the inverse intertemporal elasticity of substitution, it

is the nominal interest rate, and πt is inflation. (2) is the linearized labor supply condition; χ is

the inverse Frisch elasticity. (3) is the labor demand condition, where mct is real marginal cost

(the inverse price markup). (4) is the linearized Phillips curve, which comes from price-setting

conditions from firms facing staggered price adjustment. The parameter ζ = (1−φ)(1−φβ)
φ , where

φ is the probability of price non-adjustment and β is the subjective discount factor. (5) is the

linearized production function (note I am linearizing about a zero inflation steady state, so price

dispersion drops out). (6) is the linearized resource constraint. gt is government spending, and

ψ = G
Y is the steady state government spending share of output.

The system would need to be augmented with stochastic processes for gt and at (e.g. AR(1)) as

well as some kind of rule for it (e.g. a Taylor rule). That would make 9 equations with 9 variables{
ct, yt, nt, wt, it,mct, πt, gt, at

}
.

2 System Reduction

We want to reduce this system down to a smaller number of equations. First, sub out consumption

from the Euler equation and labor supply curves:
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1

1 − ψ
yt −

ψ

1 − ψ
gt =

1

1 − ψ
Et yt+1 −

ψ

1 − ψ
Et gt+1 −

1

σ
(it − Et πt+1) (7)

χnt = − σ

1 − ψ
yt +

ψσ

1 − ψ
gt + wt (8)

Now substitute the production function into (8) to eliminate nt;

χ(yt − at) = − σ

1 − ψ
yt +

ψσ

1 − ψ
gt + wt (9)

Now substitute the labor demand function into (9) to eliminate wt:

χ(yt − at) = − σ

1 − ψ
yt +

ψσ

1 − ψ
gt +mct + at (10)

Collect terms: (
χ(1 − ψ) + σ

1 − ψ

)
yt = (1 + χ)at +

ψσ

1 − ψ
gt +mct (11)

It is useful to define the flexible price equilibrium level of variables, denoted with a f superscript,

as being consistent with mct = 0 (which would be an implication of price stickiness). yft satisfies:

yft =
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
at +

ψσ

χ(1 − ψ) + σ
gt (12)

We pretty clearly see that:(
χ(1 − ψ) + σ

1 − ψ

)
yft = (1 + χ)at +

ψσ

1 − ψ
gt (13)

But this means we can write real marginal cost as:(
χ(1 − ψ) + σ

1 − ψ

)
(yt − yft ) = mct (14)

Hence, we can define xt = yt − yft and write the Phillips Curve in terms of the output gap as:

πt = ζγxt + β Et πt+1 (15)

Where ζ is as before and γ =
(
χ(1−ψ)+σ

1−ψ

)
.

Now, let’s re-write the Euler equation slightly:

yt − ψgt = Et yt+1 − ψ Et gt+1 −
1 − ψ

σ
(it − Et πt+1) (16)

Add and subtract yft to both sides of (17):

yt − yft − ψgt + yft = Et yt+1 − Et yft+1 − ψ Et gt+1 + Et yft+1 −
1 − ψ

σ
(it − Et πt+1) (17)
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Write in terms of the gap, and plug in for yft :

xt − ψgt +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
at +

ψσ

χ(1 − ψ) + σ
gt =

Et xt+1 − ψ Et gt+1 +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
Et at+1 +

ψσ

χ(1 − ψ) + σ
Et gt+1 −

1 − ψ

σ
(it − Et πt+1) (18)

Combining the gt terms:

xt +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
at −

ψχ(1 − ψ)

χ(1 − ψ) + σ
gt =

Et xt+1 +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
Et at+1 −

ψχ(1 − ψ)

χ(1 − ψ) + σ
Et gt+1 −

1 − ψ

σ
(it − Et πt+1) (19)

Now define the natural rate of interest, rft , as the real rate consistent with flexible prices (which

would mean xt = 0). We have:

(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
at−

ψχ(1 − ψ)

χ(1 − ψ) + σ
gt =

(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
Et at+1−

ψχ(1 − ψ)

