New Keynesian Model with Price and Wage Stickiness

Eric Sims

June 19, 2020

This note describes a basic New Keynesian model (no capital and no other real frictions) where both prices and wages are sticky. Rather than doing the setup of Erceg, Henderson, and Levin (2000, JME), I do a union setup where I can assume a representative household.

1 Household

Household flow utility is given by:

$$
U\left(C_{t}, L_{t}\right)=\frac{C_{t}^{1-\sigma}}{1-\sigma}-\psi \frac{L_{t}^{1+\chi}}{1+\chi}
$$

Flow utility is discounted by β. The budget constraint facing the household, written in nominal terms, is:

$$
P_{t} C_{t}+B_{t} \leq M R S_{t} L_{t}+R_{t-1} B_{t-1}+D I V_{t}
$$

The household can save via a one period bond with gross nominal interest rate $R_{t} . M R S_{t}$ is the nominal remuneration for supply labor to unions. A Lagrangian is:

$$
\mathbb{L}=\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{\frac{C_{t}^{1-\sigma}}{1-\sigma}-\psi \frac{L_{t}^{1+\chi}}{1+\chi}+\mu_{t}\left[M R S_{t} L_{t}+R_{t-1} B_{t-1}+D I V_{t}-P_{t} C_{t}-B_{t}\right]\right\}
$$

The first order conditions are:

$$
\begin{gathered}
C_{t}^{-\sigma}=\mu_{t} P_{t} \\
\psi L_{t}^{\chi}=\mu_{t} M R S_{t} \\
\mu_{t}=\beta R_{t} \mathbb{E}_{t} \mu_{t+1}
\end{gathered}
$$

Re-written in real terms, where $\Pi_{t}=P_{t} / P_{t-1}$, we have:

$$
\begin{gather*}
\psi L_{t}^{\chi}=C_{t}^{-\sigma} m r s_{t} \tag{1}\\
1=R_{t} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{-1} \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\Lambda_{t, t+1}=\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \tag{3}
\end{equation*}
$$

$m r s_{t}=M R S_{t} / P_{t}$ is the real remuneration for supply labor. $\Lambda_{t, t+1}$ is the real stochastic discount factor.

2 Labor Markets

There are a continuum of labor unions indexed by $l \in[0,1]$. They hire labor from the household at $M R S_{t}$ and sell to a labor packer at $W_{t}(h)$. The labor packer combines union labor into a final labor input available to firms via a CES technology. In particular:

$$
L_{d, t}=\left[\int_{0}^{1} L_{t}(l)^{\frac{\epsilon_{w}-1}{\epsilon_{w}}} d l\right]^{\frac{\frac{\epsilon_{w}}{\epsilon_{w}-1}}{}}
$$

Profit maximization yields a demand curve for each union's labor and an aggregate wage index:

$$
\begin{gathered}
L_{t}(l)=\left(\frac{W_{t}(l)}{W_{t}}\right)^{-\epsilon_{w}} L_{d, t} \\
W_{t}^{1-\epsilon_{w}}=\int_{0}^{1} W_{t}(l)^{1-\epsilon_{w}} d l
\end{gathered}
$$

Unions simply repackage labor from the household one-for-one for resale to the packer. Nominal dividends are:

$$
D I V_{u, t}(l)=W_{t}(l) L_{t}(l)-M R S_{t} L_{t}(l)
$$

Plugging in the demand function:

$$
D I V_{u, t}(l)=W_{t}(l)^{1-\epsilon_{w}} W_{t}^{\epsilon_{w}} L_{d, t}-M R S_{t} W_{t}(l)^{-\epsilon_{w}} W_{t}^{\epsilon_{w}} L_{d, t}
$$

Dividing by P_{t} to put this into real terms:

$$
\operatorname{div}_{u, t}(l)=W_{t}(l)^{1-\epsilon_{w}} W_{t}^{\epsilon_{w}} P_{t}^{-1} L_{d, t}-m r s_{t} W_{t}(l)^{-\epsilon_{w}} W_{t}^{\epsilon_{w}} L_{d, t}
$$