χ(1 − ψ) + σ
Et gt+1−

1 − ψ

σ
rft (20)

Or:

rft =
σ

1 − ψ

(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
(Et at+1 − at) −

σ

1 − ψ

ψχ(1 − ψ)

χ(1 − ψ) + σ
(Et gt+1 − gt) (21)

Let’s further assume that at and gt obey AR(1) processes, with AR(1) coefficients ρa and ρg,

respectively. Then we can write this further as:

rft =
σ

1 − ψ

(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
(ρa − 1)at −

σ

1 − ψ

ψχ(1 − ψ)

χ(1 − ψ) + σ
(ρg − 1)gt (22)

As long as the AR(1) parameters are both less than 1, increases in at lower rft , whereas increases

in gt raise it.

Now go back to (20). Add 1−ψ
σ rft to both sides:

xt +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
at −

ψχ(1 − ψ)

χ(1 − ψ) + σ
gt +

1 − ψ

σ
rft =

Et xt+1 +
(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
Et at+1 −

ψχ(1 − ψ)

χ(1 − ψ) + σ
Et gt+1 −

1 − ψ

σ
(it − Et πt+1 − rft ) (23)

But then the rft on the left hand side cancels with all the other junk involving at and gt, leaving

us with:
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xt = Et xt+1 −
1 − ψ

σ

(
it − Et πt+1 − rft

)
(24)

Hence, (15) and (24) (Phillips Curve and IS equation) define the non-policy block of the model.

We can treat rft as an exogenous process, as given in (24). So we can write the reduced system as:

πt = ζγxt + β Et πt+1 (25)

xt = Et xt+1 −
1 − ψ

σ

(
it − Et πt+1 − rft

)
(26)

rft =
σ

1 − ψ

(1 + χ)(1 − ψ)

χ(1 − ψ) + σ
(ρa − 1)at −

σ

1 − ψ

ψχ(1 − ψ)

χ(1 − ψ) + σ
(ρg − 1)gt (27)

We need to append a rule for it. But once we get the dynamics for πt and xt, we can recover

the dynamics for yt given the definition of yft , (12).

3 IRFs Under a Taylor Rule

Solving the “full system,” (1)-(6), yields identical dynamics to the “reduced” system written in

terms of the gap and natural rates, (25)-(28). To close the model, I assume a Taylor rule (and I

assume at and gt obey AR(1) processes):

it = φππt (28)

Below are impulse responses to a one unit productivity shock (assuming ρa = 0.9, ρg = 0.9,

β = 0.99, σ = χ = 1, φ = 0.75, ψ = 0.2, and φπ = 1.5). I multiply the output response to

the government spending shock by the inverse government spending share of output; this puts the

response in “multiplier” terms (the model is solved in log deviations).

4



Figure 1: IRFs to Productivity Shock
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Figure 2: IRFs to Government Spending Shock
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4 Approximating the Effects of the ZLB

We can approximate the effects of the ZLB in the model by assuming that it = 0 (which really

means it is pegged at a constant value, not necessarily at zero; what matters is not whether the

nominal rate is at zero but rather that it does not move in response to shocks). Within the context

of the linearized model, there are two relatively easy ways to implement this: (1) a deterministic

interest rate peg and (2) a stochastic interest rate peg. One can, in principle, do both of these “by

hand.”

To make life a bit easier, let’s drop the Taylor rule assumption, and instead assume that, so long

as it is not fixed, we just have it = rft . This means that, so long as there is no ZLB, we will have

xt = πt = 0. The basic idea of either approach is to assume that, once the ZLB episode is over,

policy reverts to tracking the natural rate of interest, which means both inflation and the output

gap are zero. These provide “terminal conditions” if you will that allow us to solve backwards for

the time paths of xt and πt during the period in which the interest rate is pegged.

4.1 Deterministic Peg

Assume, at period t, that it = 0. It will stay there through period it+H−1, reverting to equaling

the natural rate starting in period t+H. This means that, starting in period t+H, we will have
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xt+H = πt+H = 0.