With probability $1-\phi_{w}$, a union can update its wage. The problem for a union given the opportunity to update is to pick $W_{t}(l)$ to maximize the present discounted value of real dividends, where discounting is by the household's SDF as well as the probability that a price chosen today will be in effect in the future. The problem is:

$$
\max _{W_{t}(l)} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{w}^{j} \Lambda_{t, t+j}\left\{W_{t}(l)^{1-\epsilon_{w}} W_{t+j}^{\epsilon_{w}} P_{t+j}^{-1} L_{d, t+j}-m r s_{t+j} W_{t}(l)^{-\epsilon_{w}} W_{t+j}^{\epsilon_{w}} L_{d, t+j}\right\}
$$

The FOC is:
$\left(1-\epsilon_{w}\right) W_{t}(l)^{-\epsilon_{w}} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{w}^{j} \Lambda_{t, t+j} W_{t+j}^{\epsilon_{w}} P_{t+j}^{-1} L_{d, t+j}+\epsilon_{w} W_{t}(l)^{-\epsilon_{w}-1} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{w}^{j} \Lambda_{t, t+j} m r s_{t+j} W_{t+j}^{\epsilon_{w}} L_{d, t+j}=0$
The reset wage doesn't depend upon l indexes, so I will call the optimal reset wage $W_{t}^{\#}$. The FOC can be written:

$$
W_{t}^{\#}=\frac{\epsilon_{w}}{\epsilon_{w}-1} \frac{\mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{w}^{j} \Lambda_{t, t+j} m r s_{t+j} W_{t+j}^{\epsilon_{w}} L_{d, t+j}}{\mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{w}^{j} \Lambda_{t, t+j} W_{t+j}^{\epsilon_{w}} P_{t+j}^{-1} L_{d, t+j}}
$$

This can be written recursively:

$$
\begin{gathered}
W_{t}^{\#}=\frac{\epsilon_{w}}{\epsilon_{w}-1} \frac{F_{1, t}}{F_{2, t}} \\
F_{1, t}=m r s_{t} W_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} F_{1, t+1} \\
F_{2, t}=W_{t}^{\epsilon_{w}} P_{t}^{-1} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} F_{2, t+1}
\end{gathered}
$$

Write $F_{1, t}$ and $F_{2, t}$ in terms of real variables by multiplying and dividing by powers of P_{t} :

$$
\begin{gathered}
F_{1, t}=m r s_{t} w_{t}^{\epsilon_{w}} P_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} F_{1, t+1} \\
F_{2, t}=w_{t}^{\epsilon_{w}} P_{t}^{\epsilon_{w}-1} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} F_{2, t+1}
\end{gathered}
$$

Define $f_{1, t}=F_{1, t} / P_{t}^{\epsilon_{w}}$ and $f_{2, t}=F_{2, t} / P_{t}^{\epsilon_{w}-1}$. We then have:

$$
\begin{gather*}
w_{t}^{\#}=\frac{\epsilon_{w}}{\epsilon_{w}-1} \frac{f_{1, t}}{f_{2, t}} \tag{4}\\
f_{1, t}=m r s_{t} w_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{w}} f_{1, t+1} \tag{5}\\
f_{2, t}=w_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{w}-1} f_{2, t+1} \tag{6}
\end{gather*}
$$

3 Production

Production is split into three sectors. A representative wholesale firm hires labor from the labor packer and produces output, selling it to a continuum of retail firms at $P_{w, t}$. The retail firms purchase wholesale output at $P_{w, t}$, costly repackage it, and sell it to a competitive final goods firm at $P_{t}(f)$, where retailers are indexed by $f \in[0,1]$. The final goods firm combines retail output into a final output good.