Let’s start with a government spending shock. Suppose that gt goes up in period t and follows

its AR(1) process; assume that at is fixed. This in turn generates a time path of rft . Taking that

time path of rft as given, plus the terminal conditions that πt+H = xt+H = 0, we can solve for

πt+H−1 and xt+H−1 from the Phillips Curve and IS equations:

xt+H−1 =
1 − ψ

σ
rft+H−1 (29)

πt+H−1 = ζγxt+H−1 (30)

Then, taking these as given, we can just solve backwards in time in t + H − 2 and so on back

to t. In principle one can do this analytically, but it gets messy. I’ll instead just do it numerically

using loops in Matlab.

Below I show impulse responses to a government spending shock for H = 6 and H = 10. I scale

the output response by 1/ψ, which puts the units of the response in the form of a multiplier.

Figure 3: IRFs to Government Spending Shock, 6 Period Deterministic Peg
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Figure 4: IRFs to Government Spending Shock, 10 Period Deterministic Peg
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Regardless of H, the ZLB causes the policy rate to under-react relative to the natural rate.

This causes output and inflation to react more. This magnification is larger the bigger is H. For

H = 6, the government spending multiplier still below 1. For H = 10, it goes up to about 2. Note

that, because there are no endogenous state variables in the model, once we get to horizon t+H,

the responses under the peg converge exactly to those without the peg.

Next, I show response to the productivity shock with the same peg lengths. The story is

reversed relative to government spending. Ideally, the central bank wants to lower the policy rate

to match the lower natural rate. The inability to do so means that policy is too tight. This exerts

a contractionary effect, so output increases less and inflation falls more, both more so the bigger is

H. When H = 10, for example, a positive productivity shock in fact becomes contractionary for

output.
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Figure 5: IRFs to Productivity Shock, 6 Period Deterministic Peg
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Figure 6: IRFs to Productivity Shock, 10 Period Deterministic Peg
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4.2 Stochastic Peg

Suppose that, in period t, it = 0 (i.e. fixed). It will stay fixed going into period t+1 with probability

α, and will lift and return to rft+1 with probability 1−α. Then the same thing happens again going

forward. If the interest rate remains fixed in t + 1, then there is an α probability it remains fixed

in t+ 2, and a 1 − α probability it lifts in period t+ 2. And so on.

We can map the parameter α into an expected duration of the peg/ZLB as follows. The

probability that the interest rate is pegged for 1 period is 1 − α – this is the probability that the

peg lifts in t+ 1 conditional on being in a peg in t. The probability that it is pegged for 2 periods

is α(1−α) – α is the probability it lasts into t+ 1, and (1−α) is the probability it lifts after t+ 1.

The probability of 3 periods is α2(1−α) – α2 is the probability of getting to t+ 2 with the interest

rate still fixed, and 1 − α is the probability of lifting going into t+ 3. And so on. So the expected

duration of the peg is:

E(Duration) = (1 − α) + α(1 − α)2 + α2(1 − α)3 + · · · = (1 − α)
[
1 + 2α+ 3α2 + 4α3 + . . .

]
(31)

Focus on the last term in brackets. Define it is as S:
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S = 1 + 2α+ 3α2 + 4α3 + . . . (32)

Multiply both sides by α:

Sα = α+ 2α2 + 3α3 + 4α4 + . . . (33)

Subtract the latter from the former:

S(1 − α) = 1 + α+ α2 + α3 + α4 + . . . (34)

We know that the right hand side is 1
1−α . Therefore S = 1

(1−α)2 . But then from above, this

gives us a simple formula for the expected duration:

E(Duration) =
1

1 − α
(35)

So, for example, if α = 3/4, the expected duration of the peg/ZLB is 4 periods (if quarters,

then this is one year). This, by the way, is exactly the same way to map a Calvo price stickiness

parameter to an expected duration between price changes.