Retail output is transformed into final output via:

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(f)^{\frac{\epsilon_{p}-1}{\epsilon_{p}}} d f\right]^{\frac{\epsilon_{p}}{\epsilon_{p}-1}}
$$

Profit maximization by the final goods firm yields a demand for each retail output and a price index.

$$
\begin{aligned}
Y_{t}(f) & =\left(\frac{P_{t}(f)}{P_{t}}\right)^{-\epsilon_{p}} Y_{t} \\
P_{t}^{1-\epsilon_{p}} & =\int_{0}^{1} P_{t}(f)^{1-\epsilon_{p}} d f
\end{aligned}
$$

Retailers costlessly transform wholesale output into retail output. Their nominal dividend is:

$$
D I V_{r, t}(f)=P_{t}(f) Y_{t}(f)-P_{w, t} Y_{t}(f)
$$

Using the demand function, this is:

$$
D_{r, t}(f)=P_{t}(f)^{1-\epsilon_{p}} P_{t}^{\epsilon_{p}} Y_{t}-P_{w, t} P_{t}(f)^{-\epsilon_{p}} P_{t}^{\epsilon_{p}} Y_{t}
$$

Or, in real terms:

$$
d_{r, t}(f)=P_{t}(f)^{1-\epsilon_{p}} P_{t}^{\epsilon_{p}-1} Y_{t}-P_{w, t} P_{t}(f)^{-\epsilon_{p}} P_{t}^{\epsilon_{p}-1} Y_{t}
$$

Retailers can only adjust their price with probability $1-\phi_{p}$. This makes their price-setting problem dynamic, where future real dividends are discounted by the household's stochastic discount factor as well as the probability that a price chosen in period t remains in effect in the future. The price-setting problem is:

$$
\max _{P_{t}(f)} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{p}^{j} \Lambda_{t, t+j}\left\{P_{t}(f)^{1-\epsilon_{p}} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}-P_{w, t+j} P_{t}(f)^{-\epsilon_{p}} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}\right\}
$$

The first order condition is:

$$
\left(1-\epsilon_{p}\right) P_{t}(f)^{-\epsilon_{p}} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{p}^{j} \Lambda_{t, t+j} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}+\epsilon_{p} P_{t}(f)^{-\epsilon_{p}-1} \mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{p}^{j} \Lambda_{t, t+j} P_{w, t+j} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}=0
$$

The optimal reset price does not depend on f. Call it $P_{t}^{\#}$. We can re-write the FOC as:

$$
P_{t}^{\#}=\frac{\epsilon_{p}}{\epsilon_{p}-1} \frac{\mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{p}^{j} \Lambda_{t, t+j} P_{w, t+j} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}}{\mathbb{E}_{t} \sum_{j=0}^{\infty} \phi_{p}^{j} \Lambda_{t, t+j} P_{t+j}^{\epsilon_{p}-1} Y_{t+j}}
$$

This can be written recursively:

$$
\begin{gathered}
P_{t}^{\#}=\frac{\epsilon_{p}}{\epsilon_{p}-1} \frac{X_{1, t}}{X_{2, t}} \\
X_{1, t}=p_{w, t} P_{t}^{\epsilon_{p}} Y_{t}+\phi_{p} \Lambda_{t, t+1} X_{1, t+1} \\
X_{2, t}=P_{t}^{\epsilon_{p}-1} Y_{t}+\phi_{p} \Lambda_{t, t+1} X_{2, t+1}
\end{gathered}
$$

Where $p_{w, t}=P_{w, t} / P_{t}$ and is interpretable as real marginal cost. Define $x_{1, t}=X_{1, t} / P_{t}^{\epsilon_{p}}$ and $x_{2, t}=X_{2, t} / P_{t}^{\epsilon_{p}-1}$. We have:

$$
\begin{gather*}
x_{1, t}=p_{w, t} Y_{t}+\phi_{p} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{p}} x_{1, t+1} \tag{7}\\
x_{2, t}=Y_{t}+\phi_{p} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{p}-1} x_{2, t+1} \tag{8}\\
\Pi_{t}^{\#}=\frac{\epsilon_{p}}{\epsilon_{p}-1} \frac{x_{1, t}}{x_{2, t}} \tag{9}
\end{gather*}
$$

Where $\Pi_{t}=P_{t} / P_{t-1}$ and $\Pi_{t}^{\#}=P_{t}^{\#} / P_{t}$.
The wholesale firm produces output according to:

$$
\begin{equation*}
Y_{W, t}=A_{t} L_{d, t} \tag{10}
\end{equation*}
$$

Its nominal dividend is:

$$
D I V_{W, t}=P_{w, t} Y_{W, t}-W_{t} L_{d, t}
$$

The optimality condition is:

$$
W_{t}=P_{w, t} A_{t}
$$

Or, in real terms:

$$
\begin{equation*}
w_{t}=p_{w, t} A_{t} \tag{11}
\end{equation*}
$$

4 Monetary Policy

Assuming the gross nominal rate, R_{t}, is set according to a Taylor type rule:

$$
\begin{equation*}
\ln R_{t}=\left(1-\rho_{R}\right) \ln R+\rho_{R} \ln R_{t-1}+\left(1-\rho_{R}\right) \theta_{\pi}\left(\ln \Pi_{t}-\ln \Pi\right)+s_{R} \varepsilon_{R, t} \tag{12}
\end{equation*}
$$

Variables without time subscripts denote non-stochastic steady state values.

5 Aggregation

The aggregate inflation rate and real wage evolve according to the following expressions, which can be derived using properties of Calvo pricing:

$$
\begin{gather*}
1=\left(1-\phi_{p}\right)\left(\Pi_{t}^{\#}\right)^{1-\epsilon_{p}}+\phi_{p} \Pi^{\epsilon_{p}-1} \tag{13}\\
w_{t}^{1-\epsilon_{w}}=\left(1-\phi_{w}\right)\left(w_{t}^{\#}\right)^{1-\epsilon_{w}}+\phi_{w} \Pi_{t}^{\epsilon_{w}-1} w_{t-1}^{1-\epsilon_{w}} \tag{14}
\end{gather*}
$$

Goods market-clearing requires that wholesale output by sold to unions in the aggregate, or:

$$
Y_{W, t}=\int_{0}^{1} Y_{t}(f) d f
$$

Given the demand function for each retailers output, this works out to:

$$
\begin{equation*}
Y_{W, t}=Y_{t} v_{t}^{p} \tag{15}
\end{equation*}
$$

Where v_{t}^{p} is a measure of price dispersion:

$$
\begin{equation*}
v_{t}^{p}=\left(1-\phi_{p}\right)\left(\Pi_{t}^{\#}\right)^{-\epsilon_{p}}+\phi_{p} \Pi_{t}^{\epsilon_{p}} v_{t-1}^{p} \tag{16}
\end{equation*}
$$

Labor market-clearing requires that labor supplied by the household equal the sum total of labor employed by unions:

Labor market clearing: labor supplied by the household must equal labor used by the union:

$$
L_{t}=\int_{0}^{1} L_{u, t}(l) d l
$$

Given the demand for union labor, this works out to:

$$
\begin{equation*}
L_{t}=L_{d, t} v_{t}^{w} \tag{17}
\end{equation*}
$$

Where v_{t}^{w} is a measure of wage dispersion:

$$
\begin{equation*}
v_{t}^{w}=\left(1-\phi_{w}\right)\left(\frac{w_{t}^{\#}}{w_{t}}\right)^{-\epsilon_{w}}+\phi_{w} \Pi_{t}^{\epsilon_{w}}\left(\frac{w_{t}}{w_{t-1}}\right)^{\epsilon_{w}} v_{t-1}^{w} \tag{18}
\end{equation*}
$$

To get the aggregate resource constraint, first aggregate dividends from retail firms

$$
D I V_{r, t}=\int_{0}^{1} D I V_{r, t}(f)=P_{t}^{\epsilon_{p}} Y_{t} \int_{0}^{1} P_{t}(f)^{1-\epsilon_{p}} d f-P_{w, t} Y_{t} \int_{0}^{1}\left(\frac{P_{t}(f)}{P_{t}}\right)^{-\epsilon_{p}} d f
$$