We can analytically solve for paths of output, inflation, and the output gap at the ZLB. Once

the ZLB lifts, we know that πt = xt = 0 since we are assuming the nominal interest rate will

equal the natural rate. Using the method of undetermined coefficients, guess that, during the ZLB,

inflation and the gap relate to the natural rate of interest as follows:

xt = θ1r
f
t (36)

πt = θ2r
f
t (37)

Plug these guesses into the Phillips Curve and IS equations:

θ1r
f
t = αθ1 Et rft+1 −

1 − ψ

σ

(
−αθ2 Et rft+1 − rft

)
(38)

θ2r
f
t = ζγθ1r

f
t + αβθ2 Et rft+1 (39)

In doing all this, we are noting that, with probability α, πt+1 = θ2r
f
t+1 and with probability

1 − α it equals zero, and similarly for the output gap. If we assume that ρa = ρg = ρ, we can

replace Et rft+1 = ρrft . So we can write these as:

θ1r
f
t = αθ1ρr

f
t −

1 − ψ

σ

(
−αθ2ρrft − rft

)
(40)

θ2r
f
t = ζγθ1r

f
t + αβθ2ρr

f
t (41)

Now we can drop the rft . Focus on the second expression (the Phillips Curve). We can write:
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θ2 =
ζγ

1 − αβρ
θ1 (42)

Then from the IS equation, we have:

θ1σ(1 − αρ) = (1 − ψ) + αρ(1 − ψ)θ2 (43)

Plug in for θ2:

θ1σ(1 − αρ) = (1 − ψ) + αρ(1 − ψ)
ζγ

1 − αβρ
θ1 (44)

Now this is one equation in θ1. Get rid of the fraction:

θ1σ(1 − αβρ)(1 − αρ) = (1 − αβρ)(1 − ψ) + αρζγ(1 − ψ)θ1 (45)

Now collect terms on the LHS:

[σ(1 − αβρ)(1 − αρ) − αρζγ(1 − ψ)] θ1 = (1 − αβρ)(1 − ψ) (46)

So:

θ1 =
(1 − αβρ)(1 − ψ)

σ(1 − αβρ)(1 − αρ) − αρζγ(1 − ψ)
(47)

Which in turn implies:

θ2 =
ζγ(1 − ψ)

σ(1 − αβρ)(1 − αρ) − αρζγ(1 − ψ)
(48)

Given these coefficients, we can compute impulse responses to shocks. Recall that an impulse

response is a displacement of conditional forecasts. The expected value of, say, xt+j is αjθ1 Et rft+j .
This is because αj is the probability that we are in the ZLB regime; otherwise xt+j = 0.

Impulse responses to a government spending and productivity shock are shown below for the

case of α = 3/4, which corresponds to an expected one year duration of the ZLB. These are similar

to above, although more magnified, with the exception of the nominal rate response. In this setup,

the impulse response of the nominal rate turns positive at a one period forecast horizon – this

is because there is a probability that the ZLB lifts after just one period. But the basic story

is the same as above – the nominal rate doesn’t rise enough (relative to the natural rate) after a

government spending shock, so output expands more; the nominal rate doesn’t fall enough (relative

to the natural rate) after a productivity shock, so output doesn’t rise as much (or, as is the case

here, actually falls).
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Figure 7: IRFs to Government Spending Shock, α = 3/4
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Figure 8: IRFs to Productivity Shock, α = 3/4
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A weird thing happens with the stochastic peg case. One can see this by looking at the solutions

for θ1 and θ2. If α gets sufficiently big, the signs of the denominators are going to flip, causing

the signs of θ1 and θ2 to both also flip. For the parameterization I’m using, this happens between

α = 3/4 and α = 4/5. So when I solve the model with α = 4/5, the government spending shock

becomes less expansionary relative to the flexible price equilibrium, while the productivity shock

becomes more expansionary. This issue of “sign reversals” with stochastic pegs is discussed in

Carlstrom, Fuerst, and Paustian (2015, JME ).

14



Figure 9: IRFs to Government Spending Shock, α = 4/5
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Figure 10: IRFs to Productivity Shock, α = 4/5
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