Which, given the price index and definition of price dispersion is:

$$
D I V_{R, t}=P_{t} Y_{t}-P_{w, t} Y_{t} v_{t}^{p}
$$

Now aggregate dividends from unions:

$$
D I V_{u, t}=\int_{0}^{1} D I V_{u, t}(l) d l=W_{t}^{\epsilon_{w}} L_{d, t} \int_{0}^{1} W_{t}(l)^{1-\epsilon_{w}} d l-M R S_{t} L_{d, t} \int_{0}^{1}\left(\frac{W_{t}(l)}{W_{t}}\right)^{-\epsilon_{w}} d l
$$

Which given the wage index works out to:

$$
D I V_{u, t}=W_{t} L_{d, t}-M R S_{t} L_{P, t} v_{t}^{w}
$$

The dividend from wholesale firm is:

$$
D I V_{W, t}=P_{w, t} Y_{w, t}-W_{t} L_{d, t}
$$

Total dividends received by the household are then:

$$
D I V_{t}=D I V_{r, t}+D I V_{w, t}+D I V_{W, t}
$$

Summing these up:

$$
D I V_{t}=P_{t} Y_{t}-P_{w, t} Y_{t} v_{t}^{p}+W_{t} L_{d, t}-M R S_{t} L_{d, t} v_{t}^{w}+P_{w, t} Y_{w, t}-W_{t} L_{W, t}
$$

But then using facts about labor and goods market-clearing, we have:

$$
D I V_{t}=P_{t} Y_{t}-P_{w, t} Y_{W, t}+W_{t} L_{d, t}-M R S_{t} L_{t}+P_{w, t} Y_{W, t}-W_{t} L_{d, t}
$$

But then stuff cancels, leaving:

$$
D I V_{t}=P_{t} Y_{t}-M R S_{t} L_{t}
$$

Then if we impose bonds in zero supply (which is innocuous, we could have different kinds of firms buying/selling debt and it wouldn't affect anything), we get the standard resource constraint:

$$
\begin{equation*}
Y_{t}=C_{t} \tag{19}
\end{equation*}
$$

6 Exogenous Process

A_{t} is the only exogenous variable. Assume it follows an $\operatorname{AR}(1)$ in the log with non-stochastic mean normalized to unity:

$$
\begin{equation*}
\ln A_{t}=\rho_{A} \ln A_{t-1}+s_{A} \varepsilon_{A, t} \tag{20}
\end{equation*}
$$

7 Full Set of Equilibrium Conditions

- Household:

$$
\begin{gather*}
\psi L_{t}^{\chi}=C_{t}^{-\sigma} m r s_{t} \tag{21}\\
1=R_{t} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{-1} \tag{22}\\
\Lambda_{t, t+1}=\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \tag{23}
\end{gather*}
$$

- Wage-setting:

$$
\begin{gather*}
w_{t}^{\#}=\frac{\epsilon_{w}}{\epsilon_{w}-1} \frac{f_{1, t}}{f_{2, t}} \tag{24}\\
f_{1, t}=m r s_{t} w_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{w}} f_{1, t+1} \tag{25}\\
f_{2, t}=w_{t}^{\epsilon_{w}} L_{d, t}+\phi_{w} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{w}-1} f_{2, t+1} \tag{26}
\end{gather*}
$$

- Price-setting:

$$
\begin{gather*}
x_{1, t}=p_{w, t} Y_{t}+\phi_{p} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{p}} x_{1, t+1} \tag{27}\\
x_{2, t}=Y_{t}+\phi_{p} \mathbb{E}_{t} \Lambda_{t, t+1} \Pi_{t+1}^{\epsilon_{p}-1} x_{2, t+1} \tag{28}\\
\Pi_{t}^{\#}=\frac{\epsilon_{p}}{\epsilon_{p}-1} \frac{x_{1, t}}{x_{2, t}} \tag{29}
\end{gather*}
$$

- Wholesale firm:

$$
\begin{gather*}
Y_{W, t}=A_{t} L_{d, t} \tag{30}\\
w_{t}=p_{w, t} A_{t} \tag{31}
\end{gather*}
$$

- Monetary policy:

$$
\begin{equation*}
\ln R_{t}=\left(1-\rho_{R}\right) \ln R+\rho_{R} \ln R_{t-1}+\left(1-\rho_{R}\right) \theta_{\pi}\left(\ln \Pi_{t}-\ln \Pi\right)+s_{R} \varepsilon_{R, t} \tag{32}
\end{equation*}
$$

- Aggregate conditions:

$$
\begin{gather*}
1=\left(1-\phi_{p}\right)\left(\Pi_{t}^{\#}\right)^{1-\epsilon_{p}}+\phi_{p} \Pi^{\epsilon_{p}-1} \tag{33}\\
w_{t}^{1-\epsilon_{w}}=\left(1-\phi_{w}\right)\left(w_{t}^{\#}\right)^{1-\epsilon_{w}}+\phi_{w} \Pi_{t}^{\epsilon_{w}-1} w_{t-1}^{1-\epsilon_{w}} \tag{34}\\
Y_{W, t}=Y_{t} v_{t}^{p} \tag{35}
\end{gather*}
$$

$$
\begin{gather*}
v_{t}^{p}=\left(1-\phi_{p}\right)\left(\Pi_{t}^{\#}\right)^{-\epsilon_{p}}+\phi_{p} \Pi_{t}^{\epsilon_{p}} v_{t-1}^{p} \tag{36}\\
L_{t}=L_{d, t} v_{t}^{w} \tag{37}\\
v_{t}^{w}=\left(1-\phi_{w}\right)\left(\frac{w_{t}^{\#}}{w_{t}}\right)^{-\epsilon_{w}}+\phi_{w} \Pi_{t}^{\epsilon_{w}}\left(\frac{w_{t}}{w_{t-1}}\right)^{\epsilon_{w}} v_{t-1}^{w} \tag{38}\\
Y_{t}=C_{t} \tag{39}
\end{gather*}
$$

- Exogenous process:

$$
\begin{equation*}
\ln A_{t}=\rho_{A} \ln A_{t-1}+s_{A} \varepsilon_{A, t} \tag{40}
\end{equation*}
$$

This is 20 variables $\left\{C_{t}, Y_{t}, Y_{W, t}, L_{t}, L_{d, t}, \Lambda_{t, t+1}, R_{t}, m r s_{t}, w_{t}, p_{w, t}, \Pi_{t}, \Pi_{t}^{\#}, w_{t}^{\#}, x_{1, t}, x_{2, t}, f_{1, t}, f_{2, t}\right.$, $\left.A_{t}, v_{t}^{p}, v_{t}^{w}\right\}$ in 20 equations.

8 Steady State

It is easiest to assume zero net inflation in steady state. This means $\Pi=1$, which then implies $\Pi^{\#}=v^{p}=v^{w}=1, R=1 / \beta$, and $w^{\#}=w$. Note also we have already assumed $A=1$.

From the FOC for price-setting, we get:

$$
\begin{equation*}
p_{w}=w=\frac{\epsilon_{p}-1}{\epsilon_{p}} \tag{41}
\end{equation*}
$$

From the FOC for wage-setting, we see:

$$
\begin{equation*}
m r s=\frac{\epsilon_{w}-1}{\epsilon_{w}} w \tag{42}
\end{equation*}
$$

Combining these, we get:

$$
\begin{equation*}
m r s=\frac{\epsilon_{w}-1}{\epsilon_{w}} \frac{\epsilon_{p}-1}{\epsilon_{p}} \tag{43}
\end{equation*}
$$

In an efficient allocation, we would have $m r s=1$. Market-power in both labor and goods distort this, with $m r s<1$.

I will calibrate the model to be consistent with $L=1$ in steady state. This means that ψ must satisfy:

$$
\begin{equation*}
\psi=m r s s \tag{44}
\end{equation*}
$$

